
Workgroup: dprive

Internet-Draft:

draft-vandijk-dprive-ds-dot-signal-and-pin-01

Published: 13 July 2020

Intended Status: Standards Track

Expires: 14 January 2021

Authors: P. van Dijk

PowerDNS

R. Geuze

TransIP

E. Bretelle

Facebook

Signalling Authoritative DoT support in DS records, with key pinning

Abstract

This document specifies a way to signal the usage of DoT, and the

pinned keys for that DoT usage, in authoritative servers. This

signal lives on the parent side of delegations, in DS records. To

ensure easy deployment, the signal is defined in terms of (C)DNSKEY.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 January 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Document work

3. Conventions and Definitions

4. Summary

5. Example

5.1. Generating and placing the (C)DNSKEY/DS records

6. Implementation

6.1. Authoritative server changes

6.2. Validating resolver changes

6.3. Stub resolver changes

6.4. Zone validator changes

6.5. Domain registry changes

7. Security Considerations

8. Implementation Status

8.1. PoC

9. Design Considerations

10. IANA Considerations

11. Acknowledgements

12. Normative References

13. Informative References

Appendix A. Document history

A.1. Changes between -00 and -01

Authors' Addresses

1. Introduction

Even quite recently, DNS was a completely unencrypted protocol, with

no protection against snooping. In the past few years, this

landscape has shifted. The connections between stubs and resolvers

are now often protected by DoT, DoH, or other protocols that provide

privacy.

This document introduces a way to signal, from the parent side of a

delegation, that the name servers hosting the delegated zone support

DoT, and with which TLS/X.509 keys. This proposal does not require

any changes in authoritative name servers, other than (possibly

through an external process) actually offering DoT on port 853

[RFC7858]. DNS registry operators (such as TLD operators) also need

to make no changes, unless they filter uploaded DNSKEY/DS records on

acceptable DNSKEY algorithms, in which case they would need to add

algorithm TBD to that list.

This document was inspired by, and borrows heavily from, [I-

D.bretelle-dprive-dot-for-insecure-delegations].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

CDNSKEY record

DS record

DNSKEY record

2. Document work

This document lives on GitHub; proposed text and editorial changes

are very much welcomed there, but any functional changes should

always first be discussed on the IETF DPRIVE WG (dns-privacy)

mailing list.

3. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

as defined in [RFC7344][RFC8078]

as defined in [RFC4034]

as defined in [RFC4034]

4. Summary

To enable the signaling of DoT a new DNSKEY algorithm type TBD is

added. If a resolver with support for TBD encounters a DS record

with the DNSKEY algorithm type TBD it MUST connect to the

authoritative servers for this domain via DoT. It MUST use the

hashes attached to the DS records with DNSKEY algorithm type TBD to

check whether the public key supplied by the authoritative

nameserver during the TLS handshake is valid. If the DoT connection

is unsuccessful or the public key supplied by the server does not

match any of the DS digests, the resolver MUST NOT fall back to

unencrypted Do53. For resolvers that are willing to probe for

protocol support (DNS over HTTPS, DNS over QUIC), a fallback to

other encrypted protocols is allowed if they can satisfy the key

pin. This means that if a DS for algo TBD is present, and no name

servers satisfy the pin requirement, the response returned to the

client is SERVFAIL because no name servers for the domain were

available to answer the questions.

A domain MAY have more than one DS record with DNSKEY algorithm TBD.

A resolver with support for TBD should then try to verify the public

key supplied by the authoritative nameserver against every supplied

DS record. Multiple records can be used to support multiple DS

digest types, multiple TLS key algorithms, different keys for each

authoritative, and for key rollovers. In case of an algorithm or key

rollover the new DS record should be added to all served domains

before the new key is deployed on the authoritatives. To allow for

emergency rollovers, having a standby DS record for all domains with

a private key securely stored offline can be a valid strategy.

¶

¶

¶

¶

¶

¶

¶

https://github.com/PowerDNS/parent-signals-dot/blob/master/draft-vandijk-dprive-ds-dot-signal-and-pin/draft-vandijk-dprive-ds-dot-signal-and-pin.md

The pseudo DNSKEY record (when considered in wire format) MUST

contain the ([RFC4648] 4.) DER SubjectPublicKeyInfo as defined in

[RFC5280] 4.1.2.7. Since the cert provided by the TLS server over

the wire is already DER encoded this makes for easy validation. (In

the DNSKEY presentation format, the Public Key field contains the

Base64 encoding of the DER SPKI, which is equivalent to the SPKI in

PEM format minus the header and footer.) The pseudo DNSKEY algorithm

type TBD is algorithm agnostic, like the TLSA record, since the DER

encoded data already contains information about the used algorithm.

Algorithm support SHOULD be handled at the TLS handshake level,

which means a DNS application SHOULD NOT need to be aware of the

algorithm used by its TLS library. The pseudo DNSKEY record MUST NOT

be present in the zone. The procedure for hashing the pseudo DNSKEY

record is the same as for a normal DNSKEY as defined in RFC4034

5.1.4.

As DNSKEY algorithm TBD is not meant to be used for Zone Signing,

the existing ZONE and SEP flags do not mean anything. This

specification statically defines the flags value as 257 for optimal

compatibility with existing registry operations.

The pseudo DNSKEY type can be used in CDNSKEY and CDS (as defined in

[RFC7344]) records. These records MAY be present in the zone.

For those familiar with TLSA ([RFC6698]), key matching for this

protocol is identical to that provided by TLSA 3 1 0 for (C)DNSKEY.

For the DS case, key matching is similar to TLSA 3 1 x where x is

not zero, except that the rest of the (C)DNSKEY, including the owner

name, gets prepended before hashing.

5. Example

This section will take you through the various parts of this

specification, by example.

We assume that we are working with a domain example.com. with one

name server, ns.example.com..

5.1. Generating and placing the (C)DNSKEY/DS records

[NOTE: this section uses '225' instead of 'TBD' because otherwise

the code does not work. We need to fix this before publication.]

We will walk you through the CDNSKEY/DS generation, demonstrating it

in terms of basic shell scripting and some common tools.

First, we extract the SubjectPublicKeyInfo:

¶

¶

¶

¶

¶

¶

¶

¶

¶

openssl s_client -connect ns.example.com:853 < /dev/null \

 | openssl x509 -noout -pubkey > pubkey.pem

¶

This gives us a file pubkey.pem that looks like this (abridged):

To turns this into a CDNSKEY:

remove the header and footer

remove all newlines

In other words:

Then we prepend

so that we end up with

If your registry accepts CDNSKEY, or DNSKEY via EPP, you are done -

you can get your DS placed.

To generate the DS, do something like this:

6. Implementation

The subsection titles in this section attempt to follow the

terminology from [RFC8499] in as far as it has suitable terms.

'Implementation' is understood to mean both 'code changes' and

'operational changes' here.

6.1. Authoritative server changes

This specification defines no changes to query processing in

authoritative servers.

¶

-----BEGIN PUBLIC KEY-----

MIICIjANBgkqhkiG9w0BAQEFAAOCAg8AMIICCgKCAgEAxH2a6NxIcw5527b04kKy

...

71AWASNoX2GQh7eaQPDD9i8CAwEAAQ==

-----END PUBLIC KEY-----

¶

¶

1. ¶

2. ¶

¶

openssl s_client -connect ns.example.com:853 </dev/null \

 | openssl x509 -noout -pubkey \

 | sed '1d;$d' \

 | tr -d '\n'

¶

¶

example.com. IN CDNSKEY 257 3 225¶

¶

example.com. IN CDNSKEY 257 3 225 MIICIj...AAQ==¶

¶

¶

echo example.com. IN DNSKEY 257 3 225 MIICIj...AAQ== \

 | ldns-key2ds -f -n -2 /dev/stdin

example.com. 3600 IN DS 7573 225 2 fcb6...c26c

¶

¶

¶

If DoT-signaling DS records are published for a zone, all name

servers for the zone (from both the parent-side and child-side NS

RRsets) SHOULD offer DoT service on port 853, and when they do, they

SHOULD do so using keys present in the DS RRset. However, there are

potential cases where this is not possible, like having multiple DNS

providers. In this case the name servers that do not support DoT

MUST respond with a RST response or similar on the port tcp/853 to

prevent name resolution slowdowns.

6.2. Validating resolver changes

If a resolver successfully uses DoT with a nameserver as specified

in this document for one domain, it MAY assume DoT is always

available from that nameserver for questions for another domain.

However, it MUST NOT assume that the connection is properly pinned

for that other domain unless there is a DS record available for that

other domain it is currently resolving.

A validating resolver that supports this draft will perform the

following actions when a DS record with algorithm TBD is

encountered:

Connects to the name server on port 853.

During TLS handshake, the resolver will extract the

SubjectPublicKeyInfo from the certificate.

Construct an in-memory DNSKEY record [RFC4034] section 2 with

its fields set as follow:

Flags: 257

Protocol: 3

Algorithm: TBD

Public Key: The wire-format SubjectPublicKeyInfo

Get the list of Digest Type for DS records obtained from the

parent with algorithm TBD

For each digest type from the list, compute the DS record of

the previously computed DNSKEY, its fields are set as follow:

Key Tag: computed from DNS key using [RFC4034] appendix B

Algorithm: TBD

Digest Type: the current Digest Type we are computing the DS

for.

¶

¶

¶

1. ¶

2.

¶

3.

¶

* ¶

* ¶

* ¶

* ¶

4.

¶

5.

¶

* ¶

* ¶

*

¶

Digest: Following [RFC4034] section 5.1.4, compute the

digest of owner name | previously computed DNSKEY's RDATA.

Test the computed DS record against all the supplied DS records

until a match is encountered.

If any computed DS record matches a DS record in the DS record

set we got from the parent, the connection is successfully

authenticated.

6.3. Stub resolver changes

This specification defines no changes to stub resolvers.

6.4. Zone validator changes

This section covers both the 'online' type of zone validator, such

as Zonemaster, and the 'offline full zone' type, such as validns and

dnssec-verify.

Checks for child DNSKEY records based on parent DS records

algorithms, and checks for zone RRSIG algorithms based on DNSKEY

algorithms, MUST not be applied to algorithm TBD. [NOTE: rephrase

this in terms of the Zone Signing column at https://www.iana.org/

assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml ?]

DNSKEY validity checks MAY verify correct DER syntax in DNSKEY

Public Key content when algorithm is TBD.

6.5. Domain registry changes

Any pre-delegation or periodic checks by registries should honor the

Zone validator changes from the previous section.

This specification trusts that appearance of TBD in https://

www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-

numbers.xhtml will eventually lead registries to accept DS/(C)DNSKEY

submissions for algorithm TBD.

Registries that limit the total number of DS records for a

delegation SHOULD consider having a separate limit for algorithm TBD

DS records, as their management is separate from actual DNSSEC key

management.

7. Security Considerations

This document defines a way to convey, authoritatively, that

resolvers must use DoT to do their queries to the name servers for a

certain zone. By doing so, that exchange gains confidentiality, data

integrity, peer entity authentication.

*

¶

6.

¶

7.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml

8. Implementation Status

[RFC Editor: please remove this section before publication]

This section records the status of known implementations of the

protocol defined by this specification at the time of posting of

this document, and is based on a proposal described in [RFC6982].

The description of implementations in this section is intended to

assist the IETF in its decision processes in progressing drafts to

RFCs. Please note that the listing of any individual implementation

here does not imply endorsement by the IETF. Furthermore, no effort

has been spent to verify the information presented here that was

supplied by IETF contributors. This is not intended as, and must not

be construed to be, a catalog of available implementations or their

features. Readers are advised to note that other implementations may

exist.

According to RFC 6982, "this will allow reviewers and working groups

to assign due consideration to documents that have the benefit of

running code, which may serve as evidence of valuable

experimentation and feedback that have made the implemented

protocols more mature. It is up to the individual working groups to

use this information as they see fit".

8.1. PoC

Some Proof of Concept code showing the generation of the (C)DNSKEY,

and the subsequent hashing by a client (which should match one of

the DS records with algo TBD), in Python and Go, is available at

https://github.com/PowerDNS/parent-signals-dot/tree/master/poc

9. Design Considerations

[RFC Editor: please remove this section before publication]

A protocol design is nothing without a clear statement of the

constraints it was designed to meet, and perhaps a list of other

constraints it meets by accident.

We humbly acknowledge Petr Spacek's excellent summary of the 'nice

properties' this protocol has as a source of inspiration for this

section.

Manu's DSPKI proposal had the following excellent properties:

no extra roundtrips (assuming DSPKI came 'for free' with

delegations like DS records do today)

downgrade resistance

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

* ¶

https://github.com/PowerDNS/parent-signals-dot/tree/master/poc
https://mailarchive.ietf.org/arch/msg/dns-privacy/_Zf5TGVAcUfPRrQ_7o_NPnmnlZs/
https://mailarchive.ietf.org/arch/msg/dns-privacy/_Zf5TGVAcUfPRrQ_7o_NPnmnlZs/

simple protocol, no indirections

It also had this one very important undesirable property:

a new RRtype with 'special' behaviour would be pretty much

impossible to deploy

In various private and public discussions, it was quickly realised

that fitting this into the actual DS record would solve that

problem. The first obvious answer to that is 'just assign some

numbers and do in DS what DSPKI defined in its own type'. Petr

Spacek and others pointed out that this would be incompatible with

'DNSKEY-style' registries, i.e. those that demand DNSKEY, not DS, in

their communications (those communications being either EPP, some

registry-specific protocol, or CDNSKEY). In other words, a protocol

that would not allow the DS to be hashed 'the usual way' from a

DNSKEY would not go far, as many registries are slow to update their

software even just for a couple of new numbers in an IANA registry.

With that, the puzzle was clear. We need some format to signal and

pin DoT with a DNSKEY, in such a way that a DS can be hashed from it

without software changes in parties such as registries, and such

that that DS is enough for a resolver to validate a TLS connection.

Eventually we realised that a resolver could take the TLS

SubjectPublicKeyInfo, construct a 'pseudo' DNSKEY from it, and hash

that into a DS. This resolves the one bad property of DSPKI

(deployability without changing every auth, resolver, and registry

stack in the world).

The design constraints we felt we must meet with this protocol were:

deployability without demanding massive software changes or even

'flag days'

downgrade resistance

And we feel we have met those. The other positive properties of

DSPKI (simplicity, no extra roundtrips) have been kept intact more

by accident than by strong intention.

We can understand that several people are saying that this is hacky

(we do not even disagree), and that TLSA should have been used.

However, we feel that any TLSA-based protocol we can imagine would

be a lot more complex, and therefore prone to breakage which might

be hard to debug. It would also be very easy to accidentally

introduce chicken-and-egg problems with a more indirect approach.

Note that we are responding to imagined TLSA-based protocols here.

If a draft appears for a TLSA-based approach to DoT signaling/

pinning, we would love to read it. Depending on what that draft

* ¶

¶

*

¶

¶

¶

¶

¶

*

¶

* ¶

¶

[I-D.bretelle-dprive-dot-for-insecure-delegations]

[RFC4034]

looks like, it might even make sense to have that protocol and the

protocol described in this document.

The biggest downside to this DS-based protocol is that a change in

TLS keys on an auth may require DS updates for thousands or even

hundreds of thousands of domains. This issue is partially mitigated

by allowing backup keys to be part of those DS sets. Furthermore we

hope that efforts from Cloudflare and others for shortening the path

between auth operator and domain registrar one day work out. Those

efforts are focused on NSset updates and DS updates for DNSSEC

validation, but they would also aid key rollovers for this protocol

greatly.

10. IANA Considerations

This document updates the IANA registry "DNS Security Algorithm

Numbers" at https://www.iana.org/assignments/dns-sec-alg-numbers/

dns-sec-alg-numbers.xhtml

The following entries have been added to the registry:

+--------------+----------------+

| Number | TBD |

| Description | DoT signal+pin |

| Mnemonic | DOTPIN |

| Zone signing | N |

| Trans sec. | N |

| Reference | RFC TBD2 |

+--------------+----------------+

11. Acknowledgements

The authors would like to thank the following individuals for their

useful input: Job Snijders, Maik Zumstrull, Petr Spacek, Pieter

Lexis, Ralph Dolmans, Remi Gacogne, Seth Arnold, and Vladimir Cunat.

12. Normative References

Bretelle, E., "DNS-over-TLS for insecure delegations",

Work in Progress, Internet-Draft, draft-bretelle-dprive-

dot-for-insecure-delegations-01, 11 March 2019, <https://

tools.ietf.org/html/draft-bretelle-dprive-dot-for-

insecure-delegations-01>.

Arends, R., Austein, R., Larson, M., Massey, D., and S.

Rose, "Resource Records for the DNS Security Extensions",

¶

¶

¶

¶

¶

¶

https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://www.iana.org/assignments/dns-sec-alg-numbers/dns-sec-alg-numbers.xhtml
https://tools.ietf.org/html/draft-bretelle-dprive-dot-for-insecure-delegations-01
https://tools.ietf.org/html/draft-bretelle-dprive-dot-for-insecure-delegations-01
https://tools.ietf.org/html/draft-bretelle-dprive-dot-for-insecure-delegations-01

[RFC5280]

[RFC6982]

[RFC7858]

[RFC2119]

[RFC7344]

[RFC8078]

[RFC4648]

[RFC8174]

[RFC6698]

RFC 4034, DOI 10.17487/RFC4034, March 2005, <https://

www.rfc-editor.org/info/rfc4034>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Sheffer, Y. and A. Farrel, "Improving Awareness of

Running Code: The Implementation Status Section", RFC

6982, DOI 10.17487/RFC6982, July 2013, <https://www.rfc-

editor.org/info/rfc6982>.

Hu, Z., Zhu, L., Heidemann, J., Mankin, A., Wessels, D.,

and P. Hoffman, "Specification for DNS over Transport

Layer Security (TLS)", RFC 7858, DOI 10.17487/RFC7858,

May 2016, <https://www.rfc-editor.org/info/rfc7858>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Kumari, W., Gudmundsson, O., and G. Barwood, "Automating

DNSSEC Delegation Trust Maintenance", RFC 7344, DOI

10.17487/RFC7344, September 2014, <https://www.rfc-

editor.org/info/rfc7344>.

Gudmundsson, O. and P. Wouters, "Managing DS Records from

the Parent via CDS/CDNSKEY", RFC 8078, DOI 10.17487/

RFC8078, March 2017, <https://www.rfc-editor.org/info/

rfc8078>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

13. Informative References

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Hoffman, P. and J. Schlyter, "The DNS-Based

Authentication of Named Entities (DANE) Transport Layer

Security (TLS) Protocol: TLSA", RFC 6698, DOI 10.17487/

RFC6698, August 2012, <https://www.rfc-editor.org/info/

rfc6698>.

https://www.rfc-editor.org/info/rfc4034
https://www.rfc-editor.org/info/rfc4034
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc6982
https://www.rfc-editor.org/info/rfc6982
https://www.rfc-editor.org/info/rfc7858
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7344
https://www.rfc-editor.org/info/rfc7344
https://www.rfc-editor.org/info/rfc8078
https://www.rfc-editor.org/info/rfc8078
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc6698
https://www.rfc-editor.org/info/rfc6698

[RFC8499]
Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS

Terminology", BCP 219, RFC 8499, DOI 10.17487/RFC8499,

January 2019, <https://www.rfc-editor.org/info/rfc8499>.

Appendix A. Document history

A.1. Changes between -00 and -01

Lots of clarifying text that does not change any semantics,

including:

a section on how resolvers would actually use this protocol.

we made it clearer that multiple DS records for a delegation

are allowed, and why you would want this.

DNSKEY flags are now set to 257, because it looks like this

will make it a lot easier for many registries to accept the

records.

Added a 'Design Considerations' section to give some background

to why this protocol is what it is.

We have tried to do a review of this protocol against the

requirement of the DPRIVE phase 2 document. You can find this review

(which might be updated outside of revisions of this draft or the

phase 2 draft) in our GitHub repo.

Authors' Addresses

Peter van Dijk

PowerDNS

Den Haag

Netherlands

Email: peter.van.dijk@powerdns.com

Robin Geuze

TransIP

Delft

Netherlands

Email: robing@transip.nl

Emmanuel Bretelle

Facebook

Email: chantra@fb.com

1.

¶

* ¶

*

¶

2.

¶

3.

¶

¶

https://www.rfc-editor.org/info/rfc8499
https://github.com/PowerDNS/parent-signals-dot/blob/master/draft-vandijk-dprive-ds-dot-signal-and-pin/yardsticks/draft-ietf-dprive-phase2-requirements-01.md
mailto:peter.van.dijk@powerdns.com
mailto:robing@transip.nl
mailto:chantra@fb.com

	Signalling Authoritative DoT support in DS records, with key pinning
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Document work
	3. Conventions and Definitions
	4. Summary
	5. Example
	5.1. Generating and placing the (C)DNSKEY/DS records

	6. Implementation
	6.1. Authoritative server changes
	6.2. Validating resolver changes
	6.3. Stub resolver changes
	6.4. Zone validator changes
	6.5. Domain registry changes

	7. Security Considerations
	8. Implementation Status
	8.1. PoC

	9. Design Considerations
	10. IANA Considerations
	11. Acknowledgements
	12. Normative References
	13. Informative References
	Appendix A. Document history
	A.1. Changes between -00 and -01
	Authors' Addresses

