
Network Work Group E. Burger (ed.)
Internet Draft J. Van Dyke
Document: draft-vandyke-mscml-00.txt A. Spitzer
Category: Informational SnowShore Networks, Inc.
Expires: April 28, 2002 October 28, 2002

SnowShore Media Server Control Markup Language and Protocol

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026 [1].

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts. Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet- Drafts
 as reference material or to cite them other than as "work in
 progress."

 The IETF has been notified of intellectual property rights claimed
 in regard to some or all of the specification contained in this
 document. For more information consult the online list of claimed
 rights.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 Media Server Control Markup Language (MSCML) is a markup language
 used in conjunction with SIP to provide advanced conferencing and
 IVR functions.

https://datatracker.ietf.org/doc/html/draft-vandyke-mscml-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Burger, et. al. Informational - Expires 4/2002 1

 SnowShore MSCML October 28, 2002

Table of Contents

1. Conventions used in this document..................................2
2. Introduction...2
3. Use of SIP Request Methods...3
4. MSCML Usage and Design...4
5. Advanced Conferencing..4
6. Interactive Voice Response (IVR)...................................9
6.1. Play Audio <play>...10
6.2. Collect Digits <playcollect>....................................10
6.3. Recording Audio <playrecord>....................................12
6.4. Stop Request <stop>...14
6.5. Prompt Block <prompt>...14
7. Response Attributes and Return Codes..............................15
7.1. SIP...15
7.2. HTTP..15
7.3. <response> Attributes...15
8. Formal Syntax...16
9. Security Considerations...19
10. IANA Considerations..20
11. References...20
12. Contributors...21
13. Acknowledgments..21
14. Author's Addresses...21

1. Conventions used in this document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
 this document are to be interpreted as described in RFC-2119 [2].

2. Introduction

 This document describes the SnowShore Media Server Control Markup
 Language (MSCML). This document describes payloads that one can
 send with a standard SIP INVITE to a media server. The document [3]
 describes media server SIP URI formats.

 Prior to MSCML, there was not a standard way for the delivery of
 SIP-based enhanced conferencing. Basic SIP constructs, such as

https://datatracker.ietf.org/doc/html/rfc2119

 described in [3], serves simple n-way conferencing well. The SIP
 URI provides a natural mechanism for identifying a specific SIP
 conference, while INVITE and BYE methods elegantly implement
 conference join and leave semantics. However, enhanced conferencing
 applications also require features such as sizing and resizing, in-

Burger, et. al. Informational - Expires 4/2003 2

 SnowShore MSCML October 28, 2002

 conference IVR operations (e.g. recording/playing participant names
 to the full conference) and conference event reporting. MSCML
 payloads within standard SIP INVITE and INFO requests realize these
 features.

 There are two broad classes of MSCML functionality. The first class
 includes primitives for advanced conferencing such as conference
 configuration, participant leg manipulation and conference event
 reporting. The second class comprises primitives for interactive
 voice response (IVR). These include playing audio, collecting
 digits, and recording audio.

 The IVR features of MSCML originally evolved simply as an adjunct
 for conferencing. In many scenarios it was impractical or
 inconvenient to establish a dialog with a distinct IVR resource and
 then re-join the conference. However, MSCML works well for simple
 IVR such as prompt-and-collect for SIP Proxy Servers or Media
 Gateway Controllers. On the other hand, for complex IVR it may be
 more appropriate to employ a full IVR markup language such as
 VoiceXML [4].

 In general, a media server offers services to SIP UAC's on
 application servers, feature servers, and media gateway controllers.
 See [5] for definitions of these terms. It is unlikely, but not
 prohibited, for end user SIP UAC's to have a direct signaling
 relationship with a media server.

 This document describes a working framework and protocol with which
 there is considerable implementation experience. Application
 developers and service providers have created several MSCML-based
 services since the initial version was made available more than a
 year ago. This experience is highly relevant to the ongoing work of
 the IETF, particularly the SIP, SIPPING, and MMUSIC work groups.

3. Use of SIP Request Methods

 As mentioned above, MSCML payloads may be carried in either SIP
 INVITE or INFO requests. The initial INVITE, which creates an
 enhanced conference, MUST include an MSCML payload. The initial
 INVITE, which joins a participant leg to an enhanced conference, MAY

 include an MSCML payload. All mid-call MSCML payloads are sent via
 SIP INFO requests.

 MSCML responses are transported in the final response to the SIP
 INVITE containing the matching MSCML request or in a SIP INFO
 message. The only allowable final response to a SIP INFO containing
 a message body is a 200 OK (Per RFC 2976 [6]). Therefore, when the
 MSCML request is sent via SIP INFO the MSCML response is carried in
 a separate INFO request. In general, these responses are
 asynchronous in nature and require a separate transaction due to
 timing considerations.

Burger, et. al. Informational - Expires 4/2003 3

 SnowShore MSCML October 28, 2002

 There has been considerable debate on the use of the SIP INFO method
 for any purpose. Our experience is that MSCML would not have been
 possible without it. When MSCML was implemented the first SIP Event
 Notification draft had just been published. At that time, use of
 SUBSCRIBE/NOTIFY within an existing dialog was undefined. This
 prevented its use in MSCML since all events occurred in an INVITE
 established dialog. And while SUBSCRIBE/NOTIFY was well suited for
 reporting conference events its semantics seemed inappropriate for
 modifying a participant leg or conference setting where the only
 "event" was the success or failure of the request. Lastly, since
 SIP INFO was an established RFC it was well supported in all the SIP
 stack implementations available at that time. We had few if any
 interoperability issues as a result.

 SIP has progressed incredibly quickly and we will need to reevaluate
 some of the decisions that resulted in the original design of MSCML.
 However, we can confidently say that the availability of a widely
 supported, flexible request method was very important to the
 development and adoption MSCML.

4. MSCML Usage and Design

 To avoid undue complexity two rules were established regarding MSCML
 usage. The first is that only one MSCML body may be present in a
 SIP request. The second is that each MSCML body may contain only
 one request or response. This greatly simplified transaction
 management. MSCML syntax does provide for the unique identification
 of multiple requests in a single body part but this is not currently
 allowed.

5. Advanced Conferencing

https://datatracker.ietf.org/doc/html/rfc2976

 The advanced conferencing model is a star controller model, with
 both signaling and media directed to a central location. Figure 1
 depicts a typical signaling relationship between end users' UAC's, a
 conference application server, and a media server.

Burger, et. al. Informational - Expires 4/2003 4

 SnowShore MSCML October 28, 2002

 +-------+
 | UAC 1 |---\ Public URI +-------------+
 +-------+ \ _____________| Application |
 / / | Server | Not shown:
 +-------+ / / +-------------+ RTP flows directly
 | UAC 2 |---/ / | Private between UAC's and
 +-------+ / | URI Media Server
 . / +--------------+
 : / | |
 +-------+ / | Media Server |
 | UAC n |---/ | |
 +-------+ +--------------+

 Figure 1 - Conference Model

 Each UAC sends an INVITE to a Public Conference URI. Presumably the
 Application Server publishes this URI, or it is an ad hoc URI. In
 any event, the Application Server generates a Private URI, following
 the rules specified by [3]. That is, the URI is of the form:

 sip:conf=UniqueID@ms.carrier.net

 Where UniqueID is a unique conference identifier, and ms.carrier.net
 is the host name or IP address of the media server. There is
 nothing to prevent the UAC's from contacting the media server
 directly. However, one would expect the owner of the media server
 to restrict who can use media server resources.

 As for basic conferencing, described by [3], the first INVITE to the
 media server with a UniqueID creates a conference. However, in
 advanced conferencing, the first INVITE includes a MSCML
 configure_conference payload. The MSCML payload conveys extended
 session parameters (e.g. number of participants) that are not
 readily expressed in SDP but must be known to allocate the
 appropriate resources.

 The first dialog established for an enhanced conference has several
 useful properties and is referred to as the "conference control
 leg." The control leg is used for play or record audio operations
 to/from the entire conference and no RTP is expected on the
 conference control leg. Therefore, the application must send either
 no SDP or hold SDP (c=0.0.0.0) in the initial INVITE request. In
 addition, the lifetime of the conference is the same as that of its
 control leg. This ensures that the conference remains in existence
 even if one or more participant legs unintentionally leaves the
 conference.

 The <configure_conference> tag has two attributes that control the
 resources the media server sets aside for the conference. The
 attributes are reservedtalkers and reserveconfmedia.
 Reservedtalkers sets the maximum number of talker legs.
 Reserveconfmedia, if set to "Yes", allocates resources for playing

Burger, et. al. Informational - Expires 4/2003 5

 SnowShore MSCML October 28, 2002

 or recording audio to or from the entire conference. The default
 for reserveconfmedia is "Yes".

 The application server can include any MSCML command in the initial
 INVITE, with the exception of asynchronous commands, such as <play>
 or <record>. The application server must issue asynchronous
 commands separately (e.g., in INFO messages) to avoid ambiguous
 responses.

 For example, to create a conference with up to 120 active talkers
 and the ability to play audio into the conference or record parts or
 all of the conference, the application server specifies both
 attributes, as shown in Figure 2.

 <?xml version="1.0">
 <MediaServerControl version="1.0">
 <request>
 <configure_conference reservedtalkers="120"/>
 </request>
 </MediaServerControl>
 Figure 2 - 120 Speaker MSCML Example

 Figure 3 shows a conference with up to five active speakers without
 the capability to play or record audio into the conference.

 <?xml version="1.0">
 <MediaServerControl version="1.0">
 <request>
 <configure_conference reservedtalkers="5"
 reserveconfmedia="no"/>
 </request>
 </MediaServerControl>

 Figure 3 - 5 Speaker MSCML Example

 Once the application server has created the conference Control Leg,
 the server can join participants to the conference. Per [3], the
 application server directs the INVITE to the Private Conference URI
 described above. In the example given, this would be
 sip:UniqueID@ms.carrier.net .

 Conference legs have a number of parameters the application server
 can modify. The defaults are as follows in Table 1. Following
 sections will discuss the meaning of the parameters in detail.

Burger, et. al. Informational - Expires 4/2003 6

 SnowShore MSCML October 28, 2002

 Table 1 - Conference Leg Parameters

 Parameter Default Description
 inputgain auto Use AGC to determine input gain for leg
 outputgain auto Use AGC to determine output gain for leg
 type talker Consider this leg's audio for mixing
 in the output mix
 dtmfclamp yes Remove detected DTMF digit from audio
 toneclamp yes Remove loud single-frequency tone
 from audio

 If the default parameters are acceptable for the leg the application
 server wishes to enter into the conference, then a normal SIP INVITE
 is sufficient. However, if the application server wishes to modify
 one or more of the parameters, the application server can include a
 MSCML body in addition to the SDP body.

 The application server can modify the conference leg parameters by
 issuing a SIP INFO on the selected dialog representing the
 conference leg. Of course, the application server cannot modify SDP
 in an INFO message.

 To remove a leg from the conference, the application server issues a
 SIP BYE request on the selected dialog representing the conference
 leg.

 The application server can terminate all legs in a conference by
 issuing a SIP BYE request on the Conference Control Leg. If one or
 more participants are still in the conference when the media server
 receives a SIP BYE request on the Conference Control Leg, the media
 server issues SIP BYE requests on all of the remaining conference
 legs to ensure clean up of the legs.

 The media server returns a 200 OK to the SIP BYE request as it sends
 BYE requests to the other legs. This is because we cannot issue a
 provisional response to a non-INVITE request, yet the teardown of
 the other legs may "take a while".

 Once the conference has begun, the application server can manipulate
 the conference as a whole by issuing commands on the Conference Leg.
 For example, the application server can request the media server to
 record the conference, play a prompt to the conference, change the
 input or output gain for the conference as a whole, and report on
 events. The elements for these commands are <playrecord>, <play>,
 <inputgain>, <outputgain>, and <subscribe>, respectively.

 Figure 4 shows two sample commands. The first plays a prompt into
 the conference. The second records the entire conference to the URI
 specified by recurl over NFS.

Burger, et. al. Informational - Expires 4/2003 7

 SnowShore MSCML October 28, 2002

 <?xml version="1.0">
 <MediaServerControl version="1.0">
 <request>
 <play
 prompturl="http://prompts.carrier.net/us_EN/welcome.au"/>
 </request>
 </MediaServerControl>

 <?xml version="1.0">
 <MediaServerControl version="1.0">

 <request>
 <playrecord
 recurl="file://archive.carrier.net/conferences/archives/011208.au"
 beep="no"
 initsilence="-1" endsilence="-1" />
 </request>
 </MediaServerControl>

 Figure 4 - Sample Full Conference Audio Commands

 The response to this last request will be similar to Figure 5.

 <?xml version="1.0">
 <MediaServerControl version="1.0">
 <response request="playrecord" code="200" text="OK"/>
 </MediaServerControl>

 Figure 5 - Sample Change Command Response

 Later event reporting comes through SIP INFO messages. Figure 6
 shows an example report.

 <?xml version="1.0">
 <MediaServerControl version="1.0">
 <notification>
 <conference uniqueID="ab34h76z" numtalkers="16"
 numlisteners="1382">
 <activetalkers>
 <talker callID="myhost4sn123"/>
 <talker callID="myhost2sn456"/>
 <talker callID="myhost12sn78 />
 </activetalkers>
 </conference>
 </notification>
 </MediaServerControl>

 Figure 6 - Active Talker Event Example

Burger, et. al. Informational - Expires 4/2003 8

 SnowShore MSCML October 28, 2002

 An application server can modify a leg by issuing an INFO on the
 dialog associated with the participant leg. For example, Figure 7
 mutes a conference leg.

 <?xml version="1.0">
 <MediaServerControl version="1.0">
 <request>

 <configure_leg mixmode="mute"/>
 <request>
 </MediaServerControl>

 Figure 7 - Sample Change Leg Command

 In Figure 4 we saw a request to play a prompt to the entire
 conference. We can also request to play a prompt to an individual
 call leg. If we want to play a prompt or collect digits only on a
 single leg, we issue the commands within the dialog for the of the
 desired conference participant.

6. Interactive Voice Response (IVR)

 In the IVR model, the Media Server acts as a media processing proxy
 for the UAC. This is particularly useful when the UAC is a media
 gateway or other device with limited media processing capability.

 +--------------+
 Service URI | Application |
 /---------------| Server |
 /(e.g., RFC3087) +--------------+
 / | MSCML
 / | Session
 / +--------------+
 +-----+/ RTP | |
 | UAC |=====================| Media Server |
 +-----+ | |
 +--------------+

 Figure 8 - IVR Model

 The IVR service supports basic Interactive Voice Response functions,
 playing announcements, collecting DTMF digits, and recording audio,
 based on Media Server Control Markup Language (MSCML) directives
 added to the message body of a SIP request.

 Multifunction media servers SHOULD use the URI conventions described
 in [3]. For review, the IVR service indicator is "ivr":

 sip:ivr@ms.carrier.net

Burger, et. al. Informational - Expires 4/2003 9

 SnowShore MSCML October 28, 2002

 One may carry the request payload for IVR in either the initial SIP
 INVITE or INFO requests.

https://datatracker.ietf.org/doc/html/rfc3087

 Mid-call requests must use the INFO method. The INFO method reduces
 certain timing issues that occur with re-INVITES and also uses less
 processing on both the application server and Media Server.

 The Media Server notifies the application that the command has
 completed through a <response> message containing final status
 information and data such as collected DTMF digits.

 The media server does not queue IVR requests. If the media server
 receives a request while another is in progress, the media server
 stops the first operation and it carries out the new request. The
 Media Server generates a <response> message for the first request
 and returns any data collected up to that point. If an application
 wishes to stop a request in progress but does not wish to initiate
 another operation, it issues a <stop> request. This also causes the
 Media Server to generate a <response> message.

 The Media Server treats a SIP re-INVITE with hold media (c=0.0.0.0)
 as an implicit <stop> request. The media server immediately
 terminates the running <play>, <playcollect> or <playrecord>
 request, and sends a <response>, indicating "reason=stopped".

6.1. Play Audio <play>

 The application issues a <play> request to play an announcement
 without interruption and with no digit collection. One use, for
 example, is to announce the name of a new participant to the entire
 conference.

 The application specifies the announcement to play by the prompt
 block in the body of the request.

 Attributes include promptencoding (optional), which explicitly
 specifies the encoding (µ-law or a-law), and id (also optional). ID
 is an application-defined request identifier that correlates the
 asynchronous response with its original request and echoes back to
 the application in the Media Server's response.

 When the announcement has finished playing, the Media Server sends a
 <response> payload to the application in a SIP INFO message.

 The response may carry the id, the status code (e.g., 200), the
 status text (e.g., OK), and the reason (EOF or stopped).

6.2. Collect Digits <playcollect>

 The application issues a <playcollect> request to optionally play an
 announcement and the collect digits.

Burger, et. al. Informational - Expires 4/2003 10

 SnowShore MSCML October 28, 2002

 This request has multiple attributes, all of which are optional.

 The presence or absence of the prompt block controls whether there
 will be an announcement or the result of the request is to be digit
 collection only.

 Whenever the media server receives a <playcollect> request, it will
 continuously buffer and examine collected digits. The media server
 compares previously buffered digits to the returnkey, escapekey, and
 maxdigits attributes to determine if any immediate action is
 required. This provides the type-ahead behavior for menu traversal
 and other types of IVR interactions.

 The application may override type-ahead behavior by setting the
 cleardigits parameter to "yes", which removes all previously-
 buffered digits such that the only user input considered is what
 occurs after the request.

 If cleardigits is set to "no", digits previously buffered will
 result in the prompt being barged immediately. Prompt play would
 never begin, and digit collection would start immediately.

 The default for barge is "yes". If the barge attribute is set to
 "no", the cleardigits attribute implicitly has a value of "yes".
 This ensures that DTMF input occurring before the current collection
 is not left in the buffer after the request completes.

 The application can set two special digits to invoke special
 processing when detected:

 The escapekey, which defaults to *, indicates that the user intends
 to terminate the current operation without saving any input
 collected to that point. Detection terminates the request
 immediately and generates a response.

 The returnkey, which defaults to #, indicates the user has completed
 input and wants to return all collected digits to the application.
 When the media server detects the returnkey, it immediately
 terminates collection and returns the collected digits to the
 application in the <response> message.

 Several timer attributes control how long the Media Server waits for
 digits in the input sequence. All timer settings are in
 milliseconds.

 o firstdigittimer controls how long the Media Server waits for

 the initial DTMF input before terminating collection.

 o interdigittimer controls how long the Media Server waits
 between DTMF inputs.

Burger, et. al. Informational - Expires 4/2003 11

 SnowShore MSCML October 28, 2002

 o extradigittimer controls how long the Media Server waits for
 additional user input after the specified number of digits
 (linkblueparatextinkblue) have been collected.

 The extradigittimer setting enables the "returnkey" input to be
 associated with the current collection. For example, if maxdigits
 is set to 3 and returnkey is set to #, the user may enter either
 "x#", "xx#" or "xxx#", where x represents a DTMF digit.

 If the "returnkey" pattern is detected during the "extradigit"
 interval, the collected digits are returned to the application and
 the "returnkey" is removed from the digit buffer.

 If this were not the case, the example would return "xxx" to the
 application and leave the terminating "#" in the digit buffer to be
 processed by the next <playcollect> request. This might result in
 the termination of the following prompt; clearly not what the user
 intended.

 The extradigittimer has no effect unless returnkey has been set.

 When the <playcollect> has finished playing, the Media Server sends
 a <response> payload to the application in a SIP INFO message.

 The response may carry the id, the code (e.g., 200), the text(e.g.,
 OK), the reason (match, timeout, returnkey, escapekey, or stopped),
 and the collected digits.

6.3. Recording Audio <playrecord>

 The <playrecord> request directs the Media Server to capture the RTP
 it receives and deliver it to a URL specified by the controlling
 application.

 This tag has multiple attributes. The required recurl attribute
 identifies the URL target for the recorded audio. All other
 attributes are optional.

 The presence or absence of the prompt block controls whether or not

 a prompt plays before recording begins.

 When the application requests the media server to prompt the caller
 before recording audio, <playrecord> has two stages. The first is
 equivalent to a <playcollect> operation. The application may set
 the prompt phase to be interruptible by DTMF input (barge) and may
 also specify an escape key that will terminate the <playrecord>
 request before the recording phase begins.

 Detection of the escape key generates a response message, and the
 operation returns immediately. If any other keys are pressed and if
 the prompt has been set as interruptible (barge="yes"), then the
 play stops immediately and the recording phase begins.

Burger, et. al. Informational - Expires 4/2003 12

 SnowShore MSCML October 28, 2002

 Any digits collected in the prompt phase, with the exception of the
 recstopmask, are buffered and returned in the response.

 If the request proceeds to the recording phase, any digits from the
 collect phase are discarded from the buffer to eliminate unintended
 termination of the recording.

 The media server compares digits detected during the recording phase
 to the digits specified in the recstopmask to determine if they
 indicate a recording termination request.

 The media server ignores digits not present in the recstopmask and
 passes them into the recording. If the recording is terminated
 because of a DTMF input, the collected digits are returned to the
 application in the <response>.

 Once recording has begun, the media server writes the audio to the
 specified recurl URL no matter what DTMF events are detected. It is
 the responsibility of the application to examine the DTMF input
 returned in the <response> message to determine whether the audio
 file should be saved or if it should be deleted and potentially re-
 recorded.

 Two attributes control how long the Media Server waits for the start
 of speech to begin the recording and the absence of speech to end
 the recording:

 o initsilence determines how long to wait for initial speech
 input before terminating (cancelling) the recording. This
 parameter may take an integer value in milliseconds, or may be
 set to -1, which directs the Media Server to wait indefinitely.
 The default is 3000 ms (3 seconds).

 o endsilence determines how long the Media Server waits after
 speech has ended to stop the recording. This parameter may
 take an integer value in milliseconds, or may be set to -1.
 With a value of -1, the recording will continue indefinitely
 after speech has ended and may terminate due to a DTMF keypress
 or because the maximum desired duration has been reached. The
 default value is 4000 ms (4 seconds).

 If the endsilence timer expires, the Media Server trims the end of
 the recorded audio by an amount equal to the endsilence parameter.

 Additional attributes are:
 o mode (whether the recording will overwrite or append).

 o reencoding (whether encoding is mu-law or a-law).

 o duration (time in ms for the entire recording.

Burger, et. al. Informational - Expires 4/2003 13

 SnowShore MSCML October 28, 2002

 o beep (whether a beep will signify the start of recording).

 When the recording is finished, the media server generates a
 <response> message and sends it to the application in a SIP INFO
 message. The response contains the id, the code (e.g., 200, 400,
 501), the reason (e.g., digit, end_silence, init_silence,
 max_duration, escapekey, error, or stopped), collected digits, and
 the reclength (size of the recorded file in bytes).

6.4. Stop Request <stop>

 The application issues a <stop> request when the objective is to
 stop a request in progress and not initiate another operation. This
 request generates a <response> message from the Media Server.

 The only attribute is id, which is optional.

 The application-defined request id correlates the asynchronous
 response with its original request and echoes back to the
 application in the Media Server's response.

 The response may carry the id, the code (e.g., 200), and the text
 (e.g., OK).

 Note that the Media Server treats a SIP re-INVITE with hold media
 (c=0.0.0.0) as an implicit <stop> request. The media server
 immediately terminates the running <play>, <playcollect> or
 <playrecord> request, and sends a <response>, indicating
 "reason=stopped".

6.5. Prompt Block <prompt>

 This block in the body of the <play>, <playcollect>, or <playrecord>
 request contains one or more references to physical audio files,
 provisioned sequences, or variables that are played in the order in
 which they appear.

 The following is a sample prompt block.

 <prompt baseurl="file:////opt/snowshore/prompts/conf/">
 <audio url="please_enter.wav"/>
 <variable type="silence" value="1"/>
 <audio url="your.raw" encoding="a-law"/>
 <variable type="silence" value="1"/>
 <audio
 url="http://prompts.carrier.net/pin_number.wav"/>
 </prompt>

 The baseurl attribute is the base URL prepended to the URL
 attributes within the <prompt> block.

Burger, et. al. Informational - Expires 4/2003 14

 SnowShore MSCML October 28, 2002

 Each audio element in a <prompt> block refers to an audio file or
 provisioned sequence for the media server to play. The media server
 plays audio files in the order in which they are listed in the
 block.

7. Response Attributes and Return Codes

7.1. SIP

 The Media Server acknowledges receipt of an application request by
 sending a response of either 200 OK or 415 BAD MEDIA TYPE. (The
 latter is sent when the SIP request contains a content type other
 than "application/sdp" or "application/mediaservercontrol+xml").

 The <response> message is transported in a SIP INFO request.

 If there is an error in the request or the request cannot be

 completed, the <response> message is sent very shortly after
 receiving the request. If the request is able to proceed, the
 <response> contains final status information as listed below.

7.2. HTTP

 The Media Server processes the request and returns a <response>
 message in the body of the http POST.

7.3. <response> Attributes

 If an ID was specified in the request, that id will be echoed back
 to the application in the response.

 The "code" is the result code for the request. It can take the
 following values.

 o 200 indicates command completed.
 o 400 for <playrecord> indicates command not accepted due to an
 error. The text attribute describes the cause of the error.
 o 501 for <playrecord> indicates an error because the media
 server does not support the URL type specified.

 The "digits" are the returned digits for <playcollect> and
 <playrecord>. Its value is the collected digits, if any.

 The "reason" is why the command terminated. For all requests, the
 reason "stopped" indicates that a <stop> request, another command,
 or a re-INVITE with hold media stopped the request.

 For the <play> request, the "EOF" reason means the media server
 played out to the end of the file.

Burger, et. al. Informational - Expires 4/2003 15

 SnowShore MSCML October 28, 2002

 For the <playcollect> request, "match" means a match was found;
 "timeout" means no digit was received before the time-out timer
 expired; "returnkey" and "escapekey" means the return key or escape
 key terminated the operation, respsectively; and "interrupted" means
 another request interrupted the <playcollect> request.

 For the <playrecord> request, "digit" means a digit was detected;
 "end_silence" means the recording terminated because the trailing
 silence timer expired; "init_silence" means that no voice was
 detected; "max_duration" means the recording terminated because the
 maximum time for recording completed; "escapekey" means the user

 entered the escape key in either play or record mode, thus
 terminating the recording; or "error", for a general operation
 failure.

 The "reclength" is the length of the recording in bytes for a
 <playrecord>.

 The "text" is the descriptive text associated with the response
 code.

8. Formal Syntax

 The following syntax specification uses the augmented Data Type
 Definition (DTD) as described in XML [7].

 <?xml version="1.0"?>
 <!-- === -->
 <!-- MediaServerControl Document Type Description -->
 <!-- Copyright (c) 2001-2002 SnowShore Networks, Inc. -->
 <!-- All Rights Reserved -->
 <!-- SnowShore Networks Confidential and Proprietary Information -->
 <!-- === -->

 <!ELEMENT MediaServerControl (request | response | notification)>
 <!ATTLIST MediaServerControl version (1.0) #REQUIRED>

 <!ELEMENT request (configure_conference | configure_leg | play |
 playcollect | playrecord | stop)>

 <!ELEMENT configure_conference (inputgain?, outputgain?,
 subscribe?)>
 <!ATTLIST configure_conference
 id CDATA #IMPLIED
 reservedtalkers CDATA #IMPLIED
 reserveconfmedia (yes | no) #IMPLIED>

 <!-- Tags for gain control -->
 <!ELEMENT outputgain (auto | fixed)>
 <!ELEMENT inputgain (auto | fixed)>

Burger, et. al. Informational - Expires 4/2003 16

 SnowShore MSCML October 28, 2002

 <!ELEMENT auto EMPTY>
 <!ATTLIST auto
 startlevel CDATA #IMPLIED
 targetlevel CDATA #IMPLIED
 silencethreshold CDATA #IMPLIED>

 <!ELEMENT fixed EMPTY>
 <!ATTLIST fixed
 level CDATA #IMPLIED>

 <!ELEMENT subscribe (events)>

 <!ELEMENT events (activetalkers)>

 <!ELEMENT activetalkers (talker+)?>
 <!ATTLIST activetalkers
 report (yes | no) "no"
 interval CDATA #IMPLIED>
 <!-- Acceptable values for interval range from 1-60 seconds -->

 <!ELEMENT talker EMPTY>
 <!ATTLIST talker
 callid CDATA #REQUIRED>
 <!-- The list of current talkers is used only when sending -->
 <!-- notifications to the calling application. It should never -->
 <!-- be set when subscribing. -->

 <!ELEMENT configure_leg (inputgain?, outputgain?)>
 <!ATTLIST configure_leg
 id CDATA #IMPLIED
 type (talker | listener) #IMPLIED
 mixmode (full | mute | preferred | parked) #IMPLIED
 dtmfclamp (yes | no) #IMPLIED>

 <!-- Stops a play or record operation in progress -->
 <!ELEMENT stop EMPTY>

 <!-- Plays an audio prompt, no barge-in or digit collection. -->
 <!-- <play/> generates a <response/> message when the specified -->
 <!-- prompt has finished playing or if an error occurs. -->
 <!ELEMENT play (prompt)?>
 <!ATTLIST play
 id CDATA #IMPLIED
 prompturl CDATA #IMPLIED
 promptencoding (ulaw | alaw) #IMPLIED>

Burger, et. al. Informational - Expires 4/2003 17

 SnowShore MSCML October 28, 2002

 <!-- Plays an audio prompt, collects DTMF digits and returns the -->
 <!-- digits to the application. May also be used simply to -->
 <!-- collect digits if no sequence is specified. <playcollect/> -->
 <!-- sends an asynchronous <response/> message which is normally -->
 <!-- generated when the desired digits have been collected or a -->
 <!-- timeout has expired. -->
 <!ELEMENT playcollect (prompt?, pattern?)>
 <!ATTLIST playcollect
 id CDATA #IMPLIED
 prompturl CDATA #IMPLIED
 barge (yes | no) "yes"
 promptencoding (ulaw | alaw) #IMPLIED
 cleardigits CDATA "yes"
 maxdigits CDATA #IMPLIED
 firstdigittimer CDATA #IMPLIED
 interdigittimer CDATA #IMPLIED
 intdigcrittimer CDATA #IMPLIED
 extradigittimer CDATA #IMPLIED
 returnkey CDATA "#"
 escapekey CDATA "*">

 <!-- <playrecord/> takes the audio from the associated session -->
 <!-- and records it to the location and format specified. It -->
 <!-- generates a <response/> message if the request is in error, -->
 <!-- when the recording session has been interrupted by DTMF, -->
 <!-- the specified duration has been exceeded or a timeout has -->
 <!-- expired. The request has an optional prompt to be played -->
 <!-- prior to the start of recording. -->
 <!ELEMENT playrecord (prompt)?>
 <!ATTLIST playrecord
 id CDATA #IMPLIED
 prompturl CDATA #IMPLIED
 barge (yes | no) #IMPLIED
 cleardigits (yes | no) #IMPLIED
 escapekey CDATA "*"
 recurl CDATA #REQUIRED
 mode (append | overwrite) "overwrite"
 recencoding (ulaw | alaw) #IMPLIED
 initsilence CDATA #IMPLIED
 endsilence CDATA #IMPLIED
 duration CDATA #IMPLIED
 beep (yes | no) "yes"
 recstopmask CDATA "01234567890*#">

 <!ELEMENT prompt (audio | variable)+>
 <!ATTLIST prompt
 locale CDATA #IMPLIED
 baseurl CDATA #IMPLIED>

Burger, et. al. Informational - Expires 4/2003 18

 SnowShore MSCML October 28, 2002

 <!ELEMENT audio EMPTY>
 <!ATTLIST audio
 url CDATA #REQUIRED
 encoding (ulaw | alaw) #IMPLIED>
 <!-- The encoding attribute is required for files that are not in-->
 <!-- self-describing .au or .wav format and do not have a well -->
 <!-- known extension (.ulaw). -->

 <!ELEMENT pattern (regex | digitmap)+>

 <!ELEMENT regex EMPTY>
 <!ATTLIST regex
 value CDATA #REQUIRED
 name CDATA #IMPLIED>

 <!ELEMENT digitmap EMPTY>
 <!ATTLIST digitmap
 value CDATA #REQUIRED
 name CDATA #IMPLIED>

 <!ELEMENT variable EMPTY>
 <!ATTLIST variable
 type (date | digit | duration | month | money | number |
 silence | string | time | weekday) #REQUIRED
 subtype (mdy | dmy | ymd | ndn | t12 | t24 | USD | gen | ndn |
 crd | ord) #IMPLIED
 value CDATA #REQUIRED>

 <!ELEMENT response EMPTY>
 <!ATTLIST response
 request (configure_conference | configure_leg | play |
 playcollect |playrecord | stop) #REQUIRED
 id CDATA #IMPLIED
 code CDATA #REQUIRED
 text CDATA #REQUIRED
 patternname CDATA #IMPLIED>

 <!ELEMENT notification (conference)>

 <!ELEMENT conference (activetalkers)>
 <!ATTLIST conference
 uniqueid CDATA #REQUIRED

 numtalkers CDATA #REQUIRED>

9. Security Considerations

 Because media flows through a media server in a conference, the
 media server itself MUST protect the integrity, confidentiality, and
 security of the sessions. It should not be possible for a
 conference participant, on her own behalf, to be able to "tap in" to
 another conference without proper authorization.

Burger, et. al. Informational - Expires 4/2003 19

 SnowShore MSCML October 28, 2002

 Because conferencing is a high value application, the media server
 SHOULD implement appropriate security measures. This includes, but
 not limited to, access lists for application servers. That is, only
 a select list of application or proxy servers is allowed to create
 conferences, invite participants to sessions, etc. Note that the
 mechanisms for such security, like private networks, shared
 certificates, MAC white/black lists, are beyond the scope of this
 draft.

10. IANA Considerations

 MSCML payloads are identified by the MIME type
 "application/mediaservercontrol+xml".

11. References

 1 Bradner, S., "The Internet Standards Process -- Revision 3", BCP
9, RFC 2026, October 1996.

 INFORMATIVE

 2 Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.
 NORMATIVE

 3 Van Dyke, J., et. al., "Basic Network Media Services with SIP",
draft-burger-sipping-netann-02.txt, June 2002, work in progress.

 INFORMATIVE

 4 McGlashan, S. (ed.), "Voice Extensible Markup Language (VoiceXML)
 Version 2.0", W3C Working Draft,
 <http://www.w3.org/TR/voicexml20/>, 24 April 2002, work in
 progress.

https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/bcp9
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-burger-sipping-netann-02.txt
http://www.w3.org/TR/voicexml20/

 INFORMATIVE

 5 International Softswitch Consortium Reference Architecture, V1.2,
http://www.softswitch.org, June 2002.

 INFORMATIVE

 6 S. Donovan, "The SIP INFO Method", RFC 2976, October 2000.
 NORMATIVE

 7 Bray, T. et. al., "Extensible Markup Language (XML) 1.0 (Second
 Edition)", W3C Recommendation, <http://www.w3.org/TR/REC-xml>,
 October 2000.
 NORMATIVE

Burger, et. al. Informational - Expires 4/2003 20

 SnowShore MSCML October 28, 2002

12. Contributors

 The concept, development, documentation, and execution for MSCML was
 done by Jeff Van Dyke, Andy Spitzer, and Terence Lobo at SnowShore
 Networks, Inc. The IVR implementation was influenced by original
 work by Andy Spitzer while he was at The Telephone Connection, Inc.

 Terence Lobo, Srinivas Motamarri, Haj Elfadil, and Edwina Nowicki
 contributed in being the first to eat what got cooked up.

13. Acknowledgments

 The following individuals significantly assisted in the development,
 direction, or, most importantly, debugging of MSCML.

 o Gaurav Srivastva and Subhash Verma from BayPackets
 o Jon Hinckley from SkyWave/Sestro
 o Wesley Hicks, Ravindra Kabre, Kevin Summers from Sonus Networks
 o Diana Rawlins, Sharadha Vijay from WorldCom
 o Tim Wong from Z-Tel
 o Kevin Flemming for his feedback on the semantics of creation
 versus configuration for conferencing

 The authors would like to thank Scotty Farber who made most of our
 techno-geek into English.

14. Author's Addresses

http://www.softswitch.org
https://datatracker.ietf.org/doc/html/rfc2976
http://www.w3.org/TR/REC-xml

 Jeff Van Dyke jvandyke@snowshore.com
 Andy Spitzer aspitzer@snowshore.com
 Eric Burger (Ed.) eburger@snowshore.com
 SnowShore Networks, Inc.
 285 Billerica Rd.
 Chelmsford, MA 01824-4120
 USA

 Phone: +1 978/367-8400

Burger, et. al. Informational - Expires 4/2003 21

 SnowShore MSCML October 28, 2002

Full Copyright Statement

 Copyright (C) The Internet Society (2002). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph
 are included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns. This
 document and the information contained herein is provided on an "AS
 IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK

 FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT
 NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN
 WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 The Internet Society currently provides funding for the RFC Editor
 function.

 SnowShore Networks, Inc. is a member of the Internet Society.

Burger, et. al. Informational - Expires 4/2003 22

