
Workgroup: Network Working Group

Internet-Draft: draft-vanrein-diameter-sasl-05

Published: 6 August 2021

Intended Status: Informational

Expires: 7 February 2022

Authors: R. Van Rein

OpenFortress BV

H. Manson

Mansoft

Realm Crossover for SASL and GSS-API via Diameter

Abstract

SASL and GSS-API are used for authentication in many application

protocols. This specification extends them to allow credentials of a

home realm to be used against external services. To this end, it

introduces end-to-end encryption for SASL that is safe to relay

through a foreign server.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 7 February 2022.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Messages of SXOVER-PLUS

2.1. Preparation for Messaging

2.2. Initial Client-to-Server Message

2.3. Initial Server-to-Client Message

2.4. Continued Client-to-Server Messages

2.5. Continued Server-to-Client Messages

2.6. Using SXOVER-PLUS with GSS-API

2.7. Application Key Derivation

3. AVP Definitions for SASL in Diameter

3.1. SASL-Mechanism

3.2. SASL-Token

3.3. SASL-Channel-Binding

4. Diameter Session Requirements for SASL

5. Diameter Message Requirements for SXOVER-PLUS

5.1. C2S-Init Requests over Diameter

5.2. S2C-Init Responses over Diameter

5.3. C2S-Cont Requests over Diameter

5.4. S2C-Cont Responses over Diameter

6. Running Diameter as a SASL Backend

6.1. Diameter is an SCTP service

6.2. Reliance on DANE and DNSSEC

7. Security Considerations

8. IANA Considerations

9. Normative References

Appendix A. Centralised handing of SASL over Diameter

Appendix B. Acknowledgements

Authors' Addresses

1. Introduction

It is common for Internet users to work with services from a

varierity of providers. An ad hoc practice has arisen of using local

identity schemes for each of these providers. There is no

integration of identity systems, and the practice reduces the

control of users over their online identity. A solution to this is

support for realm crossover TODO.xref.target=draft-vanrein-

internetwide-realm-crossover, where an externally acquired service

can make a callback to a home realm to authenticate a user's

identity and use that for service-specific authorisation.

SASL [RFC4422] and GSS-API [RFC2743] together is instrumental in

authentication across a wide range of application protocols; it

allows those protocols to abstract from the actual authentication

mechanisms, and at the same time it allows authentication mechanisms

to not be concerned with the application protocol. SASL can easily

¶

be funneled from one protocol into another, modulo a number of

security concerns.

Diameter and its Network Access Server application are instrumental

in authenticating a user under a realm, while not handing over any

resources like an application protocol would. Furthermore, Diameter

integrates with realm-crossing security; service can be declared

under a domain name in a manner that is standardised, scalable and

secure.

This can be used by a foreign server to authenticate a client with a

backcall to the client's own domain:

The Diameter server in the Realm needs to respond success or failure

on the SASL exchange forwarded to it. It delivers a User-Name on

success, but not its domain. The client domain is validated by the

foreign server, using DANE [RFC6698]. The combined User-Name and

validated domain form the client identity as further used in the

foreign server. The client realm also validates the foreign server,

and MAY use this for access control, and perhaps to decide on the

release of additional AVPs.

The client needs to assure that the authentication exchange cannot

be relayed anywhere but to the Diameter service in his realm. This

can be assured with channel binding [RFC5056] [RFC5801]; the foreign

server detects this information and relays it to the Diameter

service. No server accepts externally dictated channel binding

information; the reason why it is safe to make an exception for

Diameter is that it provides no resources, which makes it an

unattractive attack target.

SASL mechanisms are not generally safe to pass over plaintext

channels. This is usually addressed by wrapping the application

protocol in TLS, but since that would only protect one leg of the

intended realm-crossing authentication exchange, there is a need for

end-to-end encryption.

¶

¶

¶

 +--------+ SASL +--------+ SASL +---------+

 | Client |-----------> | Server | ---------> | Realm |

 +--------+ AppProto +--------+ Diameter +---------+

 || || ||

john@example.com find SRV, TLSA example.com

 & credential relay SASL authentication

 Realm Crossover authentication:

 Client John authenticates to his own Realm

 while using a foreign Server.

¶

¶

¶

¶

This specification describes a SASL mechanism named SXOVER-PLUS as

an end-to-end encrypted tunnel around another SASL exchange. It also

defines how SASL can be embedded in a Diameter authentication

exchange, which may be useful with SXOVER-PLUS or any other SASL

mechanism.

Realm crossover for SASL is part of a series of protocol

enhancements, as overviewed in TODO:xref target="draft-vanrein-

internetwide-realm-crossover". Among the potential use cases are a

global identity scheme for general communication and group

participation, establishment of encryption keys, all with identity

control under individually owned domains.

2. Messages of SXOVER-PLUS

SXOVER-PLUS consists of a few messages that develop an encryption

secret and then continue using it as an end-to-end encrypted tunnel

around a standard SASL authentication exchange. SXOVER continues to

be active as long as the tunneled exchange does.

2.1. Preparation for Messaging

Before SXOVER-PLUS starts, the user submits a multi-session key to

his realm and receives back a keyno and encalg in the style of

Kerberos [RFC4120] along with a "keymap" blob that contain the

originally submitted multi-session key. This process may be run at

any time desired by the client; for instance, when a program first

uses the SXOVER-PLUS mechanism; it may be kept for the remainder of

the program run, even if this lasts for weeks and crosses between

security realms, as a pre-validated key for protected contact with

their realm; at any time, they can drop the key.

By offering the SXOVER-PLUS mechanism for SASL, a foreign server

announces its willingness to validate the client's Realm as a

domain, relay SASL messages to it, trust its authentication

conclusion and User-Name and place it under the client's domain

name.

Offering SXOVER-PLUS does not preclude the offering of other SASL

mechanisms; for instance, ANONYMOUS may be useful to allow clients

to choose guest access.

2.2. Initial Client-to-Server Message

SXOVER-PLUS is a client-first mechanism. The first SASL Token starts

with "p=CHANBIND,,DOMAIN," where CHANBIND is the channel binding

name and DOMAIN is the domain name of the client. This notation is

compatible with the GS2 bridge [RFC5056].

¶

¶

¶

¶

¶

¶

¶

Following this is DER-encoded information for the following ASN.1

structure:

The clirnd is a salt that should hold enough entropy to satisfy the

client's cryptographic requirements. The other fields result from

the setup of the multi-session key preceding SXOVER-PLUS.

Upon reception, the server locates a key for the keyno and encalg in

the key store for DOMAIN and uses it to decrypt keymap into entropy

that serves as input to the random-to-key function [RFC3961], where

the length of the decrypted keymap must match the key-generation

seed-length.

The same key is constructed with random-to-key on both ends; the

client uses the key that it originally submitted to the server. The

result is now on both ends, and known as key K0.

Both ends pass K0 into the PRF+() function from RFC 6113 with the

entire C2S-Init message (featuring the GS2 header and the entropy in

the clirnd field) to produce properly sized input to the random-to-

key function. The result is known as key K1. Note how this is

similar to the KRB-FX-C2 procedure from RFC 6113, except that it is

applied to a single key. (Considering slight generalisation of the

procedure to a list of key/pepper pairs that are composed with

associative/commutative XOR operators.)

2.3. Initial Server-to-Client Message

After the client-first SASL Token, the server sends its first

challenge. It is encoded with DER and encrypted by K1, and contains

the following ASN.1 structure:

The clirnd is a salt that should hold enough entropy to satisfy the

client's cryptographic requirements. Note that the mechlist and DER

tagging add no entropy.

¶

C2S-Init ::= [APPLICATION 1] IMPLICIT SEQUENCE {

 clirnd OCTET STRING, -- Entropy to allow client variety

 keyno KeyNumber, -- With realm and encalg, identifies...

 encalg EncryptAlg, -- ...the key for keymap decryption...

 keymap OCTET STRING -- ...yielding server-acceptable data

}

EncryptAlg ::= Int32

KeyNumber ::= UInt32

¶

¶

¶

¶

¶

¶

S2C-Init ::= [APPLICATION 2] IMPLICIT SEQUENCE {

 srvrnd OCTET STRING, -- Entropy to allow server variety

 mechlist IA5String -- Available SASL mechanisms

}

¶

¶

The mechlist starts the SASL exchange inside the end-to-end

encrypted tunnel. If this inner list uses channel binding at all, it

should replicate the channel binding choices from the outer layer.

Note that weaker channel binding choices such as tls-server-end-

point may be met with a replay-protective mechlist.

The key K1 is passed into the PRF+() function from RFC 6113 with the

pepper set to the concatenation of the entire S2C-Init message and

the channel binding value. This is used to produce a last input to

the random-to-key function. The result is known as key K2 and will

be used to encrypt further messages, to be described as C2S-Cont and

S2C-Cont.

The direct concatenation of S2C-Init with channel binding

information is secure because of the self-descriptive size of the

DER encoding of the former. Also note that there is no risk of

cross-polination between types of channel binding because the name

for the type has been hashed into key K1 and is therefore already

securely encompassed in the key derivation.

2.4. Continued Client-to-Server Messages

Further messages from the client to the server hold DER content

encrypted with key K2, following this ASN.1 format:

The mechsel indicates the client's choice of a SASL mechanism, and

MUST be in the first inner SASL message. It initiates a new

authentication exchange. The c2s holds the SASL Token and is sent as

NULL whenever the mechanism yields no token, which is distinct from

yielding an empty token.

The inner SASL exchange may be used to select an authorisation name

that differs from the authentication name. This would be subject to

normal approval by the SASL server, but upon success the

authorisation name would be revealed in the User-Name over Diameter,

and the foreign server would not be told about the authentication

name. This can facilitate pseudonymity.

¶

¶

¶

¶

C2S-Cont ::= [APPLICATION 3] IMPLICIT SEQUENCE {

 mechsel IA5String OPTIONAL, -- SASL mechanism name selection

 c2s SaslToken -- NULL or SASL token passed

 -- from client to server

}

SaslToken ::= CHOICE {

 token OCTET STRING,

 no-token NULL

}

¶

¶

¶

2.5. Continued Server-to-Client Messages

Further messages from the server to the client hold DER content

encrypted with key K2, following this ASN.1 format:

The s2c field carries the SASL Token if it is provided, even when it

is empty, or it explicitly carries NULL to indicate an absent token.

The success field may be set to TRUE to mark the provision of

additional data upon success, and should be taken as a hint that no

further SASL exchange is needed.

Note how this always facilitates last-sends by the SASL server. This

is trivially done in Diameter, by just adding a SASL-Token AVP to

the final success message; it is not always possible in the protocol

between the client machine and foreign server, but that may be

remedied by sending success in S2C-Cont and going through another

looping to finish.

2.6. Using SXOVER-PLUS with GSS-API

When SXOVER-PLUS is used with GSS-API instead of SASL there are only

a few changes to observe.

GSS-API Calls [RFC2744] to gss_init_sec_context() and

gss_accept_sec_context() MUST adhere to [Section 5.1 of [RFC5801]]

concerning channel binding informtion. Providing the GS2 header and

channel binding data in the application-data field involves the

"p=CHANBIND,," but not the "DOMAIN," part of the SASL header.

When transmitted as GSSAPI, only the first message changes. The

client is now referred to as initiator and the server as acceptor.

In the first message, the initial part "p=CHANBIND,," is removed,

but the "DOMAIN," and subsequent DER-encoded C2S-Init structure are

kept. The standard GSSAPI header inserted in its place, adhering to

the Mechanism-Independent Token Format [Section 3.1 of [RFC2743]]

with object identifier 1.3.6.1.4.1.44469.666.5081.1 (TBD:GSSOID) to

identify SXOVER-PLUS. When this object identifier is supplied to the

call GSS_Inquire_SASLname_for_mech [Section 10 of [RFC5801]], the

output reads "SXOVER-PLUS" (without the quotes).

TODO: Reconstruct SASL header or skip the "p=CHANBIND,," part in

both SASL and GSS-API? Can we tell the channel binding type?

¶

S2C-Cont ::= [APPLICATION 4] IMPLICIT SEQUENCE {

 success BOOLEAN DEFAULT FALSE, -- When TRUE, s2c is an

 -- additional token

 s2c SaslToken -- NULL or SASL token from

 -- server to client

}

¶

¶

¶

¶

¶

¶

¶

¶

2.7. Application Key Derivation

SXOVER-PLUS adheres to most of the GS2 bridge, but deviates in two

points. First, security layers are not considered useful in GS2

[Section 12 of [RFC5801]] because it assumes a secure layer that

provides this benefit. With SXOVER-PLUS however, the end-to-end

connection between a client and their authentication server differs

from the single-hop connection to the foreign service, and it can be

beneficial to extract secret key information between the former and

latter. The second deviation from GS2 is that SXOVER-PLUS is defined

but SXOVER is not. For these reasons, GS2- was not prefixed to the

mechanism name.

In general, security layers may be derived from the key K2 by yet

another pass through the PRF+() function from RFC 6113. The pepper

for this is application-specific, and the requested length of octet-

string can also be requested by the application. Multiple keys can

be defined, each constructed from K2 and pepper.

Specifically, when SXOVER-PLUS is used under GSS-API, the following

32-byte ASCII strings may be used as pepper to derive keys for each

of the four secure streams supported by GSS-API:

Definitions for one application do not preclude the generation of

keys for other applications. It is however vital to security that

they all use different pepper, especially among different security

contexts.

3. AVP Definitions for SASL in Diameter

SASL messages in Diameter use a number of AVPs [Section 4 of

[RFC6733]] that are combined to relay SASL to an authentication

realm.

These AVPs are added to the set that is used with the Network Access

Server application [RFC7155], and can therefore be used in AA-

Request and AA-Answer messages. They are always sent with the

Mandatory Flag set to 0. When they are not recognised upon

reception, they will be silently igored.

Normally, a successful AA-Answer would provide a User-Name AVP to

inform the server about a username NAI without a realm [Section 2.1

of [RFC4282]] under which the client is identified; without the

¶

¶

¶

Pepper as 32 ASCII bytes | Purpose | Direction

---------------------------------+----------+------------------

SXOVER-PLUS/GSS-API/SIGN-C2S-KEY | signing | client --> server

SXOVER-PLUS/GSS-API/SIGN-S2C-KEY | signing | client <-- server

SXOVER-PLUS/GSS-API/WRAP-C2S-KEY | wrapping | client --> server

SXOVER-PLUS/GSS-API/WRAP-S2C-KEY | wrapping | client <-- server

¶

¶

¶

¶

User-Name an anonymous session is the only available option,

possibly leading to reduced service and/or limited storage options.

Sending a pseudonym in the User-Name may be an intermediate option.

In all cases, the realm under which a successful AA-Answer is

considered to fall can be taken from the Destination-Realm handling

the Network Access Server session.

3.1. SASL-Mechanism

The SASL-Mechanism AVP has AVP Code TBD0 and is of type UTF8String,

further restricted to a list of zero or more SASL mechanism names in

their standardised notation [Section 3.1 of [RFC4422]] separated by

a space character U+0020.

To retrieve a server's list of supported SASL mechanisms, this AVP

is included in an AA-Request message, containing an empty list of

SASL mechanism names, so an empty string. When SASL is supported by

the server, it responds with the list of currently available SASL

mechanisms.

To relay a client's choice of SASL mechanism, this AVP is included

in an AA-Request message, containing a single SASL mechanism name.

This MAY be done in another session than the one that retrieved the

supported SASL mechanisms from the server, as long as origin and use

have a matching Destination-Realm, because the SASL mechanism list

has no other dependencies.

When the supported SASL mechanism list on a server is changed, any

sessions that may count on one or more of the removed mechanisms

SHOULD be aborted by the server. This is less likely to apply to

client sessions that already selected a SASL mechanism. Clients MAY

retrieve the server's supported mechanism list without actually

attempting authentication; this can be a caching mechanism for a

given Destination-Realm. An abort of such a session by the server

indicates that the cache entry has expired, and should be retrieved

anew for a following attempt.

3.2. SASL-Token

The SASL-Token AVP has AVP Code TBD1 and is of type OctetString. It

may be passed in AA-Request and AA-Answer messages.

SASL requires distinction between empty and absent tokens; absent

SASL tokens are represented by absence of the SASL-Token AVP and

empty SASL tokens are represented as a present SASL-Token AVP with

zero content bytes.

The interpretation of a SASL-Token is subject to the SASL mechanism

selection by the client. This is relayed with a SASL-Mechanism AVP,

¶

¶

¶

¶

¶

¶

¶

which MUST be part of each Network Access Server session, no later

than the first SASL-Token exchange.

3.3. SASL-Channel-Binding

The SASL-Channel-Binding AVP has AVP Code TBD2 and is of type

OctetString. The AVP contains the literal channel binding

information for a SASL mechanism, and may be sent in an AA-Request

that also holds a SASL-Mechanism AVP that lists a single SASL

mechanism.

Note that SASL requires channel binding information when the SASL-

Mechanism AVP ends in -PLUS. Also note that different kinds of

channel binding exist, and that they all start with a unique prefix

registered with IANA. As a result, more than one SASL-Channel-

Binding AVP can be included in one AA-Request. Servers MAY refrain

from learning the client-chosen kind of channel binding from the

SASL exchange, but SHOULD then transmit all the kinds that they

support to avoid authentication failure.

4. Diameter Session Requirements for SASL

Probes for SASL mechanism lists SHOULD be sent outside of a Diameter

session, and the response MAY be influenced by the Destination-

Realm, Origin-Realm and Origin-Host AVPs. It SHOULD NOT be varied

for other reasons.

Non-empty SASL-Mechanism AVPs, as well as any SASL-Token and SASL-

Channel-Binding AVPs SHOULD NOT be sent outside of a Diameter

session. The first AA-Request in this session SHOULD hold the SASL-

Mechanism and MAY hold the SASL-Channel-Binding; these two AVPs

SHOULD NOT occur in later messages in the same session. There MAY be

a SASL-Token AVP in any AA-Request or AA-Answer anywhere in the

Diameter session.

5. Diameter Message Requirements for SXOVER-PLUS

This section explains how the various SXOVER-PLUS messages are

forwarded over Diameter by the foreign server. The foreign server is

connected to the SASL client, possibly over a TLS connection or a

protocol under GSS-API protection, and relays requests over

Diameter, usually over SCTP with DTLS.

Diameter servers eventually provide success and failure responses,

based on the corresponding final results from a SASL implementation

that they in turn use. Before the final result is reached, the SASL

implementation may impose a challenge that will be reproduced over

Diameter, passing challenge and response tokens over Diameter on

behalf of SASL.

¶

¶

¶

¶

¶

¶

¶

Destination-Realm

SASL-Mechanism

SASL-Token

SASL-Channel-Binding

Result-Code

Result-Code

5.1. C2S-Init Requests over Diameter

To send C2S-Init the Diameter client MUST include at least the

following AVPs in an AA-Request [Section 3.1 of [RFC7155]]:

is the client's requested realm, replicated here

for Diameter routing purposes; SXOVER-PLUS conveys this value in

plaintext;

MUST be set to the fixed string SXOVER-PLUS for this

SASL mechanism's name;

MUST be set to the C2S-Init and optional C2S-Cont as it

produced by the SASL client;

MUST be set to the channel binding bytes for

the connection in which the SASL client attempts authentication,

adhering to the channel binding mechanism named in the gs2-header

in the SASL-Token.

It is possible to extend the message with more AVPs that the client

and server can agree on.

The C2S-Init Request is likely to hold other Diameter AVPs for

general housekeeping of the Diameter base protocol and NAS

application, such as the Session-Id. Though User-Name and User-

Password would be sent with password-based Diameter mechanisms, they

MUST be ignored by implementations of SASL over Diameter when they

appear in C2S-Init messages.

5.2. S2C-Init Responses over Diameter

When SASL fails to initialise in response to the C2S-Init passed in

an AA-Request, then the AA-Answer MUST represent that in the

following AVP:

MUST be set to an error or failure code [Section 7.1 of

[RFC6733]].

Upon initialisation of SASL, the normal response is a list of

mechanisms that the client may use. If the AA-Request sent along a

C2S-Cont that guessed an available mechanism and if that extension

is acceptable to the server, then further processing will be as

defined for S2C-Cont, below. Otherwise, the remainder of this

section applies.

The initialisation of SASL forms a S2C-Init response, and an AA-

Answer MUST be sent with the following AVPs:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

SASL-Token

SASL-Token

SASL-Mechanism

SASL-Channel-Binding

User-Name

User-Password

Result-Code

SASL-Token

Result-Code

Result-Code

SASL-Token

MUST be set to the value DIAMETER_MULTI_ROUND_AUTH [Section 7.1.1

of [RFC6733]];

MUST be set to the S2C-Init value.

5.3. C2S-Cont Requests over Diameter

The C2S-Cont message is any further message that the SASL client

passes to the foreign server. It MUST be forwarded as a Diameter AA-

Request with the following AVPs:

MUST be set to the C2S-Cont value from the SASL client;

MUST NOT be sent;

MUST NOT be sent;

MAY be sent but MUST NOT be processed when received by

implementations of this specification;

MOST NOT be sent.

5.4. S2C-Cont Responses over Diameter

S2C-Cont tokens are produced as output from continued SASL

processing based on C2S-Cont tokens found in AA-Request messages.

If the SASL exchange is not final, then the AA-Answer MUST represent

that in the following AVPs:

is set to the value DIAMETER_MULTI_ROUND_AUTH [Section

7.1.1 of [RFC6733]];

MUST be included, and set to the S2C-Cont value; when

responding to accepted optimisation for the initial round-trip

then the S2C-Init token MUST be prefixed to the S2C-Cont value.

If the SASL exchange fails, then the AA-Answer MUST represent that

in the following AVP:

is set to an error or failure code [Section 7.1 of

[RFC6733]].

If the SASL exchange succeeds, then the AA-Answer MUST represent

that in the following AVPs:

is set to a success code [Section 7.1.2 of [RFC6733]];

is included when the SASL exchange produced an

additional token upon success [Section 4 of [RFC4422]];

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

User-Name
may be provided, and then contains the username part of a

NAI [RFC4282], but not a realm; when an authorization identity

string was provided [Section 3.4.1 of [RFC4422]] and approved by

the SASL exchange, then this will be used instead of the

authentication idenity. This mechanism may be used to request the

use of a pseudonym as well as to signal the willingness to return

this AVP.

Further AVPs may be included in a successful AA-Answer, but their

meaning is not defined herein. Applications might range from access

control lists to backend tunnel creation.

6. Running Diameter as a SASL Backend

Following are a few practical considerations in relation to the

Diameter connectivity for SASL.

6.1. Diameter is an SCTP service

Diameter is primarily an SCTP-based protocol [RFC6733], for reasons

of scalabaility and efficiency. SASL Diameter benefits from these

properties and embraces the SCTP transport. Operating system support

for SCTP is wide-spread, but parts of network infrastructure may not

support it, and that may cause implementations to add a fallback to

more traditional protocols. Standards offer two options for doing

this.

Diameter can fallback to run over TCP, which is mostly of use to

client-only machines, but then sacrifices several benefits of the

SCTP carrier. SASL Diameter embeddings typically involve no client

systems, so this option is NOT RECOMMENDED.

SCTP may be run over a UDP transport using port 9899 [RFC6951],

which does not sacrifice much; it only inserts a UDP header before

each message. This is a reasonable expectation of foreign servers as

well as home realms, so this additional option is RECOMMENDED for

situations where a fallback for plain SCTP is desired. It is

standardised as a socket option SCTP_REMOTE_UDP_ENCAPS_PORT, and

only involves a small repetition in code, with a minor change

between the attempts.

6.2. Reliance on DANE and DNSSEC

Diameter always involves the use of TLS, but there is a number of

choices concerning the validation of connections through DNSSEC and

DANE. It is the home realm's prerogative what level of protection it

upholds for its client identities, but any foreign server MAY choose

to raise the bar by setting a minimal accepable level.

¶

¶

¶

¶

¶

¶

¶

DNSSEC offers a protection mechanism for the _diameter._sctp SRV

records that lead to the Diameter host and its port for the home

realm. This does not protect against forged IP addresses, port

mappings or routing. To protect against this as well, a TLSA record

for the service host and port, along with the _sctp protocol label,

can be used as specified for DANE [RFC6698]. This use of DNSSEC and

DANE is RECOMMENDED.

Home realms that choose to be light on such measures risk that

identities are forged, in spite of their use of TLS. Foreign servers

MAY choose to reject such home realms, or alternatively be more

inquisitive about the certificates used.

7. Security Considerations

The SASL mechanism SXOVER-PLUS separates the authentication of a

foreign identity into its realm and the username underneath it. The

realm is authenticated by the relying server, such as the proposed

foreign server, whereas the username is obtained from a backend

realm server that is known to be responsible for that realm.

From the perspective of the foreign server, assurance of an identity

is the vital aspect of the SXOVER-PLUS flow that it relays over

Diameter. Through TLS or DTLS, with DNSSEC and DANE to validate the

certificate it uses, the link from a realm (which is read as a

domain name) to the Diameter connection can be verified, so the

relying server can be certain about the realm under which the

backend connection resides. By receiving a response over that

connection to a known-authoritative server for the realm, the

username can also be trusted. The relying server continues to treat

the username and realm as a pair the for identification of the user.

Channel binding is normally limited to two parties only, and

forwarding such information is not a trivial idea. The fact that the

forwarding connection is encrypted, and known to lead to an

authoritative server for a claimed realm does help. The intermediate

server relies on proper authentication, and has no interest in

bypassing authentication, and it would be doing that by adopting

channel binding information from anywhere else.

From the perspective of the client and the home realm, the safety of

the SASL credentials is paramount. When addressing a foreign server,

which is not part of the home realm, clients therefore MUST NOT rely

on mechanisms that might leak credentials. Two mechanisms that are

safe to use are ANONYMOUS, which passes no credentials and assigns

no rights, and SXOVER-PLUS, which applies end-to-end encryption to

another SASL mechanism that may or may not be secure.

¶

¶

¶

¶

¶

¶

[I-D.vanrein-internetwide-realm-crossover]

[RFC2743]

The SXOVER-PLUS mechanism uses channel binding to ensure that the

authentication is specific to a stream. The level to which this is

secure depends on the channel binding mechanism. Therefore, in spite

of end-to-end encryption, most use cases will want a secure carrier

such as TLS between the client and foreign server.

8. IANA Considerations

This specification defines three AVP Codes for use with Diameter.

IANA is requested to register the following AVP Codes for them in

the "Authentication, Authorization, and Accounting (AAA) Parameters"

registry:

This specification defines a new value for the NAS-Port-Type AVP to

indicate a new interpretation of values passed in NAS-Port and NAS-

Port-Id AVPs. IANA is requested to register the following value in

the RADIUS Types registry, under Values for RADIUS Attribute 61,

NAS-Port-Type:

This specification defines a SASL mechanism named SXOVER-PLUS. IANA

is requested to register the following in the Simple Authentication

and Security Layer (SASL) Mechanisms registry under SASL Mechanisms:

9. Normative References

Rein, R. V., "InternetWide Identities with Realm

Crossover", Work in Progress, Internet-Draft, draft-

vanrein-internetwide-realm-crossover-00, 28 September

2020, <https://www.ietf.org/archive/id/draft-vanrein-

internetwide-realm-crossover-00.txt>.

Linn, J., "Generic Security Service Application Program

Interface Version 2, Update 1", RFC 2743, DOI 10.17487/

RFC2743, January 2000, <https://www.rfc-editor.org/info/

rfc2743>.

¶

¶

AVP Code | Attribute Name | Reference

---------+----------------------+------------

TBD0 | SASL-Mechanism | (this spec)

TBD1 | SASL-Token | (this spec)

TBD2 | SASL-Channel-Binding | (this spec)

¶

¶

Value | Description | Reference

------+----------------------------+------------

TBD3 | SASL Authenticated Service | (this spec)

¶

¶

Mechanism | Usage | Reference | Owner

------------+--------+-------------+-------------------------------------

SXOVER-PLUS | COMMON | (this spec) | Rick van Rein <rick@openfortress.nl>

¶

https://www.ietf.org/archive/id/draft-vanrein-internetwide-realm-crossover-00.txt
https://www.ietf.org/archive/id/draft-vanrein-internetwide-realm-crossover-00.txt
https://www.rfc-editor.org/info/rfc2743
https://www.rfc-editor.org/info/rfc2743

[RFC2744]

[RFC3961]

[RFC4120]

[RFC4282]

[RFC4422]

[RFC5056]

[RFC5554]

[RFC5801]

[RFC5929]

[RFC6698]

Wray, J., "Generic Security Service API Version 2 : C-

bindings", RFC 2744, DOI 10.17487/RFC2744, January 2000,

<https://www.rfc-editor.org/info/rfc2744>.

Raeburn, K., "Encryption and Checksum Specifications for

Kerberos 5", RFC 3961, DOI 10.17487/RFC3961, February

2005, <https://www.rfc-editor.org/info/rfc3961>.

Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The

Kerberos Network Authentication Service (V5)", RFC 4120,

DOI 10.17487/RFC4120, July 2005, <https://www.rfc-

editor.org/info/rfc4120>.

Aboba, B., Beadles, M., Arkko, J., and P. Eronen, "The

Network Access Identifier", RFC 4282, DOI 10.17487/

RFC4282, December 2005, <https://www.rfc-editor.org/info/

rfc4282>.

Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple

Authentication and Security Layer (SASL)", RFC 4422, DOI

10.17487/RFC4422, June 2006, <https://www.rfc-editor.org/

info/rfc4422>.

Williams, N., "On the Use of Channel Bindings to Secure

Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,

<https://www.rfc-editor.org/info/rfc5056>.

Williams, N., "Clarifications and Extensions to the

Generic Security Service Application Program Interface

(GSS-API) for the Use of Channel Bindings", RFC 5554, DOI

10.17487/RFC5554, May 2009, <https://www.rfc-editor.org/

info/rfc5554>.

Josefsson, S. and N. Williams, "Using Generic Security

Service Application Program Interface (GSS-API)

Mechanisms in Simple Authentication and Security Layer

(SASL): The GS2 Mechanism Family", RFC 5801, DOI

10.17487/RFC5801, July 2010, <https://www.rfc-editor.org/

info/rfc5801>.

Altman, J., Williams, N., and L. Zhu, "Channel Bindings

for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,

<https://www.rfc-editor.org/info/rfc5929>.

Hoffman, P. and J. Schlyter, "The DNS-Based

Authentication of Named Entities (DANE) Transport Layer

Security (TLS) Protocol: TLSA", RFC 6698, DOI 10.17487/

RFC6698, August 2012, <https://www.rfc-editor.org/info/

rfc6698>.

https://www.rfc-editor.org/info/rfc2744
https://www.rfc-editor.org/info/rfc3961
https://www.rfc-editor.org/info/rfc4120
https://www.rfc-editor.org/info/rfc4120
https://www.rfc-editor.org/info/rfc4282
https://www.rfc-editor.org/info/rfc4282
https://www.rfc-editor.org/info/rfc4422
https://www.rfc-editor.org/info/rfc4422
https://www.rfc-editor.org/info/rfc5056
https://www.rfc-editor.org/info/rfc5554
https://www.rfc-editor.org/info/rfc5554
https://www.rfc-editor.org/info/rfc5801
https://www.rfc-editor.org/info/rfc5801
https://www.rfc-editor.org/info/rfc5929
https://www.rfc-editor.org/info/rfc6698
https://www.rfc-editor.org/info/rfc6698

[RFC6733]

[RFC6951]

[RFC7155]

Fajardo, V., Ed., Arkko, J., Loughney, J., and G. Zorn,

Ed., "Diameter Base Protocol", RFC 6733, DOI 10.17487/

RFC6733, October 2012, <https://www.rfc-editor.org/info/

rfc6733>.

Tuexen, M. and R. Stewart, "UDP Encapsulation of Stream

Control Transmission Protocol (SCTP) Packets for End-Host

to End-Host Communication", RFC 6951, DOI 10.17487/

RFC6951, May 2013, <https://www.rfc-editor.org/info/

rfc6951>.

Zorn, G., Ed., "Diameter Network Access Server

Application", RFC 7155, DOI 10.17487/RFC7155, April 2014,

<https://www.rfc-editor.org/info/rfc7155>.

Appendix A. Centralised handing of SASL over Diameter

This section is non-normative.

Within foreign service networks, it can be usefule to centralise

Diameter handling in one peer, where service-neutral pooling of

connections to remote peers can improve efficiency. Diameter could

facilitate this, but would add quite a bit of handling logic to a

foreign service. The following ASN.1 module was designed as the

simplest possible request/response protocol that could run over a

TCP connection between a foreign service host and a nearby/trusted

centralised host running its side of Diameter.

The protocol can also be used over SCTP. In this case, a user

message can be defined to contain precisely one DiaSASL-Request in

downstream direction, or one DiaSASL-Answer in upstream direction,

and sent with the SCTP_UNORDERED flag.

¶

¶

¶

https://www.rfc-editor.org/info/rfc6733
https://www.rfc-editor.org/info/rfc6733
https://www.rfc-editor.org/info/rfc6951
https://www.rfc-editor.org/info/rfc6951
https://www.rfc-editor.org/info/rfc7155

Quick-DiaSASL DEFINITIONS EXPLICIT TAGS ::= BEGIN

-- ## SASL ready for Diameter

--

-- This is targeted at Diameter backends and avoids loading all of

-- Diameter into applications.

--

-- Open a connection; return is DiaSASL-Open-Answer.

-- The service-realm defines the context of the

-- identity provider; this is where Diameter requests

-- should be send, and it helps to determine what

-- sasl-mechanisms may be used.

--

-- The front-end is identified by a service-trunk code

-- (for the long-term relation between a front-end and

-- back-end) and/or a service-proto protocol that can

-- be used while driving SASL (it could be the "imap"

-- part before the "imap/imap.example.com"PrincipalName

-- for a service in a Kerberos Ticket).

--

DiaSASL-Open-Request ::= [APPLICATION 10] IMPLICIT SEQUENCE {

 service-realm [1] UTF8String,

 service-trunk [8] INTEGER OPTIONAL,

 service-proto [9] IA5String OPTIONAL

}

-- Close a connection; session-id identifies which

-- and there is no response. This is ignored when the

-- session-id is unknown; the call is not required

-- after a DiaSASL-Authn-Answer that sets a value for

-- final-comerr, but it is harmless when sent anyway.

--

DiaSASL-Close-Request ::= [APPLICATION 11] IMPLICIT SEQUENCE {

 session-id [2] OCTET STRING

}

-- Relay an authentication request message; response is

-- DiaSASL-Authn-Answer with a copied session-id.

--

DiaSASL-Authn-Request ::= [APPLICATION 12] IMPLICIT SEQUENCE {

 session-id [2] OCTET STRING,

 sasl-mechanism [3] IA5String OPTIONAL,

 sasl-channel-binding [4] OCTET STRING OPTIONAL,

 sasl-token [5] OCTET STRING OPTIONAL

}

-- This is the response to a DiaSASL-Open-Request.

--

-- The final-comerr is set when Diameter was conclusive.

-- It is an error code from com_err to allow for errors,

-- but it may be sufficient to know that 0 indicates success

-- and everything else is a failure.

--

-- The service-realm is copied from the Diasasl-Open-Request

-- so it can be used to match; the session-id will continue

-- to identify this session in requests and responses.

--

-- The sasl-mechanisms holds a space-separated string of

-- SASL mechanism names.

--

DiaSASL-Open-Answer ::= [APPLICATION 13] IMPLICIT SEQUENCE {

 final-comerr [0] INTEGER (-2147483648..2147483647) OPTIONAL,

 -- Only set when Diameter was conclusive.

 -- 0 for success, different for failure.

 -- The code is a com_err code, so int32_t.

 service-realm [1] UTF8String,

 session-id [2] OCTET STRING,

 sasl-mechanisms [3] IA5String

}

-- This is the response to a DiaSASL-Authn-Request.

--

-- The final-result is only set if Diameter was conclusive.

-- It is an error code from com_err to allow for errors,

-- but it may be sufficient to know that 0 indicates success

-- and everything else is a failure.

--

-- Only a successful authentication response can hold values

-- for client-userid and client-domain. The latter overrides

-- the initial realm, which was provided in the open call,

-- but may be substituted as a result of Realm Crossover.

-- The client-userid is the local part and may be absent on

-- anonymous sessions; the client-userid value is approved

-- by the local Diameter peer as having come from a Diameter

-- Diameter peer that tends to client-domain.

--

DiaSASL-Authn-Answer ::= [APPLICATION 14] IMPLICIT SEQUENCE {

 final-comerr [0] INTEGER (-2147483648..2147483647) OPTIONAL,

 -- Only set when Diameter was conclusive.

 -- 0 for success, different for failure.

 -- The code is a com_err code, so int32_t.

 session-id [2] OCTET STRING,

 sasl-token [5] OCTET STRING OPTIONAL,

 client-userid [6] UTF8String OPTIONAL,

 client-domain [7] UTF8String OPTIONAL

}

-- Requests are Open, Close and Authn requests. This simple

-- CHOICE differentiates between the variants.

-- Note that no extra tags are needed; the [APPLICATION n]

-- tag can be used, or the presence of fields in variants.

--

DiaSASL-Request ::= CHOICE {

 open-request DiaSASL-Open-Request,

 close-request DiaSASL-Close-Request,

 authn-request DiaSASL-Authn-Request

}

-- Answers are sent in response to Open and Authn requests.

-- This simple CHOICE differentiates between the variants.

-- Note that no extra tags are needed; the [APPLICATION n]

-- tag can be used, or the presence of fields in variants.

--

DiaSASL-Answer ::= CHOICE {

 open-answer DiaSASL-Open-Answer,

 authn-answer DiaSASL-Authn-Answer

}

-- ## A simple API for DiaSASL

-- A `diasasl` API only needs a small number of calls:

-- http://quick-sasl.arpa2.net/group__quickdiasasl.html

-- This presents only a modest extension to existing software,

-- and easily merges into a variety of concurrency models.

END

¶

Appendix B. Acknowledgements

Thanks to Nico Williams for input on the GS2 bridge and Channel

Binding.

Authors' Addresses

Rick van Rein

OpenFortress BV

Haarlebrink 5

Enschede

Email: rick@openfortress.nl

Henri Manson

Mansoft

Castorstraat 30

Enschede

Email: info@mansoft.nl

¶

mailto:rick@openfortress.nl
mailto:info@mansoft.nl

	Realm Crossover for SASL and GSS-API via Diameter
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Messages of SXOVER-PLUS
	2.1. Preparation for Messaging
	2.2. Initial Client-to-Server Message
	2.3. Initial Server-to-Client Message
	2.4. Continued Client-to-Server Messages
	2.5. Continued Server-to-Client Messages
	2.6. Using SXOVER-PLUS with GSS-API
	2.7. Application Key Derivation

	3. AVP Definitions for SASL in Diameter
	3.1. SASL-Mechanism
	3.2. SASL-Token
	3.3. SASL-Channel-Binding

	4. Diameter Session Requirements for SASL
	5. Diameter Message Requirements for SXOVER-PLUS
	5.1. C2S-Init Requests over Diameter
	5.2. S2C-Init Responses over Diameter
	5.3. C2S-Cont Requests over Diameter
	5.4. S2C-Cont Responses over Diameter

	6. Running Diameter as a SASL Backend
	6.1. Diameter is an SCTP service
	6.2. Reliance on DANE and DNSSEC

	7. Security Considerations
	8. IANA Considerations
	9. Normative References
	Appendix A. Centralised handing of SASL over Diameter
	Appendix B. Acknowledgements
	Authors' Addresses

