
Network Working Group R. Van Rein
Internet-Draft ARPA2.net
Intended status: Standards Track November 8, 2018
Expires: May 12, 2019

HTTP Authentication with SASL
draft-vanrein-httpauth-sasl-01

Abstract

 Most application-level protocols standardise their authentication
 exchanges under the SASL framework. HTTP has taken another course,
 and often ends up replicating the work to allow individual
 mechanisms. This specification adopts full SASL authentication into
 HTTP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on May 12, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Van Rein Expires May 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HTTP SASL November 2018

Table of Contents

1. Introduction . 2
2. Embedding SASL in HTTP 3
2.1. HTTP Request and Response Messages 4
2.2. Authentication Field Definitions 5

3. Support for Realm Crossover 6
3.1. Encrypting SASL for Realm Crossover 8
3.2. Viewing Users on HTTP Services 9

4. Security Considerations 10
5. IANA Considerations . 10
6. References . 10
6.1. Normative References 10
6.2. Informative References 12

Appendix A. HTTP Server Environment Variables 13
Appendix B. Acknowledgements 14

 Author's Address . 14

1. Introduction

 HTTP has historically followed its own path for client
 authentication, while many other end-user protocols standardised on
 SASL; examples of SASL protocols include SMTP, IMAP, POP, XMPP, LDAP
 and AMQP. This specification introduces SASL to HTTP, so it may
 share in past and future work done for SASL in general.

 Among the work that could be shared is backend authentication
 integration, which is possible due to protocol-independent SASL
 exchanges for any given method, making it easy to take them out of
 one protocol and inserting them into another. Although HTTP has
 adopted several SASL-compatible authentication methods, it has uses
 various notations and so it still needs method-specific support at
 the HTTP level to translate them to a SASL backend.

 In front-ends, a similar situation has arisen. The varying syntaxes
 for authentication methods have made it difficult to rely on support
 in most or all HTTP clients. When such clients could externalise
 their SASL handling to generic software such as a SASL library, then
 any extension to a library automatically spills over into the HTTP
 sphere. It is common for developers of web clients to also produce
 email clients, so a shared code base (and credential store) is not
 difficult to imagine.

 Sharing is beneficial in both directions. HTTP benefits by being
 able to use GS2 mechanisms [RFC5801] with channel binding [RFC5554]
 to TLS [RFC5929] based on pinning either the certificate for the TLS
 server or even a unique part of the individual TLS connection; for

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5554
https://datatracker.ietf.org/doc/html/rfc5929

Van Rein Expires May 12, 2019 [Page 2]

Internet-Draft HTTP SASL November 2018

 instance Kerberos5 [RFC4120] currently uses Negotiate authentication
 [RFC4559] which is not as secure as GS2-KRB5-PLUS over SASL.

 SASL also benefits; had it been the norm for HTTP, then the work to
 pass SAML over it [RFC6595] would probably have been done
 immediately. In fact, HTTP can still benefit from receiving
 standardised SAML20 inquiries over SASL, becuase it resolves the need
 for configuration of initiation paths and practices. Also, it
 removes authentication data from URIs, where they are not ideally
 placed.

 TODO: Does this do justice to current SAML over HTTP?

 In terms of security for HTTP applications, it appears beneficial to
 have very good authentication capabilities in the layers below the
 application; this is specifically true for applications developed in
 HTML and JavaScript, which tend to load code from various places,
 including code that is not always in the end user's interest; since
 it already is a concern what identity information passes through
 these applications, it is certainly not advisable to use credentials
 in those places. Browsers are in a better position to take control
 over these assets, at the protocol levels of HTTP and TLS, and
 conceal credentials and possibly also identity from applications
 running on top. Inasfar as tokens are needed, they can be derived
 from session keys using generally accepted key derivation schemes,
 but the session keys can be isolated from dynamic layers above HTTP.

2. Embedding SASL in HTTP

 This specification integrates the SASL framework [RFC4422] into
 mainstream HTTP [RFC2616]. The SASL Authentication scheme follows
 the general structure for HTTP Authentication [RFC7235]. It uses the
 WWW-Authenticate and Proxy-Authenticate headers in responses from web
 servers and web proxies, respectively, and correspondingly the
 Authorization and Proxy-Authorization request header to answer to
 requests.

 The SASL service name for the following embedding of SASL is HTTP;
 contrary to most other service names, it is spelled in uppercase, in
 line with what has become general practice in Kerberos and GSSAPI.

 Since SASL prescribes channel binding to occur relative to TLS
 instead of to the application protocol, we can add that when the
 HTTPS transport is used. Whether channel binding is used SHOULD
 remain a configuration choice in HTTP software, as it might interfere
 with intentional HTTPS proxying. Unintended proxying on the other
 hand, might lead to tapping of credentials under certain SASL
 mechanisms, and it may be considered helpful to prevent such

https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc6595
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc7235

Van Rein Expires May 12, 2019 [Page 3]

Internet-Draft HTTP SASL November 2018

 situations by relying on channel binding for at least those
 mechanisms.

2.1. HTTP Request and Response Messages

 This section defines a few names for HTTP request and response
 messages, to be used in the remainder of this specification.

 Initial Responses are those HTTP responses that set a status code 401
 or 407, and that are sent when the HTTP server decides to initiate an
 authentication exchange.

 Initial Requests are those HTTP requests that a client sends to
 initiate a fresh SASL authentication. User-Aware Requests are a
 variation defined further below, intended for attempts to address
 public resources under a given user name.

 Intermediate Responses are HTTP responses to SASL authentication,
 with a status code set to 401 or 407. Intermediate Requests are
 those HTTP requests that a client sends to continue a SASL
 authentication after an Intermediate Response.

 Final Responses either set a 200 or 403 status code, the first
 depicting success and the second depicting failure. Information in a
 Final 200 Response is provided in an Authentication-Info or Proxy-
 Authentication-Info header [RFC7615] instead of the headers used in
 Initial Responses and Intermediate Responses [RFC7235]. Note that
 proper interpretation of the Final 200 Response requires client state
 indicating that SASL authentication was used, or else the optional
 fields are not completely reliable information sources; cryptographic
 markers in the c2c field MAY be used to overcome this in a manner
 that defies abuse by rogue servers. The Final 403 Response never
 contains authentication-related headers.

 The following fields, defined in upcoming sections, MUST and MAY be
 present in HTTP authentication exchanges for SASL:

 Request or Response | MUST have fields | MAY have fields
 ----------------------+---------------------+--------------------
 Unauth Request | | userview,visitor
 Initial Response | mech,s2s,realm | encalg,enckid,text
 Initial Request | mech,s2s,c2c,realm | encalg,enckid,c2s,
 | | userview,visitor
 Intermediate Response | mech,c2c,s2c,s2s | text
 Intermediate Request | mech,c2c,c2s,s2s | userview,visitor
 Final 200 Response | mech,c2c,name,realm | s2s
 Final 403 Response | |

https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc7235

Van Rein Expires May 12, 2019 [Page 4]

Internet-Draft HTTP SASL November 2018

2.2. Authentication Field Definitions

 Data for SASL is transported in the following fields:

 c2s holds SASL mechanism-specific data from client to server,
 usually encrypted during realm crossover.

 s2c holds SASL mechanism-specific data from server to client,
 usually encrypted during realm crossover.

 s2s holds opaque server data which the client MUST reflect in
 Intermediate Requests, to implement stateless SASL handling in
 the server. This is a requirement for the HTTP Authentication
 framework [Section 5.1.2 of [RFC7235]].

 c2c holds opaque client data which the server MUST reflect in
 Intermediate Responses and Final 200 Responses. This can help
 to also make the client stateless.

 encalg identifies an encryption algorithm to protect the c2s and s2c
 fields, especially during realm crossover. When this field is
 absent, the c2s and s2c fields are not encrypted but literally
 follow the SASL mechanism exchange.

 enckey is an identity of the encryption key used under encalg. The
 fields enckey and encalg MUST always be paired; either both are
 present, or both are absent.

 As in other protocols, it is not safe for all SASL mechanisms to
 exchange c2s and s2c messages over unprotected transports. The c2c
 and s2s fields MUST be protected against tampering by rogue peers,
 and such protection also protects against tampering by rogue
 intermediates when using an unprotected transport. In addition, c2c
 and s2s fields may also need to be concealed from peers and
 intermediates.

 Whether s2c is supplied in a Final 200 Response depends on the SASL
 mechanism, which may or may not have additional data to provide in
 this phase. Note that SASL requires empty s2c messages to be
 distinguished from absence thereof. When the server provides c2s
 and/or s2s data in a Final 200 Response, then it indicates that the
 supplied fields MAY provide one-step re-authentication with an empty
 s2c string, but the server MAY revoke this privilege at any time and
 for any reason; it would respond with an Initial Response in case of
 such revocation, but with a quick Final 200 Response if the one-step
 re-authentication is still acceptable.

https://datatracker.ietf.org/doc/html/rfc7235#section-5.1.2

Van Rein Expires May 12, 2019 [Page 5]

Internet-Draft HTTP SASL November 2018

 The following fields support SASL within the HTTP Authentication
 Framework:

 userview selects a user view on the resources accessible over HTTP.
 This data selection purpose is unrelated to authentication. As
 a general principle, the userview MAY lead to changes in
 authentication triggers for URI paths, but MUST NOT change
 authentication triggers for the underlying resources.

 realm optionally names a scope of authorisation under the combination
 of scheme, server host name and userview.

 mech selects the SASL mechanism to use. It MUST be reflected from
 the preceding message, except: In an Initial Response, the
 field is filled with a space-separated list of SASL mechanism
 names; In an Initial Request, the client chooses one SASL
 mechanism name; In a User-Aware Request, the field is fixated
 to ANONYMOUS.

 visitor is a hint that suggests an unauthenticated client identity.
 It cannot be used as a basis of security, other than to point
 at a SASL backend to use for authentication under realm
 crossover.

 name is the authorised user@domain.name or domain.name identity.

 text is a user-oriented text explaining what information is needed.

3. Support for Realm Crossover

 HTTP services tend to define users as part of their own secure realm.
 This culminates in competitions over user names in the most popular
 services. It also leads to variations in user names across services,
 difficult to both users and their contacts. More seriously, it leads
 to uncertainty about the same-ness of users at different services.
 Anyone can claim to be your bank, but there is no basis of trusting
 such names.

 A more flexible model allows the client to determine their names, and
 locate them under their own domain. Provided that services use
 domain-specific methods for identity assurance, the client can be
 represented by their complete form, and no concern of same-ness of
 users names across such services need exist. As a pleasant side-
 effect, the competition over user names has become a local matter, to
 be resolved by the client.

Van Rein Expires May 12, 2019 [Page 6]

Internet-Draft HTTP SASL November 2018

 HTTP SASL supports this model with a number of choices. First, the
 format of a user identity is formalised to be a Network Access
 Identifier [RFC7542] of the form

 nai_clientid ::= utf8-username "@" utf8-realm

 Second, there is an option to claim a client identity at all times,
 without authentication, in any of the forms of a Network Access
 Identifier,

 nai_visitor ::= nai

 In both cases, the right-hand-side symbols refer to the quoted
 specification for a NAI.

 The nai_clientid is reported back from SASL to the HTTP service.
 When it is provided, it has been validated. See Appendix A for the
 mechanism of passing such information from an HTTP server to an
 application service.

 The nai_visitor is used as a field to the SASL Authorization header,
 and can be provided at any point. The form might be sent on its own,
 as in

 Authorization: SASL visitor=john@example.com

 This identity is also passed from HTTP server to application server,
 but it comes straight from this header. This means that it is just a
 hint at an identity, without any formal status. Services seem to
 enjoy such hints, and receiving it in a standardised manner can be
 beneficial for support in development environments, and it allows
 more client control.

 It is anticipated that local information is subject to access control
 rules that determine specific client identities, probably a mixture
 of individuals and entire domains, who can exercise a variety of
 rights to the resource offering over HTTP. This model can be
 supportive of local users as well as foreign ones.

 The nai_visitor MAY be used as a hint towards a SASL realm to
 address, especially during the Initial Request generation. When no
 nai_visitor is available at that time, local policy dictates what
 SASL realm to use. This is important because the SASL realm
 determines which mechanisms can be offered.

 It could happen that an Intial Response comes back with a different
 SASL realm in the nai_visitor than assumed during the generation of
 the Initial Request. In such cases, the requested SASL realm is

https://datatracker.ietf.org/doc/html/rfc7542

Van Rein Expires May 12, 2019 [Page 7]

Internet-Draft HTTP SASL November 2018

 approached. When its offering of mechanisms does not contain the
 choice made by the client, a new Initial Request SHOULD be generated,
 to support the client in their change of mind. There does not seem
 to be a reason to grant such changes to occur more than once.

3.1. Encrypting SASL for Realm Crossover

 Most SASL methods are unsafe to use over plaintext channels; it is a
 common and good practice to run it over a secure channel such as TLS.
 This is precisely the condition of HTTP SASL with server-based
 accounts. But TLS only protects the direct link between a client and
 a server; during realm crossover the server might effectively be a
 man-in-the-middle. This is especially true when a SASL backend in
 the client's domain is asked to perform the authentication for the
 HTTP server.

 The solution is to encrypt the SASL traffic while in transit. Since
 the client and backend authentication service know each other, they
 can resort to simple mechanisms such as symmetric encryption and
 integrity checking. This means that the client and backend need to
 share a random key and an algorithm. Random keys can for example be
 bootstrapped through an ECDHE exchange, or as by-product [RFC5705] of
 a TLS session.

 Encryption is determined by an algorithm name, a key identifier and
 the HTTP server name as it occurs in the Server Name Indication in
 TLS. The algorithm name is captured in an enc field and the key
 identifier in a enckid field to the SASL Authorization header:

 Authorization: SASL encalg="aes128-cts-hmac-sha256-128" enckid="1783"

 Key and algorithm naming can be defined locally. HTTP SASL passes
 them through verbatim. SASL end points interpret them, and to
 improve interoperability the algorithm names SHOULD be the names or
 numbers of Kerberos encryption types. This is a practical choice,
 because most SASL end points have access to suitable code for
 handling such forms.

 Encryption MAY be requested during the Initial Request, which itself
 is not yet a sensitive message. When its use is desired by a client,
 it MUST be included in the Initial Response, and will then be used
 for the c2s and s2c fields in that message and any following.
 Encryption SHOULD be used if an AT character U+0040 is sent as part
 of a visitor field.

 A separate specification will introduce a mapping of SASL into
 Diameter messages, including support for the enc and key fields.

https://datatracker.ietf.org/doc/html/rfc5705

Van Rein Expires May 12, 2019 [Page 8]

Internet-Draft HTTP SASL November 2018

3.2. Viewing Users on HTTP Services

 The initial authentication mechanisms for HTTP were Basic and Digest
 [RFC2617] but these are no longer considered secure. These forms
 used the username in the URI together with a password, a combination
 that is now officially deprecated [Section 3.2.1 of [RFC3986]].

 The use of a user name in a URI has not been deprecated, but has been
 withdrawn from HTTP because it was not included in the core HTTP
 specification [RFC2616]. With client identities that support realm
 crossover, it is possible to add this to SASL Authorization headers,
 through a new siteuser field, to be used like this:

 GET / HTTP/1.1
 Host: www.example.net
 Authorization: SASL userview=snowboarders

 There is a clear need for users in HTTP URIs, as can be seen from a
 wild variation of mappings into paths are sub-domains. The actual
 use of the username part of the URI is however preferrable, and the
 URI format defines it in the authority part [Section 3.2 of
 [RFC3986]] which seems to match with the intended uses. A URI-based
 user name will probaly still be mapped to a path on a server, but
 need not be shown in the path in the URI. Better standardisation of
 user names is supportive of better integration with tools on both the
 client and server side.

 We emphasise that the userview and client identity are orthogonal
 concepts, except for the special case where the client is viewing his
 own resources. This implies that it can be used with or without
 authentication. The userview field indicates the name space of
 resources beig addressed, while the client identity is involved in
 access rights.

 The reason to integrate the userview with SASL is one of identity
 control; when the userview changes, one is visiting another part of a
 HTTP resource space, and it may then be proper to switch to another
 identity. This is in line with the scoping of protection spaces
 [Section 2.2 of [RFC7235]] to combinations of URI scheme, URI
 authority section and a server-defined realm string, where the URI
 authority section includes the user name in the URI.

 Browsers currently show varying behaviours when supplied with a user
 name. This is mostly due to the deprecation [Section 3.2.1 of
 [RFC3986]] of userparts with a password embedded. Unfortunately,
 this also means that user names in HTTP URIs are sometimes suppressed
 or warned about. The userview field is intended to present a
 constructive alternative, where user names may once more be used to

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2
https://datatracker.ietf.org/doc/html/rfc7235#section-2.2
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.1
https://datatracker.ietf.org/doc/html/rfc3986#section-3.2.1

Van Rein Expires May 12, 2019 [Page 9]

Internet-Draft HTTP SASL November 2018

 scope the resource name space to that of a user, without saying
 anything about authentication at all.

4. Security Considerations

 The SASL exchange may be at risk of tampering when the sequence of
 HTTP messages is not secured to form one stream. The termination of
 such a secure layer MUST also terminate an ongoing SASL handshake.

 SASL EXTERNAL can be a very efficient mechanism to combine with a
 secure transport layer if that includes authentication. This may be
 the case for TLS, especially when client-side authentication is
 deployed. Mechanisms other than EXTERNAL should take into account
 that a relation may exist between identities negotiated in the
 protective layer and the SASL exchange over HTTP.

 Channel binding is available in some SASL mechanisms. When used with
 HTTP SASL over TLS, it binds to the TLS channel, by default using the
 type tls-unique [Section 3 of [RFC5929]]. When doing so, it is vital
 that either there be no renegotiation of the TLS handshake, or both
 secure renegotiation [RFC5746] and the extended master secret
 [RFC7627] are used.

5. IANA Considerations

 This specification extends the "Hypertext Transfer Protocol (HTTP)
 Authentication Scheme Registry" with an "Authentication Scheme Name"
 SASL, referencing this specification.

 This specification defines an additional entry in the registry
 "Generic Security Service Application Program Interface
 (GSSAPI)/Kerberos/Simple Authentication and Security Layer (SASL)
 Service Names" namely:

 Service Name: HTTP
 Usage: Web authentication using the SASL framework
 Reference: TBD:this specification

6. References

6.1. Normative References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616,
 DOI 10.17487/RFC2616, June 1999,
 <https://www.rfc-editor.org/info/rfc2616>.

https://datatracker.ietf.org/doc/html/rfc5929#section-3
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc7627
https://datatracker.ietf.org/doc/html/rfc2616
https://www.rfc-editor.org/info/rfc2616

Van Rein Expires May 12, 2019 [Page 10]

Internet-Draft HTTP SASL November 2018

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 DOI 10.17487/RFC4120, July 2005,
 <https://www.rfc-editor.org/info/rfc4120>.

 [RFC4422] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <https://www.rfc-editor.org/info/rfc4422>.

 [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
 Kerberos and NTLM HTTP Authentication in Microsoft
 Windows", RFC 4559, DOI 10.17487/RFC4559, June 2006,
 <https://www.rfc-editor.org/info/rfc4559>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <https://www.rfc-editor.org/info/rfc5056>.

 [RFC5554] Williams, N., "Clarifications and Extensions to the
 Generic Security Service Application Program Interface
 (GSS-API) for the Use of Channel Bindings", RFC 5554,
 DOI 10.17487/RFC5554, May 2009,
 <https://www.rfc-editor.org/info/rfc5554>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <https://www.rfc-editor.org/info/rfc5746>.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, DOI 10.17487/RFC5801,
 July 2010, <https://www.rfc-editor.org/info/rfc5801>.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
 <https://www.rfc-editor.org/info/rfc5929>.

https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4120
https://www.rfc-editor.org/info/rfc4120
https://datatracker.ietf.org/doc/html/rfc4422
https://www.rfc-editor.org/info/rfc4422
https://datatracker.ietf.org/doc/html/rfc4559
https://www.rfc-editor.org/info/rfc4559
https://datatracker.ietf.org/doc/html/rfc5056
https://www.rfc-editor.org/info/rfc5056
https://datatracker.ietf.org/doc/html/rfc5554
https://www.rfc-editor.org/info/rfc5554
https://datatracker.ietf.org/doc/html/rfc5746
https://www.rfc-editor.org/info/rfc5746
https://datatracker.ietf.org/doc/html/rfc5801
https://www.rfc-editor.org/info/rfc5801
https://datatracker.ietf.org/doc/html/rfc5929
https://www.rfc-editor.org/info/rfc5929

Van Rein Expires May 12, 2019 [Page 11]

Internet-Draft HTTP SASL November 2018

 [RFC6595] Wierenga, K., Lear, E., and S. Josefsson, "A Simple
 Authentication and Security Layer (SASL) and GSS-API
 Mechanism for the Security Assertion Markup Language
 (SAML)", RFC 6595, DOI 10.17487/RFC6595, April 2012,
 <https://www.rfc-editor.org/info/rfc6595>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7542] DeKok, A., "The Network Access Identifier", RFC 7542,
 DOI 10.17487/RFC7542, May 2015,
 <https://www.rfc-editor.org/info/rfc7542>.

 [RFC7615] Reschke, J., "HTTP Authentication-Info and Proxy-
 Authentication-Info Response Header Fields", RFC 7615,
 DOI 10.17487/RFC7615, September 2015,
 <https://www.rfc-editor.org/info/rfc7615>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <https://www.rfc-editor.org/info/rfc7627>.

6.2. Informative References

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, DOI 10.17487/RFC2617, June 1999,
 <https://www.rfc-editor.org/info/rfc2617>.

 [RFC4505] Zeilenga, K., "Anonymous Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4505,
 DOI 10.17487/RFC4505, June 2006,
 <https://www.rfc-editor.org/info/rfc4505>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <https://www.rfc-editor.org/info/rfc5705>.

 [RFC5785] Nottingham, M. and E. Hammer-Lahav, "Defining Well-Known
 Uniform Resource Identifiers (URIs)", RFC 5785,
 DOI 10.17487/RFC5785, April 2010,
 <https://www.rfc-editor.org/info/rfc5785>.

https://datatracker.ietf.org/doc/html/rfc6595
https://www.rfc-editor.org/info/rfc6595
https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7542
https://www.rfc-editor.org/info/rfc7542
https://datatracker.ietf.org/doc/html/rfc7615
https://www.rfc-editor.org/info/rfc7615
https://datatracker.ietf.org/doc/html/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://datatracker.ietf.org/doc/html/rfc2617
https://www.rfc-editor.org/info/rfc2617
https://datatracker.ietf.org/doc/html/rfc4505
https://www.rfc-editor.org/info/rfc4505
https://datatracker.ietf.org/doc/html/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://datatracker.ietf.org/doc/html/rfc5785
https://www.rfc-editor.org/info/rfc5785

Van Rein Expires May 12, 2019 [Page 12]

Internet-Draft HTTP SASL November 2018

 [RFC5802] Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,
 "Salted Challenge Response Authentication Mechanism
 (SCRAM) SASL and GSS-API Mechanisms", RFC 5802,
 DOI 10.17487/RFC5802, July 2010,
 <https://www.rfc-editor.org/info/rfc5802>.

 [RFC7804] Melnikov, A., "Salted Challenge Response HTTP
 Authentication Mechanism", RFC 7804, DOI 10.17487/RFC7804,
 March 2016, <https://www.rfc-editor.org/info/rfc7804>.

Appendix A. HTTP Server Environment Variables

 We define a number of variables that SHOULD be passed from an HTTP
 SASL stack to applications run on top of it. The intention of
 defining these is to obtain maximum interoperability between these
 layers of software.

 A common practice is to set environment variables with a given name
 to values that may be meaningful to applications. Those applications
 should be mindful about the possible meaning of absent variables.

 The following variables MAY be available in both the SASL
 authenticated and unauthenticated state:

 SASL_SITEVIEW refers to the user name in the URI and SHOULD NOT be
 used with a password. It refines the view on resources held by
 the web server, usually from a general site to one that is
 user-specific. The URI user is considered local to the web
 server (and, as a result of that, often its domain or security
 realm). This variable is only set when it is provided through
 the siteview field in the SASL exchange.

 SASL_VISITOR refers to self-identification of the client independent
 of authentication. Its general form is that of an email
 address, but its local part MAY be empty. This variable may be
 used to determine the domain against which the client intends
 to authenticate and, from that, the SASL mechanisms that can be
 offered.

 The following variables MUST NOT be available until SASL
 authentication is successful; it would be available when the server
 could send a 200 OK response:

 SASL_SECURE is only "yes" (without the quotes) when a client is
 authenticated to the current resource. It never has another
 value; it is simply undefined when not secured by SASL.

https://datatracker.ietf.org/doc/html/rfc5802
https://www.rfc-editor.org/info/rfc5802
https://datatracker.ietf.org/doc/html/rfc7804
https://www.rfc-editor.org/info/rfc7804

Van Rein Expires May 12, 2019 [Page 13]

Internet-Draft HTTP SASL November 2018

 SASL_REALM is the realm for which the secure exchange succeeded. A
 realm is not always used, because sites only need it when there
 are more than one in the same name space. When undefined in
 the SASL flow, this variable will not be set.

 SASL_CLIENTID is the identity as confirmed through SASL
 authentication. Its content is formatted like an email
 address, and includes a domain name. That domain need not be
 related to the web server; it is possible for a web server to
 welcome foreign clients.

 SASL_MECH indicates the mechanism used, and is one of the
 standardised SASL mechanism names. It may be used to detect
 the level of security.

 SASL_S2S holds the accepted s2s field, and could be used as a random
 session identifier. It would normally be encrypted
 information.

 SASL_S2S_ is a prefix for extra information that the server may
 extract from the s2s field in the HTTP SASL protocol flow.
 This depends on the authentication stack used in the web
 server.

Appendix B. Acknowledgements

 Thanks to Henri Manson for making the first implementation of this
 specification and for feedback on the header formats.

Author's Address

 Rick van Rein
 ARPA2.net
 Haarlebrink 5
 Enschede, Overijssel 7544 WP
 The Netherlands

 Email: rick@openfortress.nl

Van Rein Expires May 12, 2019 [Page 14]

