
Network Working Group R. Van Rein
Internet-Draft ARPA2.net
Intended status: Standards Track March 4, 2020
Expires: September 5, 2020

HTTP Authentication with SASL
draft-vanrein-httpauth-sasl-04

Abstract

 Most application-level protocols standardise their authentication
 exchanges under the SASL framework. HTTP has taken another course,
 and often ends up replicating the work to allow individual
 mechanisms. This specification adopts full SASL authentication into
 HTTP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 5, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Van Rein Expires September 5, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HTTP SASL March 2020

Table of Contents

1. Introduction . 2
2. Embedding SASL in HTTP 3
2.1. HTTP Request and Response Messages 4
2.2. Authentication Field Definitions 5
2.3. Caching Authentication Results 6

3. Server-Side User Name . 6
4. Authentication Session Example 7
5. Security Considerations 9
6. IANA Considerations . 10
7. References . 11
7.1. Normative References 11
7.2. Informative References 12

Appendix A. HTTP Server Environment Variables 13
Appendix B. Acknowledgements 14

 Author's Address . 14

1. Introduction

 HTTP has historically followed its own path for client
 authentication, while many other end-user protocols standardised on
 SASL; examples of SASL protocols include SMTP, IMAP, POP, XMPP, LDAP,
 AMQP and MQTT. This specification introduces SASL to HTTP, so it may
 share in past and future work done for SASL in general.

 Among the work that could be shared is backend authentication
 integration, which is possible due to protocol-independent SASL
 exchanges for any given method, making it easy to take them out of
 one protocol and inserting them into another. Although HTTP has
 adopted several SASL-compatible authentication methods, it uses
 various notations and so it still needs method-specific support at
 the HTTP level to translate them to a SASL backend.

 In front-ends, a similar situation has arisen. The varying syntaxes
 for authentication methods have made it difficult to rely on support
 in most or all HTTP clients. When such clients could externalise
 their SASL handling to generic software such as a SASL library, then
 any extension to a library automatically spills over into the HTTP
 sphere. It is common for developers of web clients to also produce
 email clients, so a shared code base (and credential store) is not
 difficult to imagine.

 Sharing of authentication mechanisms is beneficial in both
 directions. HTTP benefits by being able to use anything from strong
 password mechanisms [RFC5802] without explicit support [RFC7804] in
 applications, up to GS2 mechanisms [RFC5801] with channel binding
 [RFC5056] [RFC5554] to TLS [RFC5929] based on pinning either the

https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc7804
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5554
https://datatracker.ietf.org/doc/html/rfc5929

Van Rein Expires September 5, 2020 [Page 2]

Internet-Draft HTTP SASL March 2020

 certificate for the TLS server or even a unique part of the
 individual TLS connection; for instance Kerberos5 [RFC4120] currently
 uses Negotiate authentication [RFC4559] which is not as secure as
 GS2-KRB5-PLUS over SASL.

 SASL also benefits; had it been the norm for HTTP, then the work to
 pass SAML over it [RFC6595] would probably have been done
 immediately. In fact, HTTP can still benefit from receiving
 standardised SAML20 inquiries over SASL, because it resolves the need
 for configuration of initiation paths and practices. Also, it
 removes authentication data from URIs, where they are not ideally
 placed.

 In terms of security for HTTP applications, it appears beneficial to
 have very good authentication capabilities in the layers below the
 application; this is specifically true for applications developed in
 HTML and JavaScript, which tend to load code from various places,
 including code that is not always in the end user's interest; since
 it already is a concern what identity information passes through
 these applications, it is not advisable to use credentials in those
 places. The HTTP layer is in a better position to take control over
 these assets, at the protocol levels of HTTP and TLS, and conceal
 credentials and possibly also identity from applications running on
 top. Inasfar as tokens are needed, they can be derived from session
 keys using generally accepted key derivation schemes, but the session
 keys can be isolated from dynamic layers above HTTP.

2. Embedding SASL in HTTP

 This specification integrates the SASL framework [RFC4422] into
 mainstream HTTP [RFC7231], [RFC7232]. The SASL Authentication scheme
 follows the general structure for HTTP Authentication [RFC7235]. It
 uses the WWW-Authenticate and Proxy-Authenticate headers in responses
 from web servers and web proxies, respectively, and correspondingly
 the Authorization and Proxy-Authorization request header to answer to
 requests.

 The SASL service name for the following embedding of SASL is HTTP;
 contrary to most other service names, it is spelled in uppercase, in
 line with what has become general practice in Kerberos and GSSAPI.

 Since SASL prescribes channel binding to occur relative to TLS
 instead of to the application protocol, we can add that when the
 HTTPS transport is used. Whether channel binding is used SHOULD
 remain a configuration choice in HTTP software, as it might interfere
 with intentional HTTPS proxying. Unintended proxying on the other
 hand, might lead to tapping of credentials under certain SASL
 mechanisms, and it may be considered helpful to prevent such

https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc6595
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7235

Van Rein Expires September 5, 2020 [Page 3]

Internet-Draft HTTP SASL March 2020

 situations by relying on channel binding for at least those
 mechanisms.

2.1. HTTP Request and Response Messages

 This section defines a few names for HTTP request and response
 messages, to be used in the remainder of this specification.

 Initial Responses are HTTP responses that normally set a status code
 401 or 407, and that are sent when the HTTP server decides to
 initiate an authentication exchange. In addition, the server MAY
 send Initial Responses in other responses, to indicate to the client
 that it MAY try again to achieve better results [Section 4.1 of
 [RFC7235]].

 Initial Requests are those HTTP requests that a client sends to
 initiate a fresh SASL authentication. The identity SHOULD be
 selected by the user independently from the URI; prior settings MAY
 however be remembered by a client for the combination of resource
 authority (scheme, host and possibly a separately communicated
 resource user name) with the server-sent realm string. The server
 can support a mixture of client identities for various roles or
 access levels through variation of realm strings. There is no
 current practice of server-side resource names in HTTP, but the
 generic URI schema presents this logic and it is easy to imagine an
 HTTP User header that a client could support.

 Intermediate Responses are HTTP responses to SASL authentication,
 with a status code set to 401 or 407. Intermediate Requests are
 those HTTP requests that a client sends to continue a SASL
 authentication after an Intermediate Response.

 Positive Responses set a 200 status code to depict success.
 Information in this response is provided in an Authentication-Info or
 Proxy-Authentication-Info header [RFC7615] instead of the headers
 used in Initial Responses and Intermediate Responses [RFC7235].
 Proper interpretation of a Positive Response requires client state
 indicating that SASL authentication was used, or else the optional
 fields are not completely reliable information sources; cryptographic
 markers in the c2c field MAY be used to overcome this in a manner
 that defies abuse by rogue servers.

 Negative Responses also set a 401 or 407 status code and will often
 return the client to an earlier state that it recognises as one it
 has tried before. These responses should therefore offer
 authentication to start again. In contrast to the Initial Response,
 there is now a c2c field that helps the client evaluate the request.

https://datatracker.ietf.org/doc/html/rfc7235#section-4.1
https://datatracker.ietf.org/doc/html/rfc7235#section-4.1
https://datatracker.ietf.org/doc/html/rfc7615
https://datatracker.ietf.org/doc/html/rfc7235

Van Rein Expires September 5, 2020 [Page 4]

Internet-Draft HTTP SASL March 2020

 The following fields, defined in upcoming sections, MUST and MAY be
 present in HTTP authentication exchanges for SASL:

 Request or Response | MUST have fields | MAY have fields
 ----------------------+---------------------+----------------------
 Initial Response | s2s,mech | realm
 Initial Request | c2c,s2s,mech | c2s,realm
 Intermediate Response | c2c,s2s | s2c
 Intermediate Request | c2c,s2s | c2s
 Positive Response | c2c | s2s
 Negative Response | c2c,s2s,mech | realm

2.2. Authentication Field Definitions

 Data for SASL is transported in the following fields:

 c2s holds SASL token data from client to server. This field is
 transmitted with base64 encoding. The field is absent when the
 SASL client sends no token.

 s2c holds SASL token data from server to client. This field is
 transmitted with base64 encoding. The field is absent when the
 SASL server sends no token.

 s2s holds opaque server data which the client MUST reflect in
 Intermediate Requests. This is a necessity for a stateless
 HTTP Authentication framework [Section 5.1.2 of [RFC7235]]. It
 MAY be used in a Positive Response to pass a cacheable

Section 2.3 authentication token.

 c2c holds opaque client data which the server MUST reflect in
 Intermediate, Positive and Negative Responses. This can help
 to also make the client stateless.

 The following fields support SASL within the HTTP Authentication
 Framework:

 realm optionally names a scope of authorisation under the combination
 of scheme, server host name and possibly a HTTP user to
 implement the semantics of the generic URI username for
 resource selection. The realm does not necessarily match a
 domain name, which is used elsewhere as a realm notation.

 mech In an Initial Response, the field is filled with a space-
 separated list of SASL mechanism names; In an Initial Request,
 the client chooses one SASL mechanism name.

https://datatracker.ietf.org/doc/html/rfc7235#section-5.1.2

Van Rein Expires September 5, 2020 [Page 5]

Internet-Draft HTTP SASL March 2020

2.3. Caching Authentication Results

 When an HTTP server sends a Positive Response, it MAY include an
 "s2s" field. If it does this, then it should be prepared to accept
 the field value for authentication in an Initial Request. However,
 credentials can expire or fall in disgrace for other reasons, so the
 server MAY still choose to reject the provided field.

 When an HTTP client receives a Positive Response with an "s2s" field,
 it MAY memorise the fields for future reuse in an Initial Request,
 either with or without preceding Initial Response from the server.
 The HTTP client MUST use the realm as part of the decision which
 cached result to use, but it MAY extrapolate the results from one
 resource retrieval in an attempt to authenticate another.

 When cached fields result in a Negative Response then the HTTP client
 SHOULD remove the failing cache entry, and it SHOULD try again by
 going through a full SASL authentication cycle. The stateless nature
 of HTTP authentication is helpful in the sense that a new Initial
 Request can be sent to an older Initial Response.

3. Server-Side User Name

 HTTP does not define a mechanism to specifically select the user as
 an authoritative resource name space on the server. Local syntax
 conventions exist, but lack universally reliable semantics. Basic
 authentication has been used to this effect, but this conflates the
 client identity with the server-side name space, which is not
 necessarily the same.

 To allow HTTP servers to zoom in on user-specific information, the
 User header is hereby introduced. Its syntax matches the userinfo
 part of a URI, up to but excluding any colons in it:

 User = *(unreserved / pct-encoded / sub-delims)

 The value of the header MUST be percent-decoded before the server can
 use it to identify a local user.

 The User header MAY be sent by clients, and HTTP servers MAY ignore
 it for any reason, including local user identities that do not comply
 to a more restrictive local user name syntax.

 When an HTTP server makes use of the User header, it MUST include a
 Vary header in its response, with either a single "*" in it or the
 name "User". This informs caches that the response must be
 considered specific to the User header value in the matching request.

Van Rein Expires September 5, 2020 [Page 6]

Internet-Draft HTTP SASL March 2020

 The User header may be used with or without any form of
 authentication. When used with authentication, the value of the
 percent-decoded header is considered part of the authority component
 of the resource, and therefore of the naming scope for the realm.
 Clients can use this refined notion of realm to select an
 authentication identity; when the value is known early enough, this
 may even help to select an X.509 client certificate. Note that the
 User header might be used together with the aforementioned practice
 of Basic authentication, but it can also replace it with an even
 simpler mechanism to free up the authentication exchange for HTTP
 SASL.

 The distinction of a client-side user from a server-side user can
 benefit the use of credential schemes that are not tied to the HTTP
 server. A specific example of this is the current work on realm
 crossover with GS2-SXOVER-PLUS. The use of such a mechanism may
 offload security concerns from the application layer.

4. Authentication Session Example

 This section is non-normative.

 When an HTTP server receives a request for a protected page, it will
 send an Initial Response to ask for authentication with a special
 status code 401; for proxy access that would be 407, and header names
 change accordingly. Stripped down to the bare essentials, the server
 sends (this section adds whitespace for clarity)

 HTTP/1.1 401 Unauthorized
 WWW-Authenticate: SASL
 realm="members only"
 mech="SCRAM-SHA-256 SCRAM-SHA-256-PLUS
 SCRAM-SHA-1 SCRAM-SHA-1-PLUS
 GS2-KRB5-PLUS GS2-KRB5",
 s2s=[xxxxx]

 The server offers SCRAM-* and GS2-KRB5 mechanisms. The variants with
 -PLUS provide additional channel binding, to ensure that
 authentication is specific to the current HTTPS connection, thus
 avoiding replay of the session across connections. Clients aware of
 HTTP connections may use connection-specific channel binding (tls-
 unique) while those that abstract from the connections must resort to
 weaker name-based channel binding (tls-server-end-point).

 The server might have additionally offered the ANONYMOUS mechanism to
 allow the client to select "guest mode" access; the interaction would
 continue as authenticated, but presumably with limited access to HTTP
 resources and continued WWW-Authenticate headers to continue to offer

Van Rein Expires September 5, 2020 [Page 7]

Internet-Draft HTTP SASL March 2020

 authentication to improve resource information content. The server
 might have offered EXTERNAL to allow the client to incorporate a TLS
 credential for authentication and possibly change to an authorization
 identity. The server might have offered GS2-SXOVER-PLUS if it is
 willing to connect to the client's home realm over Diameter, and
 thereby support realm crossover of SASL credentials.

 The client initiates the SCRAM-SHA-256-PLUS mechanism, and to that
 end sends an Initial Request (this section shows square brackets
 instead of base64-encoding)

 Authorization: SASL
 realm="members only"
 mech="SCRAM-SHA-256-PLUS",
 c2s=[n,,n=user,r=rOprNGfwEbeRWgbNEkqO],
 s2s=[xxxxx],
 c2c=[qqqqq]

 This mechanism is initiated by the client, hence the inclusion of the
 c2s token in the Initial Request. The contents of this field are
 specific to the selected mechanism, so SCRAM-SHA-256-PLUS in this
 case.

 The SCRAM mechanism implementation is now initiated with the c2s
 token, and the server produces a followup challenge in a s2c token.
 To be able to validate future client messages against server-side
 state, it includes such state in an s2s token. This token is
 presumably protected from abuse with a signature and/or encryption,
 and it would likely identify the selected mechanism to validate
 during later rounds. The server packs all this in an Intermediate
 Response

 HTTP/1.1 401 Unauthorized
 WWW-Authentication: SASL
 s2c=[r=rOprNGfwEbeRWgbNEkqO%hvYDpWUa2RaTCAfuxF
 Ilj)hNlF$k0,s=W22ZaJ0SNY7soEsUEjb6gQ==,
 i=4096]
 s2s=[yyyyy],
 c2c=[qqqqq]

 Given that all server state is contained in this message, the client
 is free at any time to give up authentication and perhaps try another
 method. Normally however, it would proceed with the ongoing
 transaction. The client bounces state through the server in the c2c
 token, though it could be empty if a client manages state locally.
 Complex services however, would prefer the added signing and/or
 encryption of c2c in return for the benefit of decoupling the
 request/response state from the network connection.

Van Rein Expires September 5, 2020 [Page 8]

Internet-Draft HTTP SASL March 2020

 The SCRAM mechanism continues with another round. The client engages
 in the prescribed cryptographic computations and packs an
 Intermediate Request along with updated state in the new c2c token

 Authorization: SASL
 c2s=[c=biws,r=rOprNGfwEbeRWgbNEkqO%hvYDpWUa2RaTCAfuxFIlj)hN
 lF$k0,p=dHzbZapWIk4jUhN+Ute9ytag9zjfMHgsqmmiz7AndVQ=]
 s2s=[yyyyy],
 c2c=[rrrrr]

 When the client has performed authentication properly, as determined
 by a server-side check of the c2s response token with the prior state
 in the s2s token, it can send a Positive Response along with the
 requested resource

 HTTP/1.1 200 OK
 WWW-Authentication: SASL
 s2c=[v=6rriTRBi23WpRR/wtup+mMhUZUn/dB5nLTJRsjl95G4=]
 s2s=[zzzzz],
 c2c=[rrrrr]

 The s2s token in a Positive Response is an optional extension. It is
 presented by the server to allow the client to speed up
 authentication in future requests. The client may send it whenever
 the server asks for the same realm string under the same scheme and
 authority; the client may make proactive assumpions about the realm
 string for new requests. Authentication must never be reused in
 another context than bound by channel binding. When used, the client
 immediate sends an Intermediate Response holding

 Authorization: SASL
 realm="members only"
 s2s=[zzzzz],
 c2c=[sssss]

 The server always has an option to refuse repeated authentication and
 forcing the client into a new authentication round. One reason for
 this could be that a session timed out. Another might be that the
 client is trying to use a credential outside a scope set by channel
 binding.

5. Security Considerations

 It is not generally safe for SASL mechanisms to exchange c2s and s2c
 messages over unprotected transports. Furthermore, the SASL exchange
 may be at risk of tampering when the sequence of HTTP messages is not
 secured to form one stream. This means that a secure transport layer

Van Rein Expires September 5, 2020 [Page 9]

Internet-Draft HTTP SASL March 2020

 must be used, like TLS. The termination of such a secure layer MUST
 also terminate any ongoing SASL handshakes.

 The c2c and s2s fields MUST be protected against tampering by rogue
 peers, and such protection also protects against tampering by rogue
 intermediates when using an unprotected transport. In addition, but
 dependent on the mechanism used, the c2c and s2s fields may also need
 encryption to conceal their data from peers and intermediates.

 SASL EXTERNAL can be a very efficient mechanism to combine with a
 secure transport layer if that includes authentication. This may be
 the case for TLS, especially when client-side authentication is
 deployed. Mechanisms other than EXTERNAL should take into account
 that a relation may exist between identities negotiated in the
 protective layer and the SASL exchange over HTTP. For example, a
 login account may be exchanged for an alias or group identity.

 Channel binding is available in some SASL mechanisms. When used with
 HTTP SASL over TLS, it binds to the TLS channel, by default using the
 type tls-unique [Section 3 of [RFC5929]]. When doing so, it is vital
 that either there be no renegotiation of the TLS handshake, or both
 secure renegotiation [RFC5746] and the extended master secret
 [RFC7627] are used.

 The User header field as defined herein is orthogonal to issues of
 authentication and authorisation, and adds no security concerns.

6. IANA Considerations

 This specification extends the "Hypertext Transfer Protocol (HTTP)
 Authentication Scheme Registry" with an "Authentication Scheme Name"
 SASL, referencing this specification.

 This specification defines an additional entry in the registry
 "Generic Security Service Application Program Interface
 (GSSAPI)/Kerberos/Simple Authentication and Security Layer (SASL)
 Service Names" namely:

 Service Name: HTTP
 Usage: Web authentication using the SASL framework
 Reference: TBD:this specification

 The capitalisation of the service name has historic origins and is
 now the preferred spelling for reasons of compatibility.

 Please add the following entry to the Message Headers registry:

https://datatracker.ietf.org/doc/html/rfc5929#section-3
https://datatracker.ietf.org/doc/html/rfc5746
https://datatracker.ietf.org/doc/html/rfc7627

Van Rein Expires September 5, 2020 [Page 10]

Internet-Draft HTTP SASL March 2020

 Header Field Name Template Protocol Status Reference
 ------------------ --------- --------- ------- ----------
 User http TBD TBD:THIS_SPEC

7. References

7.1. Normative References

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 DOI 10.17487/RFC4120, July 2005,
 <https://www.rfc-editor.org/info/rfc4120>.

 [RFC4422] Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple
 Authentication and Security Layer (SASL)", RFC 4422,
 DOI 10.17487/RFC4422, June 2006,
 <https://www.rfc-editor.org/info/rfc4422>.

 [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
 Kerberos and NTLM HTTP Authentication in Microsoft
 Windows", RFC 4559, DOI 10.17487/RFC4559, June 2006,
 <https://www.rfc-editor.org/info/rfc4559>.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,
 <https://www.rfc-editor.org/info/rfc5056>.

 [RFC5554] Williams, N., "Clarifications and Extensions to the
 Generic Security Service Application Program Interface
 (GSS-API) for the Use of Channel Bindings", RFC 5554,
 DOI 10.17487/RFC5554, May 2009,
 <https://www.rfc-editor.org/info/rfc5554>.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,
 <https://www.rfc-editor.org/info/rfc5746>.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, DOI 10.17487/RFC5801,
 July 2010, <https://www.rfc-editor.org/info/rfc5801>.

https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4120
https://www.rfc-editor.org/info/rfc4120
https://datatracker.ietf.org/doc/html/rfc4422
https://www.rfc-editor.org/info/rfc4422
https://datatracker.ietf.org/doc/html/rfc4559
https://www.rfc-editor.org/info/rfc4559
https://datatracker.ietf.org/doc/html/rfc5056
https://www.rfc-editor.org/info/rfc5056
https://datatracker.ietf.org/doc/html/rfc5554
https://www.rfc-editor.org/info/rfc5554
https://datatracker.ietf.org/doc/html/rfc5746
https://www.rfc-editor.org/info/rfc5746
https://datatracker.ietf.org/doc/html/rfc5801
https://www.rfc-editor.org/info/rfc5801

Van Rein Expires September 5, 2020 [Page 11]

Internet-Draft HTTP SASL March 2020

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,
 <https://www.rfc-editor.org/info/rfc5929>.

 [RFC6595] Wierenga, K., Lear, E., and S. Josefsson, "A Simple
 Authentication and Security Layer (SASL) and GSS-API
 Mechanism for the Security Assertion Markup Language
 (SAML)", RFC 6595, DOI 10.17487/RFC6595, April 2012,
 <https://www.rfc-editor.org/info/rfc6595>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7232] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Conditional Requests", RFC 7232,
 DOI 10.17487/RFC7232, June 2014,
 <https://www.rfc-editor.org/info/rfc7232>.

 [RFC7235] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Authentication", RFC 7235,
 DOI 10.17487/RFC7235, June 2014,
 <https://www.rfc-editor.org/info/rfc7235>.

 [RFC7615] Reschke, J., "HTTP Authentication-Info and Proxy-
 Authentication-Info Response Header Fields", RFC 7615,
 DOI 10.17487/RFC7615, September 2015,
 <https://www.rfc-editor.org/info/rfc7615>.

 [RFC7627] Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,
 Langley, A., and M. Ray, "Transport Layer Security (TLS)
 Session Hash and Extended Master Secret Extension",

RFC 7627, DOI 10.17487/RFC7627, September 2015,
 <https://www.rfc-editor.org/info/rfc7627>.

7.2. Informative References

 [I-D.vanrein-dnstxt-krb1]
 Rein, R., "Declaring Kerberos Realm Names in DNS
 (_kerberos TXT)", draft-vanrein-dnstxt-krb1-09 (work in
 progress), October 2016.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, DOI 10.17487/RFC2617, June 1999,
 <https://www.rfc-editor.org/info/rfc2617>.

https://datatracker.ietf.org/doc/html/rfc5929
https://www.rfc-editor.org/info/rfc5929
https://datatracker.ietf.org/doc/html/rfc6595
https://www.rfc-editor.org/info/rfc6595
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://www.rfc-editor.org/info/rfc7232
https://datatracker.ietf.org/doc/html/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://datatracker.ietf.org/doc/html/rfc7615
https://www.rfc-editor.org/info/rfc7615
https://datatracker.ietf.org/doc/html/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://datatracker.ietf.org/doc/html/draft-vanrein-dnstxt-krb1-09
https://datatracker.ietf.org/doc/html/rfc2617
https://www.rfc-editor.org/info/rfc2617

Van Rein Expires September 5, 2020 [Page 12]

Internet-Draft HTTP SASL March 2020

 [RFC4505] Zeilenga, K., "Anonymous Simple Authentication and
 Security Layer (SASL) Mechanism", RFC 4505,
 DOI 10.17487/RFC4505, June 2006,
 <https://www.rfc-editor.org/info/rfc4505>.

 [RFC5802] Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,
 "Salted Challenge Response Authentication Mechanism
 (SCRAM) SASL and GSS-API Mechanisms", RFC 5802,
 DOI 10.17487/RFC5802, July 2010,
 <https://www.rfc-editor.org/info/rfc5802>.

 [RFC7804] Melnikov, A., "Salted Challenge Response HTTP
 Authentication Mechanism", RFC 7804, DOI 10.17487/RFC7804,
 March 2016, <https://www.rfc-editor.org/info/rfc7804>.

Appendix A. HTTP Server Environment Variables

 We define a number of variables that SHOULD be passed from an HTTP
 SASL stack (and from User header processing) to applications run on
 top of it. The intention of defining these is to obtain maximum
 interoperability between these layers of software.

 The following variables MUST NOT be available until SASL
 authentication is successful; it would be available when the server
 could send a 200 OK response:

 SASL_SECURE is only "yes" (without the quotes) when a client is
 authenticated to the current resource. It never has another
 value; it is simply undefined when not secured by SASL.

 SASL_REALM is the realm for which the secure exchange succeeded. A
 realm is not always used, because sites only need it when there
 are more than one in the same name space. When undefined in
 the SASL flow, this variable will not be set.

 REMOTE_USER is the client identity as confirmed through SASL
 authentication. Its content is formatted like an email
 address, and includes a domain name. That domain need not be
 related to the web server; it is possible for a web server to
 welcome foreign clients.

 SASL_MECH indicates the mechanism used, and is one of the
 standardised SASL mechanism names. It may be used to detect
 the level of security.

 SASL_S2S holds the accepted s2s field, and could be used as a random
 session identifier. It would normally be encrypted
 information.

https://datatracker.ietf.org/doc/html/rfc4505
https://www.rfc-editor.org/info/rfc4505
https://datatracker.ietf.org/doc/html/rfc5802
https://www.rfc-editor.org/info/rfc5802
https://datatracker.ietf.org/doc/html/rfc7804
https://www.rfc-editor.org/info/rfc7804

Van Rein Expires September 5, 2020 [Page 13]

Internet-Draft HTTP SASL March 2020

 SASL_S2S_ is a prefix for extra information that the server may
 extract from the s2s field in the HTTP SASL protocol flow.
 This depends on the authentication stack used in the web
 server.

 The following variable SHOULD be available while processing a request
 with a User header with locally acceptable syntax:

 LOCAL_USER gives the HTTP User header value after syntax checking
 and percent-decoding. If used at all, it MUST be treated as a
 resource name space selector. This header does not describe
 the authenticated client identity, which is usually passed in a
 variable REMOTE_USER.

Appendix B. Acknowledgements

 Thanks to Henri Manson for making the first implementation of this
 specification and for feedback on the header formats. The
 specification also benefited from input by Daniel Stenberg.

Author's Address

 Rick van Rein
 ARPA2.net
 Haarlebrink 5
 Enschede, Overijssel 7544 WP
 The Netherlands

 Email: rick@openfortress.nl

Van Rein Expires September 5, 2020 [Page 14]

