
Workgroup: Network Working Group

Internet-Draft: draft-vanrein-httpauth-sasl-05

Published: 28 January 2022

Intended Status: Standards Track

Expires: 1 August 2022

Authors: R. Van Rein

ARPA2.net

HTTP Authentication with SASL

Abstract

Most application-level protocols standardise their authentication

exchanges under the SASL framework. HTTP has taken another course,

and often ends up replicating the work to allow individual

mechanisms. This specification adopts full SASL authentication into

HTTP.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 1 August 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Table of Contents

1. Introduction

2. Embedding SASL in HTTP

2.1. HTTP Request and Response Messages

2.2. Authentication Field Definitions

2.3. Caching Authentication Results

3. Server-Side User Name

4. Authentication Session Example

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Appendix A. HTTP Server Environment Variables

Appendix B. Acknowledgements

Author's Address

1. Introduction

HTTP has historically followed its own path for client

authentication, while many other end-user protocols standardised on

SASL; examples of SASL protocols include SMTP, IMAP, POP, XMPP,

LDAP, AMQP and MQTT. This specification introduces SASL to HTTP, so

it may share in past and future work done for SASL in general.

Among the work that could be shared is backend authentication

integration, which is possible due to protocol-independent SASL

exchanges for any given method, making it easy to take them out of

one protocol and inserting them into another. Although HTTP has

adopted several SASL-compatible authentication methods, it uses

various notations and so it still needs method-specific support at

the HTTP level to translate them to a SASL backend.

In front-ends, a similar situation has arisen. The varying syntaxes

for authentication methods have made it difficult to rely on support

in most or all HTTP clients. When such clients could externalise

their SASL handling to generic software such as a SASL library, then

any extension to a library automatically spills over into the HTTP

sphere. It is common for developers of web clients to also produce

email clients, so a shared code base (and credential store) is not

difficult to imagine.

Sharing of authentication mechanisms is beneficial in both

directions. HTTP benefits by being able to use anything from strong

password mechanisms [RFC5802] without explicit support [RFC7804] in

applications, up to GS2 mechanisms [RFC5801] with channel binding

[RFC5056] [RFC5554] to TLS [RFC5929] based on pinning either the

certificate for the TLS server or even a unique part of the

¶

¶

¶

individual TLS connection; for instance Kerberos5 [RFC4120]

currently uses Negotiate authentication [RFC4559] which is not as

secure as GS2-KRB5-PLUS over SASL.

SASL also benefits; had it been the norm for HTTP, then the work to

pass SAML over it [RFC6595] would probably have been done

immediately. In fact, HTTP can still benefit from receiving

standardised SAML20 inquiries over SASL, because it resolves the

need for configuration of initiation paths and practices. Also, it

removes authentication data from URIs, where they are not ideally

placed.

In terms of security for HTTP applications, it appears beneficial to

have very good authentication capabilities in the layers below the

application; this is specifically true for applications developed in

HTML and JavaScript, which tend to load code from various places,

including code that is not always in the end user's interest; since

it already is a concern what identity information passes through

these applications, it is not advisable to use credentials in those

places. The HTTP layer is in a better position to take control over

these assets, at the protocol levels of HTTP and TLS, and conceal

credentials and possibly also identity from applications running on

top. Inasfar as tokens are needed, they can be derived from session

keys using generally accepted key derivation schemes, but the

session keys can be isolated from dynamic layers above HTTP.

2. Embedding SASL in HTTP

This specification integrates the SASL framework [RFC4422] into

mainstream HTTP [RFC7231], [RFC7232]. The SASL Authentication scheme

follows the general structure for HTTP Authentication [RFC7235]. It

uses the WWW-Authenticate and Proxy-Authenticate headers in

responses from web servers and web proxies, respectively, and

correspondingly the Authorization and Proxy-Authorization request

header to answer to requests.

The SASL service name for the following embedding of SASL is HTTP;

contrary to most other service names, it is spelled in uppercase, in

line with what has become general practice in Kerberos and GSSAPI.

Since SASL prescribes channel binding to occur relative to TLS

instead of to the application protocol, we can add that when the

HTTPS transport is used. Whether channel binding is used SHOULD

remain a configuration choice in HTTP software, as it might

interfere with intentional HTTPS proxying. Unintended proxying on

the other hand, might lead to tapping of credentials under certain

SASL mechanisms, and it may be considered helpful to prevent such

situations by requiring channel binding for those situations. HTTP

in general allows a user session to hop between connections, and

¶

¶

¶

¶

¶

browsers are likely to do this; to support this, the support of tls-

server-end-point channel binding [Section 4 of [RFC5929]] is

RECOMMENDED. Specific HTTP clients may exercise more control over

connections to achieve stronger security; for those use cases, tls-

unique channel binding [Section 3 of [RFC5929]] is RECOMMENDED.

Generic web servers SHOULD support both forms of channel binding.

2.1. HTTP Request and Response Messages

This section defines a few names for HTTP request and response

messages, to be used in the remainder of this specification.

Initial Responses are HTTP responses that normally set a status code

401 or 407, and that are sent when the HTTP server decides to

initiate an authentication exchange. In addition, the server MAY

send Initial Responses in other responses, to indicate to the client

that it MAY try again to achieve better results [Section 4.1 of

[RFC7235]].

Initial Requests are those HTTP requests that a client sends to

initiate a fresh SASL authentication. The identity SHOULD be

selected by the user independently from the URI; prior settings MAY

however be remembered by a client for the combination of resource

authority (scheme, host and possibly a separately communicated

resource user name) with the server-sent realm string. The server

can support a mixture of client identities for various roles or

access levels through variation of realm strings. There is no

current practice of server-side resource names in HTTP, but the

generic URI schema presents this logic and it is easy to imagine an

HTTP User header that a client could support.

Intermediate Responses are HTTP responses to SASL authentication,

with a status code set to 401 or 407. Intermediate Requests are

those HTTP requests that a client sends to continue a SASL

authentication after an Intermediate Response.

Positive Responses set a 200 status code to depict success.

Information in this response is provided in an Authentication-Info

or Proxy-Authentication-Info header [RFC7615] instead of the headers

used in Initial Responses and Intermediate Responses [RFC7235].

Proper interpretation of a Positive Response requires client state

indicating that SASL authentication was used, or else the optional

fields are not completely reliable information sources;

cryptographic markers in the c2c field MAY be used to overcome this

in a manner that defies abuse by rogue servers.

Negative Responses also set a 401 or 407 status code and will often

return the client to an earlier state that it recognises as one it

has tried before. These responses should therefore offer

¶

¶

¶

¶

¶

¶

c2s

s2c

s2s

realm

mech

authentication to start again. In contrast to the Initial Response,

there is now a c2c field that helps the client evaluate the request.

The following fields, defined in upcoming sections, MUST and MAY be

present in HTTP authentication exchanges for SASL:

2.2. Authentication Field Definitions

Data for SASL is transported in the following fields:

holds SASL token data from client to server. This field is

transmitted with base64 encoding. The field is absent when the

SASL client sends no token.

holds SASL token data from server to client. This field is

transmitted with base64 encoding. The field is absent when the

SASL server sends no token.

holds opaque server data which the client MUST reflect in

Intermediate Requests and, when responding to an Initial

Response, in the Initial Request. This is a necessity for a

stateless HTTP Authentication framework [Section 5.1.2 of

[RFC7235]]. It MAY be used in a Positive Response to pass a

cacheable Section 2.3 authentication token in a future Initial

Request.

The following fields support SASL within the HTTP Authentication

Framework:

optionally names a scope of authorisation under the

combination of scheme, server host name and possibly a HTTP user

to implement the semantics of the generic URI username for

resource selection. The realm does not necessarily match a domain

name, which is used elsewhere as a realm notation.

In an Initial Response, the field is filled with a space-

separated list of SASL mechanism names; In an Initial Request,

the client chooses one SASL mechanism name.

¶

¶

Request or Response | MUST have fields | MAY have fields

----------------------+------------------+-----------------

Initial Response | s2s,mech | realm

Initial Request | mech | c2s,realm,s2s

Intermediate Response | s2s | s2c

Intermediate Request | s2s | c2s

Positive Response | | s2s

Negative Response | s2s,mech | realm

¶

¶

¶

¶

¶

¶

¶

¶

2.3. Caching Authentication Results

When an HTTP server sends a Positive Response, it MAY include an

"s2s" field. If it does this, then it should be prepared to accept

the field value for authentication in an Initial Request. However,

credentials can expire or fall in disgrace for other reasons, so the

server MAY still choose to reject the provided field.

When an HTTP client receives a Positive Response with an "s2s"

field, it MAY memorise the fields for future reuse in an Initial

Request, either with or without preceding Initial Response from the

server. The HTTP client MUST use the realm as part of the decision

which cached result to use, but it MAY extrapolate the results from

one resource retrieval in an attempt to authenticate another.

When cached fields result in a Negative Response then the HTTP

client SHOULD remove the failing cache entry, and it SHOULD try

again by going through a full SASL authentication cycle. The

stateless nature of HTTP authentication is helpful in the sense that

a new Initial Request can be sent to an older Initial Response.

3. Server-Side User Name

HTTP does not define a mechanism to specifically select the user as

an authoritative resource name space on the server. Local syntax

conventions exist, but lack universally reliable semantics. Basic

authentication has been used to this effect, but this conflates the

client identity with the server-side name space, which is not

necessarily the same.

To allow HTTP servers to zoom in on user-specific information, the

User header is hereby introduced. Its syntax matches the userinfo

part of a URI, up to but excluding any colons in it:

The value of the header MUST be percent-decoded before the server

can use it to identify a local user.

The User header MAY be sent by clients, and HTTP servers MAY ignore

it for any reason, including local user identities that do not

comply to a more restrictive local user name syntax.

When an HTTP server makes use of the User header, it MUST include a

Vary header in its response, with either a single "*" in it or the

name "User". This informs caches that the response must be

considered specific to the User header value in the matching

request.

¶

¶

¶

¶

¶

User = *(unreserved / pct-encoded / sub-delims)¶

¶

¶

¶

The User header may be used with or without any form of

authentication. When used with authentication, the value of the

percent-decoded header is considered part of the authority component

of the resource, and therefore of the naming scope for the realm.

Clients can use this refined notion of realm to select an

authentication identity; when the value is known early enough, this

may even help to select an X.509 client certificate. Note that the

User header might be used together with the aforementioned practice

of Basic authentication, but it can also replace it with an even

simpler mechanism to free up the authentication exchange for HTTP

SASL.

The distinction of a client-side user from a server-side user can

benefit the use of credential schemes that are not tied to the HTTP

server. A specific example of this is the current work on realm

crossover with GS2-SXOVER-PLUS. The use of such a mechanism may

offload security concerns from the application layer.

4. Authentication Session Example

This section is non-normative.

When an HTTP server receives a request for a protected page, it will

send an Initial Response to ask for authentication with a special

status code 401; for proxy access that would be 407, and header

names change accordingly. Stripped down to the bare essentials, the

server sends (this section adds whitespace for clarity)

The server offers SCRAM-* and GS2-KRB5 mechanisms. The variants with

-PLUS provide additional channel binding, to ensure that

authentication is specific to the current HTTPS connection, thus

avoiding replay of the session across connections. Clients aware of

HTTP connections may use connection-specific channel binding (tls-

unique) while those that abstract from the connections must resort

to weaker name-based channel binding (tls-server-end-point).

The server might have additionally offered the ANONYMOUS mechanism

to allow the client to select "guest mode" access; the interaction

would continue as authenticated, but presumably with limited access

to HTTP resources and continued WWW-Authenticate headers to continue

to offer authentication to improve resource information content. The

¶

¶

¶

¶

HTTP/1.1 401 Unauthorized

WWW-Authenticate: SASL

 realm="members only"

 mech="SCRAM-SHA-256 SCRAM-SHA-256-PLUS

 SCRAM-SHA-1 SCRAM-SHA-1-PLUS

 GS2-KRB5-PLUS GS2-KRB5",

 s2s="[xxxxx]"

¶

¶

server might have offered EXTERNAL to allow the client to

incorporate a TLS credential for authentication and possibly change

to an authorization identity. The server might have offered GS2-

SXOVER-PLUS if it is willing to connect to the client's home realm

over Diameter, and thereby support realm crossover of SASL

credentials.

The client initiates the SCRAM-SHA-256-PLUS mechanism, and to that

end sends an Initial Request (this section shows square brackets

around text that is transmitted with base64-encoding)

This mechanism is initiated by the client, hence the inclusion of

the c2s token in the Initial Request. The contents of this field are

specific to the selected mechanism, so SCRAM-SHA-256-PLUS in this

case.

The SCRAM mechanism implementation is now initiated with the c2s

token, and the server produces a followup challenge in a s2c token.

To be able to validate future client messages against server-side

state, it includes such state in an s2s token. This token is

presumably protected from abuse with a signature and/or encryption,

and it would likely identify the selected mechanism to validate

during later rounds. The server packs all this in an Intermediate

Response

Given that all server state is contained in this message, the client

is free at any time to give up authentication and perhaps try

another method. Normally however, it would proceed with the ongoing

transaction.

The SCRAM mechanism continues with another round. The client engages

in the prescribed cryptographic computations and packs an

Intermediate Request along with updated state in the new c2s token

¶

¶

Authorization: SASL

 realm="members only"

 mech="SCRAM-SHA-256-PLUS",

 c2s="[n,,n=user,r=rOprNGfwEbeRWgbNEkqO]",

 s2s="[xxxxx]"

¶

¶

¶

HTTP/1.1 401 Unauthorized

WWW-Authentication: SASL

 s2c="[r=rOprNGfwEbeRWgbNEkqO%hvYDpWUa2RaTCAfuxF

 Ilj)hNlF$k0,s=W22ZaJ0SNY7soEsUEjb6gQ==,

 i=4096]"

 s2s="[yyyyy]"

¶

¶

¶

When the client has performed authentication properly, as determined

by a server-side check of the c2s response token with the prior

state in the s2s token, it can send a Positive Response along with

the requested resource

The s2s token in a Positive Response is an optional extension. It is

presented by the server to allow the client to speed up

authentication in future requests. The client may send it whenever

the server asks for the same realm string under the same scheme and

authority; the client may make proactive assumpions about the realm

string for new requests. Authentication must never be reused in

another context than bound by channel binding. When used, the client

immediate sends an Intermediate Response holding

The server always has an option to refuse repeated authentication

and forcing the client into a new authentication round. One reason

for this could be that a session timed out. Another might be that

the client is trying to use a credential outside a scope set by

channel binding.

5. Security Considerations

It is not generally safe for SASL mechanisms to exchange c2s and s2c

messages over unprotected transports. Furthermore, the SASL exchange

may be at risk of tampering when the sequence of HTTP messages is

not secured to form one stream. This means that a secure transport

layer must be used, like TLS. The termination of such a secure layer

MUST also terminate any ongoing SASL handshakes.

The s2s field MUST be protected against tampering by rogue peers,

and such protection also protects against tampering by rogue

intermediates when using an unprotected transport. In addition, but

dependent on the mechanism used, the s2s field may also need

encryption to conceal their data from peers and intermediates.

Authorization: SASL

 c2s="[c=biws,r=rOprNGfwEbeRWgbNEkqO%hvYDpWUa2RaTCAfuxFIlj)hN

 lF$k0,p=dHzbZapWIk4jUhN+Ute9ytag9zjfMHgsqmmiz7AndVQ=]"

 s2s="[yyyyy]"

¶

¶

HTTP/1.1 200 OK

WWW-Authentication: SASL

 s2c="[v=6rriTRBi23WpRR/wtup+mMhUZUn/dB5nLTJRsjl95G4=]"

 s2s="[zzzzz]"

¶

¶

Authorization: SASL

 realm="members only"

 s2s="[zzzzz]"

¶

¶

¶

¶

[RFC4120]

SASL EXTERNAL can be a very efficient mechanism to combine with a

secure transport layer if that includes authentication. This may be

the case for TLS, especially when client-side authentication is

deployed. Mechanisms other than EXTERNAL should take into account

that a relation may exist between identities negotiated in the

protective layer and the SASL exchange over HTTP. For example, a

login account may be exchanged for an alias or group identity.

Channel binding is available in some SASL mechanisms. When used with

HTTP SASL over TLS, it binds to the TLS channel. When doing so, it

is vital that either there be no renegotiation of the TLS handshake,

or both secure renegotiation [RFC5746] and the extended master

secret [RFC7627] are used.

The User header field as defined herein is orthogonal to issues of

authentication and authorisation, and adds no security concerns.

6. IANA Considerations

This specification extends the "Hypertext Transfer Protocol (HTTP)

Authentication Scheme Registry" with an "Authentication Scheme Name"

SASL, referencing this specification.

This specification defines an additional entry in the registry

"Generic Security Service Application Program Interface (GSSAPI)/

Kerberos/Simple Authentication and Security Layer (SASL) Service

Names" namely:

The capitalisation of the service name has historic origins and is

now the preferred spelling for reasons of compatibility.

Please add the following entry to the Message Headers registry:

7. References

7.1. Normative References

Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The

Kerberos Network Authentication Service (V5)", RFC 4120,

DOI 10.17487/RFC4120, July 2005, <https://www.rfc-

editor.org/info/rfc4120>.

¶

¶

¶

¶

¶

Service Name: HTTP

Usage: Web authentication using the SASL framework

Reference: TBD:this specification

¶

¶

¶

Header Field Name Template Protocol Status Reference

------------------ --------- --------- ------- ----------

User http TBD TBD:THIS_SPEC

¶

https://www.rfc-editor.org/info/rfc4120
https://www.rfc-editor.org/info/rfc4120

[RFC4559]

[RFC4422]

[RFC5056]

[RFC5554]

[RFC5746]

[RFC5801]

[RFC5929]

[RFC6595]

[RFC7231]

[RFC7232]

Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based

Kerberos and NTLM HTTP Authentication in Microsoft

Windows", RFC 4559, DOI 10.17487/RFC4559, June 2006,

<https://www.rfc-editor.org/info/rfc4559>.

Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple

Authentication and Security Layer (SASL)", RFC 4422, DOI

10.17487/RFC4422, June 2006, <https://www.rfc-editor.org/

info/rfc4422>.

Williams, N., "On the Use of Channel Bindings to Secure

Channels", RFC 5056, DOI 10.17487/RFC5056, November 2007,

<https://www.rfc-editor.org/info/rfc5056>.

Williams, N., "Clarifications and Extensions to the

Generic Security Service Application Program Interface

(GSS-API) for the Use of Channel Bindings", RFC 5554, DOI

10.17487/RFC5554, May 2009, <https://www.rfc-editor.org/

info/rfc5554>.

Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,

"Transport Layer Security (TLS) Renegotiation Indication

Extension", RFC 5746, DOI 10.17487/RFC5746, February

2010, <https://www.rfc-editor.org/info/rfc5746>.

Josefsson, S. and N. Williams, "Using Generic Security

Service Application Program Interface (GSS-API)

Mechanisms in Simple Authentication and Security Layer

(SASL): The GS2 Mechanism Family", RFC 5801, DOI

10.17487/RFC5801, July 2010, <https://www.rfc-editor.org/

info/rfc5801>.

Altman, J., Williams, N., and L. Zhu, "Channel Bindings

for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010,

<https://www.rfc-editor.org/info/rfc5929>.

Wierenga, K., Lear, E., and S. Josefsson, "A Simple

Authentication and Security Layer (SASL) and GSS-API

Mechanism for the Security Assertion Markup Language

(SAML)", RFC 6595, DOI 10.17487/RFC6595, April 2012,

<https://www.rfc-editor.org/info/rfc6595>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Semantics and Content", RFC

7231, DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Conditional Requests", RFC

https://www.rfc-editor.org/info/rfc4559
https://www.rfc-editor.org/info/rfc4422
https://www.rfc-editor.org/info/rfc4422
https://www.rfc-editor.org/info/rfc5056
https://www.rfc-editor.org/info/rfc5554
https://www.rfc-editor.org/info/rfc5554
https://www.rfc-editor.org/info/rfc5746
https://www.rfc-editor.org/info/rfc5801
https://www.rfc-editor.org/info/rfc5801
https://www.rfc-editor.org/info/rfc5929
https://www.rfc-editor.org/info/rfc6595
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231

[RFC7235]

[RFC7615]

[RFC7627]

[RFC5802]

[RFC7804]

[I-D.vanrein-dnstxt-krb1]

7232, DOI 10.17487/RFC7232, June 2014, <https://www.rfc-

editor.org/info/rfc7232>.

Fielding, R., Ed. and J. Reschke, Ed., "Hypertext

Transfer Protocol (HTTP/1.1): Authentication", RFC 7235,

DOI 10.17487/RFC7235, June 2014, <https://www.rfc-

editor.org/info/rfc7235>.

Reschke, J., "HTTP Authentication-Info and Proxy-

Authentication-Info Response Header Fields", RFC 7615,

DOI 10.17487/RFC7615, September 2015, <https://www.rfc-

editor.org/info/rfc7615>.

Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,

Langley, A., and M. Ray, "Transport Layer Security (TLS)

Session Hash and Extended Master Secret Extension", RFC

7627, DOI 10.17487/RFC7627, September 2015, <https://

www.rfc-editor.org/info/rfc7627>.

7.2. Informative References

Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,

"Salted Challenge Response Authentication Mechanism

(SCRAM) SASL and GSS-API Mechanisms", RFC 5802, DOI

10.17487/RFC5802, July 2010, <https://www.rfc-editor.org/

info/rfc5802>.

Melnikov, A., "Salted Challenge Response HTTP

Authentication Mechanism", RFC 7804, DOI 10.17487/

RFC7804, March 2016, <https://www.rfc-editor.org/info/

rfc7804>.

Rein, R., "Declaring Kerberos Realm Names in DNS

(_kerberos TXT)", Work in Progress, Internet-Draft,

draft-vanrein-dnstxt-krb1-09, 24 October 2016, <http://

www.ietf.org/internet-drafts/draft-vanrein-dnstxt-

krb1-09.txt>.

Appendix A. HTTP Server Environment Variables

We define a number of variables that SHOULD be passed from an HTTP

SASL stack (and from User header processing) to applications run on

top of it. The intention of defining these is to obtain maximum

interoperability between these layers of software.

The following variables MUST NOT be available until SASL

authentication is successful; it would be available when the server

could send a 200 OK response:

¶

¶

https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7232
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7235
https://www.rfc-editor.org/info/rfc7615
https://www.rfc-editor.org/info/rfc7615
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc5802
https://www.rfc-editor.org/info/rfc5802
https://www.rfc-editor.org/info/rfc7804
https://www.rfc-editor.org/info/rfc7804
http://www.ietf.org/internet-drafts/draft-vanrein-dnstxt-krb1-09.txt
http://www.ietf.org/internet-drafts/draft-vanrein-dnstxt-krb1-09.txt
http://www.ietf.org/internet-drafts/draft-vanrein-dnstxt-krb1-09.txt

SASL_SECURE

SASL_REALM

REMOTE_USER

SASL_MECH

SASL_S2S

SASL_S2S_

LOCAL_USER

is only "yes" (without the quotes) when a client is

authenticated to the current resource. It never has another

value; it is simply undefined when not secured by SASL.

is the realm for which the secure exchange succeeded. A

realm is not always used, because sites only need it when there

are more than one in the same name space. When undefined in the

SASL flow, this variable will not be set.

is the client identity as confirmed through SASL

authentication. Its content is formatted like an email address,

and includes a domain name. That domain need not be related to

the web server; it is possible for a web server to welcome

foreign clients.

indicates the mechanism used, and is one of the

standardised SASL mechanism names. It may be used to detect the

level of security.

holds the accepted s2s field, and could be used as a

random session identifier. It would normally be encrypted

information.

is a prefix for extra information that the server may

extract from the s2s field in the HTTP SASL protocol flow. This

depends on the authentication stack used in the web server.

The following variable SHOULD be available while processing a

request with a User header with locally acceptable syntax:

gives the HTTP User header value after syntax checking

and percent-decoding. If used at all, it MUST be treated as a

resource name space selector. This header does not describe the

authenticated client identity, which is usually passed in a

variable REMOTE_USER.

Appendix B. Acknowledgements

Thanks to Henri Manson for making the first implementation of this

specification and for feedback on the header formats. The

specification also benefited from input by Daniel Stenberg.

Author's Address

Rick van Rein

ARPA2.net

Haarlebrink 5

Enschede

¶

¶

¶

¶

¶

¶

¶

¶

¶

Email: rick@openfortress.nl

mailto:rick@openfortress.nl

	HTTP Authentication with SASL
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Embedding SASL in HTTP
	2.1. HTTP Request and Response Messages
	2.2. Authentication Field Definitions
	2.3. Caching Authentication Results

	3. Server-Side User Name
	4. Authentication Session Example
	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Appendix A. HTTP Server Environment Variables
	Appendix B. Acknowledgements
	Author's Address

