
Workgroup: Network Working Group

Internet-Draft: draft-vanrein-sublime-01

Published: 11 September 2022

Intended Status: Standards Track

Expires: 15 March 2023

Authors: R. Van Rein

OpenFortress.nl

Subliminal Messaging in Codecs (SubliMe)

Abstract

The backbone for telephony consists of a digital network that is

chiefly used for audio using the G.711 codec, which is also widely

supported in VoIP telephony. This specification defines Subliminal

Messaging as a general facility for opportunistic data exchange in

the noise levels of audio codecs, with profiles for the G.711, G.722

and CLEARMODE codecs. The data exchange can be used to negotiate

other codecs, UUID-identified services and call privacy/integrity.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 15 March 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. HDLC framing

2.1. HDLC in Bit-stealing Mode

2.2. HDLC in Byte-stealing mode

2.3. HDLC Frame Structure

2.4. Windowing and Acknowledgement

2.5. Fragmentation of User Data

2.6. Inner and Outer Stuff

3. Communication Procedures

3.1. XID :- Service Negotiation

3.1.1. XID :- Bootstrapping SubliMe

3.2. SABM, DISC :- Service Connections

3.3. SABM, DISC :- Switching between Stealing Modes

3.4. UI :- Unacknowledged Information

3.5. I :- Information

3.6. UP :- Polling for Progress Feedback

3.7. TEST :- Detection of Codec Mangling

3.8. Window Management and Acknowledgement Timing

4. Service Definitions

5. Cryptographic Framework

5.1. Null Cryptography

5.2. Counter Management Framework

5.3. Streaming Galois Counter Mode (SGCM)

5.4. AES128-SGCM Cryptography

5.5. Inner and Outer Cryptography

5.6. Uplink and Downlink Cryptography

5.7. Framing, Escaping and Bit-Stuffing under Encryption

5.8. Encryption Framework

5.8.1. Inner Encryption Framework

5.8.2. Outer Encryption Framework

5.9. Signature Framework

5.9.1. Signature Chaining

5.9.2. Inner Signature Framework

5.9.3. Outer Signature Framework

6. Security Considerations

7. IANA Considerations

Appendix A. Data in Codecs

A.1. Data in the CLEARMODE Codec

A.2. Data in the G.722 Codec

A.3. Data in the G.711 Codecs

Appendix B. Acknowledgements

Author's Address

¶

1. Introduction

Telephony continues to be an area of communication that is mostly

separate from the Internet. The addition of data transport, even if

just opportunistic in nature, can resolve that. Telephony was

traditionally an analog sound carrier and used analog modems to

achieve this, but it has evolved into a digital backbone dedicated

to the G.711 codec. Connectivity to this backbone is no longer real-

time and impairs the old mechanisms for data transport. However,

since codecs are digital, any part of its content is accurately

replicated, allowing the opportunistic injection of data into

codecs.

Codecs make use of sound properties to compress the audio signal,

but the quality is often high enough to allow for bits that mostly

reduce noise. These noise bits may alternatively be sacrificed to

transfer digital data. Such a choice would be opportunistic, and

care must be taken to validate any such data to distinguish it from

noise from existing devices.

The G.711 codec passes floating-point numbers, and the volume of the

mantisse bits are not always the same. A cut-off level may be

defined, and bits under that level can be replaced with data. Such

noise is audible, roughly to the level of a long-distance analog

call, to yield bitrates around 28800 bits/second. For the higher

quality G.722 codec, the lower 2 bits may be used for data to yield

a constant 16000 bits/second raw data rate.

The design of Subliminal Messaging is based on HDLC frames,

initially by stealing noise bearer bits from a codec and possibly

later by stealing the complete byte flow of a codec. Checksums can

detect compatibility beyond reasonable doubt. The address field in

HDLC is used to dispatch data to various UUID-identified services.

It is possible to transmit data in one direction only, such as in

the early media of a remote ringing cadence or alongside a voice

menu prompt.

HDLC starts under null encryption, but can run a key agreement

service and then continue new service connections under an actual

cryptographic mode. This adds authenticated encryption and service-

closedown signatures.

Along a telephony path, codecs may be translated. A supportive

translator may recognise Subliminal Messaging, take out the HDLC

data and insert it into the translation. This generally destroys the

ability to take over the entire codec byte stream, and there may be

a need to use HDLC flow control on the translator. But when HDLC

content is not otherwise modified, cryptographic assurances will

¶

¶

¶

¶

¶

pass through, and provide end-to-end security for the data portions

(but not the sound portions) of a call.

This approach for inclusion of data in a codec may be referred to as

SubliMe, and it may be pronounced as "sublime". This includes future

extensions that add bit-stealing and byte-stealing modes to more

codecs.

2. HDLC framing

At the start of a connection, the channel is not assuming HDLC

frames to be sent. For that to be considered, a first pattern to

recognise is BREAK or 1111111, so seven of more consecutive 1 bits.

Content is ignored until a FLAG marker 01111110 which starts the

first HDLC frame. After the last FLAG, a BREAK can be sent without

FLAG to return to the initial situation.

The switch from bit-stealing mode to byte-stealing mode or back is

determined by HDLC commands, as specified below. The same is true

for outer cryptography. Neither of these changes take immediate

effect; instead, they are deferred until the next BREAK. After that

has been sent, the channel makes the switch. A new BREAK should then

be sent, which may be followed by a FLAG and the first HDLC frame in

the new channel mode.

HDLC frames are inserted into codecs, initially using bit-stealing

mode, but with the option to take over the complete codec byte

stream in what will be called byte-stealing mode. The interpretation

of HDLC frames is the same in both modes, but codecs may represent

them completely differently.

Every HDLC frame is surrounded by FLAG markers. Two consecutive HDLC

frames may share one FLAG marker 01111110 as their separator. It is

also permitted to have no HDLC frame between to FLAG markers, so the

FLAG can be used as filling when no HDLC frames are ready to be

sent.

Before the first FLAG is accepted, the channel must send a BREAK

marker 1111111. After this, the first FLAG marker may follow. After

the last FLAG marker, another BREAK can be sent to return to the

state where HDLC is essentially not transmitting. When new HDLC

frames must be sent, another BREAK and FLAG can be sent. When BREAK

occurs in the middle of an HDLC frame it is silently ignored.

2.1. HDLC in Bit-stealing Mode

Codecs that inject data bits for SubliMe into their media flow are

said to work in bit-stealing mode. Encoding passes in a flow of

bits, possibly with variable timing. The decoder produces the same

flow of bits. The bits are not NRZI-encoded, because the codec does

¶

¶

¶

¶

¶

¶

¶

not constitute the actual transmission channel. The codec may

incorporate other encodings, though.

These bit flows are usually organised as synchronous HDLC, with bit-

stuffing to turn data 11111 into 111110, thereby making 0111110

usable as a FLAG and 111111... as a BREAK marker.

2.2. HDLC in Byte-stealing mode

It is possible to completely switch the byte stream of a codec to a

HDLC byte sequence. Any desire to pass audio must now be inserted

via a HDLC service. This allows use of the full bandwidth for data,

and only pass audio at a lower priority or in more compressed forms.

The environment that negotiated the original codec is not made aware

of this change; messaging with SubliMe is subliminal.

In byte-stealing mode, HDLC is organised as an asynchronous byte

flow. The FLAG is the fixed byte 0x7e, and any occurrence of that

byte in the data flow is escaped, as is the escape character and

anything else deemed useful. Escaping inserts the byte value 0x7d

and then passes the escaped byte XOR 0x40. Data bytes 0x7e are

passed as 0x7d 0x3e and the data bytes 0x7d are passed as 0x7d 0x3d.

2.3. HDLC Frame Structure

HDLC frames send a one-byte Command to a one-byte Address. Depending

on the Command field, there may be a use for a non-empty Information

field. The frame ends with a Check. Since it is transmitted between

FLAG sequences, the context provides framing and there is no need

for an explicit Length field.

Addresses are used by SubliMe to determine which service shall

process the HDLC frame. Addresses 0x00 through 0x7f are standardised

in a register, and 0x80 through 0xfe can be called for with a

service-specific UUID code. The othe end rejects unknown addresses.

Address 0xff is generally used as "you-know-who" address for the

remote end, but is more generally considered a broadcast address.

Address 0x00 is used to communicate "meta" aspects of SubliMe.

Commands are standardised, and classify as I-frames that pass

information with confirmation of reception, S-frames that pass

supervisory information for confirmations and flow control, and U-

frames that pass various kinds of unconfirmed information.

Certain commands carry details for windowing and flow control. I-

frames include a modulo-8 frame number sent, while both I-frames and

¶

¶

¶

¶

+---------+---------+-----//-----+---//---+

| Address | Command | Information| Check |

+---------+---------+-----//-----+---//---+

¶

¶

¶

¶

S-frames send a modulo-8 frame number to indicate the next frame

number that they expect to see from the other side. These are used

to allow a small window of frames in transit, and regularly

confirming them.

Information may be empty, and many HDLC frames require that. It is

the carrier for user data, in a form that should be defined for the

Address when registered, or for a UUID used to dynamically

allocating an Address. There is a maximum size for the Information

field, which means that fragementation may be needed when passing

user data in HDLC frames.

Check (formally the Frame Check Sequence) validates whether the

frame was transported without errors. The normal size of this field

is 16 bits or 32 bits. SubliMe uses 16 bits for S-frames, and 32

bits for I-frames and most U-frames.

SubliMe makes a few modifications relative to the HDLC standard.

Connections start with SABM and end with DISC, each causing a UA

response on success; in SubliMe, the positive response to SABM is

SABM and the response to DISC is DISC. SABM may carry salt or IV

values in an Information field as defined by cryptography, and DISC

may carry a long enough Check to enable cryptography to sign the

entire connection I-frames as sent in its direction.

2.4. Windowing and Acknowledgement

The sender and receiver handle a window of up to 8 HDLC frames per

Address, and indicate the progress on each end in various header

fields. These window updates work as acknowledgements, and are sent

in the header of an I-frame or S-frame. They are not included in U-

frames.

After connecting to a SubliMe service Address in async/balanced

mode, a receiver can actively send feedback. This is done with S-

frames named RR (receiver ready), RNR (receiver not ready), REJ

(reject) to request resends from the given window counter or SREJ

(selective reject) to request that a given frame is sent once more.

Codec translators aware of SubliMe may take HDLC frames from one

codec and inject it into another. This may lead to different

bandwidth for HDLC, and they may need to inject RNR and RR signaling

to Address 0x00, to pause and resume all flows of HDLC frames. This

is done under null encryption.

Confirmation of arrival is only possible when a reverse channel of

HDLC frames exists. This is not always the case, and it is still

possible to do meaningful things as long as (1) it is possible to

resend the data from the start because it is idempotent, and (2)

there is no Poll bit anywhere. Some situations make it attractive to

¶

¶

¶

¶

¶

¶

¶

send things blindly, for instance opportunistic attempts to share

data.

2.5. Fragmentation of User Data

Aside from its tasks relating to data link management, HDLC carries

user data. In doing so, it aims to respect the chunk sizes in which

this occurs. The maximum size of the Information field may call for

fragmentation of a chunk of user data over multiple HDLC frames.

2.6. Inner and Outer Stuff

There may be an outer codec and/or an inner codecs. Outer means that

it is transported outside of HDLC (more accurately, that it contains

the HDLC bits) and inner means that the codec is transported in HDLC

frames.

There is a choice between outer and inner cryptography, again

relative to the HDLC frames. Outer cryptography covers the entire

byte stream and protects both the outer codec and the HDLC frames.

Inner cryptography covers the contents of HDLC frames, including any

inner codecs but excluding the outer codec, if any.

In bit-stealing mode, these differences can be meaningful. In byte-

stealing mode, the difference is less pronounced, although HDLC

headers are not fully protected by inner cryptography but they are

with outer cryptography. But the more dramatic point is that inner

cryptography does not protect an outer codec.

3. Communication Procedures

HDLC is expressive and, like most uses, SubliMe uses only a subset.

Any commands not defined are ignored. In some cases where this

benefits protocol understanding, this is detailed below.

3.1. XID :- Service Negotiation

XID frames send a tentative service configuration for the target

Address. The peers locally combine these tentative frames to derive

the actual service configuration for the Address. Two empty XID

frames remove any existing service configuration from the Address.

When two tentative XID frames use a different UUID, then the lower

one prevails and the higher one can try again on another Address. An

empty XID in response to a tentative XID frame tells the recipient

to stop trying this UUID.

XID frames can be sent before a connection. When they are sent

during an open connection, they instantly update the interpretation,

which would be error-prone with data in the window. It may however

¶

¶

¶

¶

¶

¶

¶

¶

UUID:

Service Version:

General Flags:

MRU:

Service Parameters:

be useful in the beginning of a connection, to benefit from its

cryptographic mode.

XID frames may be sent to an Address that is or is not engaged in a

connection. Connections may offer better cryptographic modes than

null cryptography.

XID frames use a format local to SubliMe. They may be empty to

reject a service negotiation attempt, or otherwise consist of the

following byte sequence:

The service's UUID in 16 bytes. This identifies the service

to run at the targeted Address, and defines the samantics of any

data exchanged.

One byte with the major version in the high nibble

and the minor version in the low nibble, for the given UUID's

service. These are protocol versions, not software versions, so

they should be slow-changing. The major version signifies

incompatibility and the minor version is backward compatible.

Software may support multiple versions, as long as it avoids

degredation to an insecure version.

One byte with the following general flag bits, low

to high:

2 bits with the XID senders role (01=client, 10=server,

11=peer, 00=either)

1 bit to request large Information frames (2048 bytes)

instead of the default (256 bytes); not counting any bytes

inserted by cryptographic modes

4 bits reserved (send zero, do not interpret)

1 bit fixated to 0 to signal a local XID format

Unsigned 16-bit integer in network byte order to indicate the

maximum acceptable size for a user message to this service. When

higher than the maximum Information field size, then reassembly

will be done to form the user message. If not, bytes are sent to

the service in a continuous flow.

Every service may append to the XID bytes any

further flags and parameters. These may depend on the Service

Version, subject to compatibility concerns.

¶

¶

¶

¶

¶

¶

*

¶

*

¶

* ¶

* ¶

¶

¶

Service Flags:

Cryptographic Modes:

3.1.1. XID :- Bootstrapping SubliMe

SubliMe is an opportunistic protocol, so it must first be

discovered. This begins with looking for HDLC in bit-stealing mode

in the current codec, detecting a BREAK followed by a FLAG and valid

HDLC frames interspersed with FLAG bytes. Each HDLC frame have good

Check values. When this fails at any point, it needs to restart.

Once established, a full restart is not necesssary.

As soon as HDLC framing are recognised, each party sends an XID

frame to Address 0x00 to signal support for SubliMe.

One byte with Service Flags, from low to high:

1 bit to indicate support for outer cryptography; codec

translators reset this bit

1 bit to indicate support for inner cryptography

1 bit to insist on outer cryptography; codec translators

cannot be in the codec path

1 bit to request byte-stealing mode; codec translators may

support this but may need active flow control with RR and

RNR

4 bits reserved (send zero, do not interpret)

Listed in their one-byte representation. There

must be at least one, even if it is just null cryptrography. The

selected cryptographic mode for sending will be the first in this

list that is mentioned in the Cryptographic Modes listed in the

XID from the peer. The first of the Cryptographic Modes listed in

the peer's XID and that occurs in this list will be used for

reading.

¶

¶

Goal: SubliMe opportunistic service signaling

Name: sublime.0cpm.org

UUID: d14e63c6-3a3a-3b2b-8d9a-12140fa1b385

Pver: 1.0

Ustx: Full signatures on the most recent full second on the outer codec;

 UI commands may be transmitted to Address 0x00 without active connection.

Parm: Service Parameters bytes follow

Info: The outer codec is split into 1 second worth of samples, rounded down to an integer.

 This starts after the last BREAK. Before the next second, the signature must be

 transmitted to allow the other side to verify outer codec integrity.

¶

¶

*

¶

* ¶

*

¶

*

¶

* ¶

¶

3.2. SABM, DISC :- Service Connections

Service connections allow data communication for an Address and set

the currently keyed cryptographic mode. Connections are opened with

the SABM and closed with DISC. SABM is the first HDLC frame signed

with the cryptographic mode that it installs.

Unlike standard HDLC, the confirming response to the SABM command is

SABM. The negative response is DM. Standard SABM commands have no

Information field, but the cryptographic mode may use it for

parameters such as an initialisation vector. Both the cryptographic

mode and its parameters are separate choices on each side.

Unlike standard HDLC, the confirming response to the DISC command is

DISC. The negative response is DM. DISC commands have a longer Check

field than standard, with the cryptographic mode's signature for the

Information fields in preceding I commands.

Connection attempts with the other mode setting commands SM, SNRM,

SARM, SNRME, SARME and SABME are ignored because they are not

supported in this SubliMe version. The same applies to the RD

command, which is unused because both ends send DISC.

3.3. SABM, DISC :- Switching between Stealing Modes

All codecs start in bit-stealing mode, but when the outer codec is

not considered useful it may be beneficial to switch to byte-

stealing mode. These modes are defined by the codec, and the byte-

stealing mode can usually pass more, and never less, than the bit-

stealing mode.

To switch from bit-stealing mode to byte-stealing mode, send SABM to

Address 0x00; to switch back, send DISC to Address 0x00. Without

confirmation, it cannot be certain that the other side will follow

the change.

The actual change is not performed until a channel sends BREAK. The

break condition involves 7 bits valued 1, and after the byte holding

the last 1 bit, the channel switches to the other mode. The other

mode also starts with at least 7 bits valued 1, followed by a FLAG

and the next HDLC frame. Codecs can help by avoiding spurious FLAG

signaling in the intermediate time, as they might offer to do when

HDLC is off.

Codec translators may not be able to switch to byte-stealing mode,

or perhaps they are unwilling to engage in bit-stealing mode when

SubliMe is detected. They may inject or modify commands to signal

this while the channel is under null cryptography.

¶

¶

¶

¶

¶

¶

¶

¶

BREAK and FLAG signaling remains visible in encrypted HDLC. As a

result, the stealing mode can be switched under any cryptographic

mode. Bit-stealing mode selects inner or outer cryptography, while

byte-stealing mode can only use outer cryptography.

3.4. UI :- Unacknowledged Information

UI commands send-and-forget an Information field. The interpretation

of the Information field is determined by the service configuration

for the target Address. It is possible to send UI commands before or

after a connection, in that case using null encryption.

One possible use of UI commands is to pass inner codec bytes. The

cryptographic mode of the Address may protect the UI command.

3.5. I :- Information

I commands send user data in an Information field, possibly as part

of a larger message to a service. When the Information field length

is at least 256 then it is used to build up a user message up to the

peer's MRU. Otherwise, it is the final part of a user message.

The (combined) message is interpreted by the service as specified

for the service UUID from the last XID message sent to the target

Address.

I commandds are sent with an incremented window index number (modulo

8). The peer should confirm the reception, either piggybacked on its

I-frames or explicitly in an S-frames. The peer may also use S-

frames REJ, SREJ and RR to request resends (two forms) or to

acknowledge reception, and it may use RNR and RR to pause and resume

the flow of I frames. These facilities imply that the I command can

only be used inside a connection.

One possible use of I commands is to pass protocol data. The

cryptographic mode of the Address protects the I command.

3.6. UP :- Polling for Progress Feedback

As long as traffic is bidirectional, there are many opportunities

for feedback from the receiver to the sender, to acknowledge

progress of the window pointer up to N(R). This allows the sending

window pointer N(S) to move to this later position, thus freeing up

sending buffers.

Positive acknowledgement is given with RR, rejection of anything

beyond a window pointer is given with REJ. For individual missing

frames, selective rejection with SREJ may be sent, though that would

usually be done as soon as decoding of a hDLC frame fails.

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.7. TEST :- Detection of Codec Mangling

The standard behaviour of the TEST command in HDLC is to send back a

TEST with the same Information field. This makes it a suitable

candidate to see if the channel is mangled (and needs escapes on

certain codes). When mangling occurs, the Check will not match the

Information field and the response is not received. This means that

a few experiments can be sent, and the responses indicate bytes that

do not require escaping.

To test the codec, the TEST command is sent to Address 0x00. This

should be done in byte-streaming mode to obtain meaningful results.

Note that the TEST command may also be defined on other addresses,

which may relay it in a service-specific manner.

3.8. Window Management and Acknowledgement Timing

The window size in each direction is 8 entries, since the N(S) and

N(R) counters are 3 bits each, per direction. The percentage 12.5% *

((N(S) - N(R)) mod 8) shows how much of the window arrived but

was not acknowledged yet. Some care for the window timing in terms

of this percentage of the window is useful to keep data flowing:

At any time, when a full information frame is available, it

should be sent as an I-frame. HDLC framing then helps to simplify

the processing of user data messages, and this is broken by

combining those into one HDLC frame, except for continuous flows.

Between 25% and 50% of the window received, the timing is

suggesting to send back an I-frame for continuous flows. This

results in a reply rate that is a querter up to half of the

sending rate, suggesting that the interaction may slow down if

not hastened by other factors.

At 50% of the window received, the receiver may want to offload

the sender, and send feedback with RR. This would only be used

when no other interaction has taken care of it yet.

With 75% of the window sent, the sender may get a little

agitated, and request feedback with UP. This can help to receive

active feedback before the window is full.

At any time that a frame cannot be recognised, the recipient may

want to send SREJ. When the HDLC frame is encrypted, it will have to

guess that the Address matches the last frame that was properly

received, and the N(R) one higher than that frame. Since HDLC frames

do not change order, this can still be sufficient information in

situations where an Address change occurred, and redirect the resend

to the address following it. (That is not standard in HDLC, but

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

SubliMe happens to cover multiple addresses in one endpoint, even

with shared encryption.)

4. Service Definitions

Services should briefly state a purpose "Goal". They may use a DNS

"Name" as a source for UUID3, but the formal identifier can be any

"UUID". The protocol version "Pver" is required for clarity in

service versioning. If Service Parameters are used in XID, they

should be formalised in a "Parm" description. Inasfar as I and UI

frames are permitted, their Information fields combine to user

messages or to a continuous flow, whose grammar must be specified,

preferrably as (a reference to) a formal grammar, in "Istx" and

"Ustx" respectively. Inserted bytes for the cryptographic mode are

not included in the latter.

These aspects may be named as "Goal", "Name", "UUID", "Parm", "Ustx"

and "Istx". Any further semantics may be described in additional

"Info" field.

¶

¶

¶

Goal: Key agreement with TLS

Name: ietf-tls.sublime.0cpm.org

UUID: 1c469ae6-fb6b-3516-9689-d953e0513880

Pver: 0.0

Istx: One TLS record from the Handshake phase.

Info: When ClientHello messages meet, the one with the lower Random field

 will be the client. When the handshake succeeds, export a key with

 RFC 5705 using label "EXPORTER-SubliMe-cryptography"; it is used until

 another key agreement procedure succeeds.

¶

Goal: Key agreement with ARPA2 KIP

Name: arpa2-kipdoc-keyexch.sublime.0cpm.org

UUID: fb3abc9a-bd42-3db0-9458-c1955ea6df5d

Pver: 0.0

Istx: One KIP Document intended to share a key after remote peer authentication

Info: This allows key exchange in a KIP Document in general. This can

 be used, among others, for key exchange. The key is extracted

 after the receiving end authenticates to their KIP service.

¶

Goal: Inner codec transmission

Name: <one specific codec>

UUID: <codec UUID>

Pver: 0.0

Ustx: The raw bytes for the codec

Istx: One RTCP frame

¶

Goal: Sharing contact information

Name: ietf-vcard.sublime.0cpm.org

UUID: b038dd65-9d02-373d-92a2-d99bd6f625bb

Pver: 0.0

Istx: Textual, "vcard" grammar in Section 3.3. of RFC 6350.

¶

Goal: Calendaring actions

Name: ietf-itip.sublime.0cpm.org

UUID: 793fad76-3725-3c23-af8b-eb0dbce103d6

Pver: 0.0

Istx: Textual, formatted as in Section 3 of RFC 5545.

¶

Goal: Facsimile transmission

Name: itu-t38.sublime.0cpm.org

UUID: b0725c13-01d7-358d-b099-19fd72233c53

Pver: 0.0

Istx: One HDLC frame as defined in ITU T.38

¶

Goal: Realtime text communication

Name: itu-t140.sublime.0cpm.org

UUID: 6d7bf8a4-6054-318c-b3ab-0ebc41d54e3d

Pver: 0.0

Istx: Any number of whole characters as defined in ITU T.140

¶

Goal: Telephone-compliant Short Messaging

Name: org-smpp.sublime.0cpm.org

UUID: 818212af-821e-36ac-a61b-7369b6a44c15

Pver: 0.0

Istx: Continuous flow following the SMPP protocol

¶

Goal: Telephone-compliant Multimedia Messaging

Name: etsi-mms-mm4.sublime.0cpm.org

UUID: 269a5933-c9cf-3807-abf1-3af4804c2769

Pver: 0.0

 Istx: An email header and body, where every dot on the start of a line is

 prefixed with another dot, and the email is followed by a dot on a line

 of its own (like the input to the SMTP DATA command).

¶

Goal: Realtime interaction with XMPP

Name: ietf-xmpp.sublime.0cpm.org

UUID: 8affc68e-7819-3c18-864e-dcb888a26cbb

Pver: 0.0

Istx: One XMPP stanza as defined in RFC 6120

¶

5. Cryptographic Framework

The cryptographic framework adds authenticated encryption to HDLC.

This is used for end-to-end security, involving assurance of the

remote peer and integrity of its data.

5.1. Null Cryptography

Null cryptography is a mock cryptographic mode. it does not encrypt,

and uses CRC-16/6sub8 to form the Check field. It can detect

transport errors, but provides neither originator integrity nor

privacy.

Goal: Remote database access

Name: ietf-ldap.sublime.0cpm.org

UUID: a22ff2c0-b7f8-3f0c-897b-455fb14e8211

Pver: 0.0

Istx: One LDAPMessage as defined in RFC4511

Info: Note that LDAP may be used bidirectionally

¶

Goal: Document sharing by name

Name: community-zmodem.sublime.0cpm.org

UUID: c5375679-bc7a-3506-bcd3-f57fad341593

Pver: 0.0

Istx: Continuous flow adhering to Z-Modem specifications

¶

Goal: Remote text terminal

Name: arpa2-tty.sublime.0cpm.org

UUID: 55f0fbe1-c230-3430-944e-d24b68b05c18

Pver: 0.0

Istx: Continuous flow of UTF-8 bytes with mulTTY extensions

¶

Goal: Remote desktop access with VNC/RFB

Name: ietf-rfb.sublime.0cpm.org

UUID: 081a98f4-883f-3042-adbc-661c8e14ecf1

Pver: 0.0

Istx: One RFB protocol message as defined in Section 7 of RFC 6143

¶

Goal: Remote device control over Modbus

Name: org-modbus.sublime.0cpm.org

UUID: ecb81231-643a-39af-97bf-80f9b0f664e4

Pver: 0.0

Istx: One frame of Modbus TCP

¶

Goal: KIP Document exchange

Name: arpa2-kipdoc.sublime.0cpm.org

UUID: 7cc50f02-4d3b-36f2-8991-b964b0a31c49

Pver: 0.0

Istx: Streaming content forming a KIP Document.

¶

¶

¶

Responses:

Signature:

Information:

Null cryptography is always used outside of SABM/DISC connections,

but also inside connections when no keyed cryptographic mode was

available at the time that SABM is sent. Finally, codec translators

also use it to send RNR and RR to Address 0x00 to control a peer's

flow without knowing their key material.

Null cryptography uses the polynomial CRC-16/6sub8 which offers

HD(3) up to 2048 Information bytes and HD(5) up to 10 Information

bytes. Detected bit error rates may go up to 0.018% for 2048

Information bytes, 0.145% up to 256 and 18.75% when it is empty. The

polynomial for this checksum is x^16 + x^8 + x^4 + x^3 + x^1 + x^0.

Null cryptography is identified with code 0x00. In SABM, its

Information field is empty and DISC uses a Check with the same 32

bits as for other U-frames. UI, XID and UP have no initial bytes

inserted in their Information fields.

5.2. Counter Management Framework

Cryptographic modes may rely on unique counter values to be secure.

These values can be counted from 0 up for the exchange of SABM, I

and DISC, which may then be resent only in the exact same form.

Their orderly acknowledgement in HDLC allows an implicit counter

discipline for such frames.

UI-, XID- and UP-frames also use encryption when sent inside a

connection, but require different handling because the recipient may

be confused about counter values when they do not arrive. For those

frames, counting starts at the end, and lowered just enough to allow

encryption and signing of a frame to be sent. The resulting counter

value has a fixed size and will be inserted in the beginning of the

Information fields of these frames. Care must be taken that the

down-counter for UI and XID does not cross the up-counter for I. The

recipient may not allow counter values to go up, and it may lower

the boundary for that check once a lower counter value arrives with

a proper, non-overlapping signature.

Most commands used in a connection may trigger a response. When

allocating counter values, there are three areas to handle, in

order:

The bytes needed for Check field authentication for each

response separately. See response chaining below, also for the

order of appearance of these encryption bytes.

The bytes needed for Check field authentication for the

actual message.

The bytes needed to encrypt the Information field of

the message.

¶

¶

¶

¶

¶

¶

¶

¶

¶

5.3. Streaming Galois Counter Mode (SGCM)

This section defines a variation on Galois Counter Mode (GCM) for

streaming bytes and names it Streaming GCM, or SGCM. This is used by

SubliMe, both in null cryptography and in the AES128-SGCM

cryptographic mode.

Both GCM and SGCM use a block cipher to produce an XOR pad for

encryption. It is essential to use every byte in the XOR pad at most

once for any given key. This is established with the combined use of

a 96-bit IV a 32-bit counter value that counts up from 0 and down

from 4294967296 or 4294967295 and that must not overlap.

GCM derives a subkey from the encryption key by applying the block

cipher to an all-zero block. This key is used to drive a

multiplication in a Galois Field on as many bits as the block

cipher. Every data block is multiplied in this way and, if another

block follows, the output is XOR-ed with the next block before that

too is multiplied. The last block is always shuffled because there

is such a multiplication after it ends. SGCM uses a variation on GCM

multiplication, also for subkey derivation.

SGCM differs by not multiplying complete blocks, but it uses XOR on

one byte at a time, followed by a multiplication in a Galois Field

with 8 bits in the block cipher; the multiplicand is one byte from

the subkey, in a cyclic manner, plus 256 to avoid multiplication

with zero. At this point, the signature may be forked for extension,

or it may be finished here and now. In the latter case, an extra

full cycles through all the bytes of the subkey is made, continuing

like for normal bytes; this ensures that the last data byte is also

shuffled by all the bytes matching the subkey.

As a result treating a byte at a time, there is no need for padding,

and the disturbance varies unpredictably between the various

positions. This means that no explicit insertion of the number of

bits in the message is required.

GCM can start with additional data before it takes encrypted data

into account. The additional data is multiplied as plaintext bytes

and the remainder as encrypted bytes. The separation point is

incorporated into the authenticated multiplication. Since the logic

of HDLC and SubliMe also indicates where plaintext and encrypted

bytes toggle, this strict separation and singular ordering is not

useful; the explicit inclusion of messages sizes if forgeone in SGCM

and considered a responsibility of the secured stream, which is met

for the HDLC approach defined herein.

Both GCM and SGCM derive their final authentication tag by XOR-ing

the repeated multiplication result with the first block from the

¶

¶

¶

¶

¶

¶

counted cipher to produce the final authentication tag. For

authenticated encryption in HDLC, the most significant 32 bits of

this value are shared in the Check field. The cryptographic

assurance is around 2^(32-n) for a message of size 2^n, so around

2^-24 for 256 byte messages and around 2^-21 for 2048 bytes.

As long as the authententication tag does not reuse XOR pad bytes,

it is possible to continue the multiplication, even in a manner that

forks between alternatives. The multiplication (with blocks or

bytes) serves to separate data elements, but the security derives

from the unique XOR pad. It is required to shuffle bits before

applying this XOR pad, so forks in SGCM start after a one-byte

multiplication and before further perturbation.

5.4. AES128-SGCM Cryptography

AES128-SGCM uses AES128 as a block cipher in SGCM mode. The

cryptographic mode is idenitified with code 0x01. In SABM, the

Information field carries an initialisation vector of 96 bits and

DISC carries a Check field with the full 128 bit signature. UI, XID

and UP frames within an encrypted connection start with a 32-bit

down-counter value.

UI, XID and UP commands start from the previously lowest counter and

subtract the rounded-up number of blocks to cover the encryption of

the Information and Check fields. The initial counter is set to

4294967296 or 4294967295.

SABM commands start a 32-bit upward counter at 0 and each

consecutive signature I command adds to this counter the rounded-up

number of blocks needed for Information and Check fields. The DISC

command continues after the last I command.

All allocations of counter blocks are required to ensure that the

down-counter for UI, XID and UP never drops below the up-counter for

SABM, I and DISC.

5.5. Inner and Outer Cryptography

When codec translation is required on the communication path, then

not all security properties can be resolved. Note however that

switching between A-law and μ-law can be handled without this

damage, by taking mangling into account.

Outer cryptography involves encryption and signing of the entire

codec. The signature is passed in HDLC frames, both in bit-stealing

mode and byte-stealing mode. Signatures are 32 bits long, so they do

not have cryptographic assurance on their own, but chaining of I-

frames works like a thread that increases assurance up to 128 bit in

¶

¶

¶

¶

¶

¶

¶

the last frame. The final DISC includes a full signature as defined

by the cryptographic mode.

Inner cryptography involves encryption and signing for HDLC frames.

This is always possible, even with codec translation in place. It

does not protect the codec into which bit-stealing mode injects,

however, and that should be signaled to the user. Using UI frames,

it is possible to send inner sound as part of HDLC, so it is secure.

The choice between inner and outer cryptography is made while

bootstrapping SubliMe with XID to Address 0x00. This is

independently done for both directions. The flag to insist on outer

cryptography always causes outer crypto, even if this breaks a codec

translator, because anything else would be supportive of a downgrade

attack. When both sides agree to byte-stealing mode, that switch is

made first. Codec translators should not pass the XID to Address

0x00 if it insists on outer crypto, but either it does not ask for

byte-stealing mode or the codec translator cannot offer that. Codec

translators should can safely pass the inner cryptography flag,

provided that they take the HDLC frames out from the incoming codec

and inject it into the outgoing codec.

5.6. Uplink and Downlink Cryptography

In his theory of special relativity, Einstein explains that there

can be no notion of two things happening at the same time in

different locations. The SABM connections cause precisely this kind

of problem, making it generally impossible to order the frames sent

from either end. The two directions of frames therefore send

independent frame sequences.

Accommodating this, the crypto used is independently set for each of

the directions. Bootstrapping with XID to Address 0x00 has

established what cryptographic modes may be used, and connections to

an key agreement Address guides the choice of key exchange, but keys

may be setup separately in each direction. It is possible to use one

key exchange phase to derive two keys separately, but it is also

possible to start another key exchange, for instance to extend

single-sided authentication into mutual authentication.

Having independent crypto in each direction helps to switch it on or

off more elegantly. This coincides with the (theoretic) option to

use different codecs in each direction. It also matches the idea

that codecs independently switch between bit-stealing mode and byte-

stealing mode after agreeing on it with SABM and DISC commands sent

to Address 0x00.

¶

¶

¶

¶

¶

¶

5.7. Framing, Escaping and Bit-Stuffing under Encryption

There is no length field in HDLC because it surrounds frames with a

FLAG and escaping or bit-stuffing similar patterns inside it. The

frame boundaries remain in plaintext, and the same is true for bit-

stuffing in bit-stealing mode, and for escaping in byte-stealing

mode.

This means that before encryption and after decryption, the HDLC

frame has no internal escaping for SubliMe to take care of.soso

These are transport modifications only, and indeed dependent on

whether the transport is based on bit-stealing mode or byte-stealing

mode.

HDLC also defines a BREAK, which is evaded by the same practice of

bit-stuffing or escaping. This also sites outside of the encryption,

and it is used to switch the codec to the desired mode, if it was

recently changed by commands exchanged inside the encryption layer.

5.8. Encryption Framework

The cryptographic mode organises most of the nuts and bolts of

encryption. This specification only clarifies the areas that are

encrypted, and how traffic in transit may connect to encryption.

Encryptionn can be implemented as inner or outer cryptography. While

XID bootstrapping to Address 0x00, the options are set to choose the

variant that will be used. They are not both employed, but the

choice is made separately for the uplink and downlink.

5.8.1. Inner Encryption Framework

Inner encryption applies to the HDLC frame format only. It does not

protect the outer codec. It produces the same results in bit-

stealing mode and byte-stealing mode.

The Address and Command fields are not encrypted. When the Address

is dynamically allocated, its service negotation may however be

concealed by running XID in a connection with a cryptographic mode.

5.8.2. Outer Encryption Framework

In byte-stealing mode, outer encryption coincides with inner

encryption. In bit-stealing mode, outer encryption involves

encryption of the codec as well as the bits stolen to pass HDLC

frames.

Outer encryption makes codec translation impossible, so it may be

disabled by an intermediate. To protect against that, the XID to

¶

¶

¶

¶

¶

¶

¶

¶

Address 0x00 may insist on outer encryption. If this creates an

impasse, then byte-stealing mode is a way out.

Outer encryption is a steam cipher applied to the codec bytes

between the transmission channel and the detection of FLAG and BREAK

signals, as well as HDLC frame bits. Outer encryption will be

updated to the desired setting after a BREAK is sent out via the

codec in the old format. After the BREAK, the switch is made and

scanning for a FLAG continues in the new format. It is recommended

to send an extra BREAK in the new format to facilitate

synchronisation.

5.9. Signature Framework

The cryptographic mode organises most of the nuts and bolts of

signing. This specification only clarifies the areas that are

signed, and how traffic in transit may connect to signatures.

All HDLC frames need a Check, and this constitutes an inner

signature, which is always present. When outer crypto is used, there

will additionally be UI frames sent to Adress 0x00 with the

signature for the outer codec.

Signatures work on the Address, Command and Information fields, not

the Check field. Before signing, the Information field is encrypted

and the signed fields are escaped by replacing bytes 0x7d..0x7f with

an escape 0x7d and the original byte XOR 0x40.

5.9.1. Signature Chaining

HDLC frames can be chained, with an unescaped 0x7e FLAG between

their escaped content-for-signing. The Check fields are not

incorporated into signatures and there shall be no initial or

trailing FLAG byte, just separating FLAG bytes. Signatures chaining

can be efficient if it uses a forking point in the cryptographic

mode.

Certain HDLC commands may trigger a response, which should be part

of the security framework, both for reasons of privacy (encryption

¶

¶

¶

¶

¶

¶

Command Data chaining Response chaining

--------+---------------+-------------------

XID | - | -

TEST | - | -

SABM | - | DM

DISC | SABM, I* | DM

I | SABM, I* | RR, RNR, REJ, SREJ

UP | - | RR, REJ, SREJ

UI | - | -

¶

of the Address and connection progress) and for authentication

(actually being entitled to respond).

All these responses at the HDLC level are chained to the signature

for the command with an intermediate FLAG byte. There may also be a

need to allocate counter values for this purpose.

Besides response chaining, there is also a signature chain per

connection direction, again based on FLAG separator bytes. This

chain starts with the SABM command, includes all sent I frames and

the final DISC command. Unconfirmed I frames may lead to confusion;

the UP command and resends should be done before signing for the

whole connection with DISC.

Connection chaining does not incorporate the responses in the chain;

response chaining works like forks from the connection chain.

Resends also are concealed from the connection chain, which is

possible as long as the encrypted HDLC frame is literally sent in

the same manner. The result is a connection chain that indicates the

setup, data exchange and teardown of an entire connection, as seen

from one side.

Connections use the same chaining mechansim from the cryptographic

mode as used for responses. There will be no need to allocate

counter values for connection chaining.

5.9.2. Inner Signature Framework

Inner signatures add the Check value to HDLC frames. This is always

done. During outer cryptography, the unencrypted HDLC frames are

signed before they are encrypted. During inner cryptography, the

HDLC frame is encrypted and may be signed in encrypted or plaintext

form, as defined by the cryptographic mode. For null cryptography,

this is makes no difference because the encrypted content equals the

plaintext.

Signing starts together with encryption, unless there is a reason

for chaining, namely connection chaining or response chaining. Note

that response chains may branch off from a connection chain, as

described above.

5.9.3. Outer Signature Framework

Outer signatures are sent if and only if outer cryptography is used,

as a result of XID bootstrapping via Address 0x00. It coincides with

outer encryption. Null cryptography does not count as "cryptography

is used", and no outer cryptography is applied. This protects from

permissible phenomenons during the setup process, such as

modifications by codec translators and synchronisation problems at

the start of communication.

¶

¶

¶

¶

¶

¶

¶

¶

Outer signatures start with the first byte that is also subjected to

outer encryption, so right after detection of a BREAK marker.

Signatures are sent over 1 second worth of outer codec, where the

number of samples per second from the official documentation is

used, rounded down if necessary. For G.711 and G.722 this would mean

that every sequence of 8000 samples is signed.

The signature is made over those samples in isolation, so the line

can recover from temporary bursts, showing only a glitch in the line

assurances. Such bursts may be signaled with flashing lights and/or

audible tones, and it is not helpful if such distractions continue

as a result of resilient line problems.

Some codecs are subjected to mangling, which bit-stealing mode

corrects for. If this is the case, then the mangled bits are set to

0 for the purpose of computing the signature.

The full signature from the cryptographic mode is sent in the

Information field of a UI frame targeted at Address 0x00. Note that

HDLC will add its own checksum as well.

6. Security Considerations

SubliMe is an opportunistic protocol and must be actively negotiated

over an existing protocol. As a result, it is sensitive to denial-

of-service attacks. This may interfere, among others, with the

privacy and integrity of call data. It is helpful to communicate

these desirable properties explicitly to the user.

Service connections may be open before key agreement succeeds. Such

services would not be protected. If software is not explicit about

such distinctions, then wrongful security assumptions may be made.

Where security is a requisite, the advised approach is to suppress

XID negotiation until a suitable security mode for the respective

service has been achieved.

Sound snippets are signed independently, without connecting

information. This helps the sound to recover after problems, but it

also subjects the audio stream to replay of sound, and order

changes.

When I frame transmission fails for some reason, the security mode

may not be able to close the DISC message with a desirable

signature.

7. IANA Considerations

There is no registration task for IANA. Services are identified with

UUIDs and a documentation format is suggested, but their publication

¶

¶

¶

¶

¶

¶

¶

¶

¶

is the responsibility of service authors who aim for general

acceptance.

Appendix A. Data in Codecs

Codecs usually pack analog or complex data in a lossy manner in

accurately transported byte sequences. By playing with the noise

level, the bit-stealing mode can be added. And when requested, the

entire byte flow of a codec might be claimed for HDLC frame

transport. The manner in which this is done is specific to a codec.

This appendix is normative.

A.1. Data in the CLEARMODE Codec

Where available, the RFC4040 RTP type for audio/clearmode may be

used to negotiate a completely undisturbed 64 kb/s channel. The link

to PSTN is described in ITU Q.1912.5 so telecom providers may indeed

facilitate it.

Clearmode channels are not subjected to mangling, and so the

provisions that skip the lowest bit will not be used. In fact, since

there are no defined sound semantics, the bandwidth can be

completely used for HDLC transport.

Although the channel starts in bit-stealing mode and considers that

a different setting from byte-stealing mode, there is no practical

difference. The full 8 bits per byte are available, without

mangling, so its implementation of bit-stealing does not work with

bit stuffing but with the same escaping mechanism (for FLAG, BREAK

and escape bytes within HDLC frames) as for byte-stealing mode.

Clearmode offers no outer codec, but is open to inner codecs.

Bytes are XOR-ed with 0x55 for transport. This helps to set lots of

transitions in zero content, and since this is an interface to a

digital telephony backbone that is useful.

A.2. Data in the G.722 Codec

In byte-stealing mode, the entire G.722 codec would be considered a

transport layer for bytes, just like CLEARMODE. It would escape

bytes for FLAG, BREAK and escape inside HDLC frames.

¶

¶

¶

¶

CLEARMODE byte

 .xxxxxxxx Legend:

 x = Clearmode bit dedicated to data

 . = Noise level separator

¶

¶

¶

¶

¶

¶

In bit-stealing mode, the least-valued 2 bits of each sample are

used for data. This is explicitly permitted by the G.722

specification, without indications of a particular purpose. These

bits represent finer details that may be replaced by arbitrary data.

They are used as HDLC bits, where the higher-valued bit comes before

the lower-valued bit.

It is not sufficient to combine 4 consecutive blocks of 2 bits to

form a byte; firstly because synchronisation of the byte start would

be difficult, and secondly because bit stuffing would end up being

awkward. Instead of taking this approach, bit-stealing mode for G.

722 will consider the least-valued 2 bits in every sample just like

for the G.711 form with 2 data bits. This may also improve code

sharing.

Mangling does not occur in G.722 because it runs over a CLEARMODE

channel, as ITU Q.1912.5 suggests. This means that no provisioning

is needed for the lower words. Indeed, mangling is a G.711

phenomenon.

Bytes are XOR-ed with 0x55 for transport. This helps to set lots of

transitions in zero content, and since this is an interface to a

digital telephony backbone that is useful.

A.3. Data in the G.711 Codecs

Even though ISDN is going or gone for subscriber lines, it still

forms a vital part of the telephony backbone and, because its codecs

are rigidly enforced, the more flexible VoIP systems have all

adapted to include A-law and μ-law, the two forms defined in G.

711.

The G.711 codec used in SubliMe is A-law only. There are predefined

translations between A-law and μ-law and back, and no matter

how often this is used the mangling of codec bytes that it causes is

known and constant. The reason to choose A-law only is that it

retains detail in the lower bits during such translations, which is

where we can transmit most of our data. Mangling of samples occurs

in the higher values, but this is less damaging to the transmission

of data in the codec.

¶

G.722 byte

 zzzzzz.xx Legend:

 z = G.722 bit dedicated to audio

 x = G.722 bit dedicated to data

 . = Noise level separator

¶

¶

¶

¶

¶

¶

In byte-stealing mode, the codec carries HDLC frame bytes directly

as codec data, but it should be mindful that some of the A-law bytes

may translate to one μ-law byte and back to one A-law byte; one

of the original A-law values is then mangled. These mangles values

should be sent with escaping if it is unknown whether this may occur

on the communications channel. This may be tested for explicitly, by

sending a TEST command to Address 0x00 and checking the response.

In bit-stealing mode, the exponent determines how far the mantisse

is shifted. The insertion of a fixed point in the actual samples

shows where SubliMe makes a cut-off between audio content above and

under the noise level. The bits under the noise level are stolen to

carry the HDLC bit flow, in the direction from most to least

significant bit.

A-law output | μ-law output | A-law output | Mangled

-------------+--------------+--------------+---------

 25, 26 | 32 | 25 | 26

 27, 28 | 33 | 27 | 28

 29, 30 | 34 | 29 | 30

 31, 32 | 35 | 31 | 32

 45, 46 | 48 | 46 | 45

 47, 48 | 49 | 48 | 47

 63, 64 | 64 | 64 | 63

 79, 80 | 79 | 79 | 80

TODO:CAPTION: Some A-law codec bytes are mangled by the transition

to μ-law and back. Sign was removed in the byte values. The bytes

are the wire values, no transport XOR mask 0x55 will be applied.

¶

¶

A-law byte ^ 0x55| audio sample

-----------------+---------------

 s111mmmm | s1mmmm00.00000 Legend:

 s110mmmm | s01mmmm0.00000 s = Sign bit

 s101mmmm | s001mmmm.00000 e = Exponent bit

 s100mmmx | s0001mmm.x0000 m = Mantisse bit

 s011mmxx | s00001mm.xx000 above the noise level

 s010mxxx | s000001m.xxx00 x = Mantisse bit

 s001xxxx | s0000001.xxxx0 under the noise level

 s000xxxx | s0000000.xxxx0 . = Noise level separator

TODO:CAPTION: A-law codec bytes, after XOR with transport mask 01010101,

map to sample values which may be cut off at a consistent noise level

to make room for data bits. Represenation of the sign can vary.

¶

¶

Just before stealing the least significant bit for data, it may

become clear that it will be part of a mangled pair of codec values.

In this case, this bit cannot carry data. It should instead be set

so the total byte becomes a mangled value. Upon reception, the

occurrence of this same value is a sign that no mangling has taken

place.

As an efficiency measure, when no HDLC frames are being transmitted,

the bit-stealing mode may switch off by sending a BREAK after the

last FLAG, and then set the lowest data bit to 0 where data could

be. In case of a mangled pair of codec values, the one-but-lowest

data bit would be set to 0 instead. Since no more than 4 data bits

are carried in any codec byte, this lower 0 bit enables an efficient

test that the byte can be skipped. The "off" mode therefore becomes

a chase for a lowest bit set to 1 and then continues to match for

BREAK and FLAG marks. This lower bit is not detectable to the ear,

but the more signifcant bits can be heard as noise, and when they

are not altered the sound quality improves when no bits are stolen

for the transmission of HDLC frames.

The A-law codec in G.711 already ensures that all bytes are XOR-ed

with 0x55 for transport. This helps to set lots of transitions in

zero content, and since this is an interface to a digital telephony

backbone that is useful.

Appendix B. Acknowledgements

This work was supported by NLnet.nl as one element of the Subliminal

Messaging project, along with KIP-secured SIP connection management,

and Wireshark VPN connectivity configuration over SIP and/or

telephone links.

Mangling | A-law change | A-law byte ^ 0x55

---------+--------------+------------------

26 -> 25 | 0x4c -> 0x4d | s100.110q

28 -> 27 | 0x4e -> 0x4f | s100.111q

30 -> 29 | 0x48 -> 0x49 | s100.100q Legend:

32 -> 31 | 0x4a -> 0a4b | s100.101q s = Sign Bit

45 -> 46 | 0x79 -> 0x78 | s1111.00q . = Noise level separator

47 -> 48 | 0x7b -> 0x7a | s1111.01q q = Possibly mangled bit

63 -> 64 | 0x6b -> 0x6a | s11010.1q

80 -> 79 | 0x1a -> 0x1b | s001101q.

TODO:CAPTION: A-law bytes that may be mangled on the wire

cause one bit in the A-law codec byte without the transport

XOR mask 01010101 to have an uncertain least significant bit.

¶

¶

¶

¶

¶

I also owe gratitude to my father, Harry van Rein, who brought me as

a kid an endless supply of telephony waste from his repair job to

tinker with.

Author's Address

Rick van Rein

OpenFortress.nl

Haarlebrink 5

Enschede

Email: rick@openfortress.nl

¶

mailto:rick@openfortress.nl

	Subliminal Messaging in Codecs (SubliMe)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. HDLC framing
	2.1. HDLC in Bit-stealing Mode
	2.2. HDLC in Byte-stealing mode
	2.3. HDLC Frame Structure
	2.4. Windowing and Acknowledgement
	2.5. Fragmentation of User Data
	2.6. Inner and Outer Stuff

	3. Communication Procedures
	3.1. XID :- Service Negotiation
	3.1.1. XID :- Bootstrapping SubliMe

	3.2. SABM, DISC :- Service Connections
	3.3. SABM, DISC :- Switching between Stealing Modes
	3.4. UI :- Unacknowledged Information
	3.5. I :- Information
	3.6. UP :- Polling for Progress Feedback
	3.7. TEST :- Detection of Codec Mangling
	3.8. Window Management and Acknowledgement Timing

	4. Service Definitions
	5. Cryptographic Framework
	5.1. Null Cryptography
	5.2. Counter Management Framework
	5.3. Streaming Galois Counter Mode (SGCM)
	5.4. AES128-SGCM Cryptography
	5.5. Inner and Outer Cryptography
	5.6. Uplink and Downlink Cryptography
	5.7. Framing, Escaping and Bit-Stuffing under Encryption
	5.8. Encryption Framework
	5.8.1. Inner Encryption Framework
	5.8.2. Outer Encryption Framework

	5.9. Signature Framework
	5.9.1. Signature Chaining
	5.9.2. Inner Signature Framework
	5.9.3. Outer Signature Framework

	6. Security Considerations
	7. IANA Considerations
	Appendix A. Data in Codecs
	A.1. Data in the CLEARMODE Codec
	A.2. Data in the G.722 Codec
	A.3. Data in the G.711 Codecs

	Appendix B. Acknowledgements
	Author's Address

