
Network Working Group                                        R. Van Rein
Internet-Draft                                               T. Vrancken
Intended status: Standards Track                               ARPA2.net
Expires: February 17, 2020                               August 16, 2019

Quantum Relief for TLS with Kerberos
draft-vanrein-tls-kdh-05

Abstract

   This specification adds Kerberos to the TLS protocol, both as a
   method of authentication and to insert entropy into the key schedule
   from a source that does not start in public key cryptography.

   This brings relief from attacks by quantum computers, and that is
   specified as part of a more general framework, to make it easier for
   other technologies to achieve similar benefits.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on February 17, 2020.

Copyright Notice

   Copyright (c) 2019 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (https://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of

Van Rein & Vrancken     Expires February 17, 2020               [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info


Internet-Draft                   TLS-KDH                     August 2019

   the Trust Legal Provisions and are provided without warranty as
   described in the Simplified BSD License.

Table of Contents

1.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   2
2.  Quantum Relief from Pre-Shared Keys . . . . . . . . . . . . .   3
3.  The Design of TLS-KDH . . . . . . . . . . . . . . . . . . . .   4
4.  New Data Structures and Procedures  . . . . . . . . . . . . .   5
4.1.  Extension quantum_relief  . . . . . . . . . . . . . . . .   5
4.2.  Ticket-based Encryption Procedure . . . . . . . . . . . .   7
4.3.  Kerberos Ticket and TGT . . . . . . . . . . . . . . . . .   8

5.  Changes to TLS Messages . . . . . . . . . . . . . . . . . . .   8
5.1.  ClientHello . . . . . . . . . . . . . . . . . . . . . . .   8
5.2.  ServerHello . . . . . . . . . . . . . . . . . . . . . . .   9
5.3.  Server-sent VerifyRequest . . . . . . . . . . . . . . . .  10
5.4.  Server-sent Certificate and CertificateVerify . . . . . .  10
5.5.  Client-sent Certificate and CertificateVerify . . . . . .  10
5.6.  Length of Finished  . . . . . . . . . . . . . . . . . . .  11
5.7.  Selection of Cipher Suites  . . . . . . . . . . . . . . .  11
5.8.  Tickets and Connection Timing . . . . . . . . . . . . . .  11

6.  Cryptographic Updates . . . . . . . . . . . . . . . . . . . .  12
6.1.  Quantum Relief for Encryption in TLS 1.3  . . . . . . . .  12
6.2.  Quantum Relief for Encryption in TLS 1.2  . . . . . . . .  12
6.3.  Kerberos Ticket as Certificate and CertificateVerify  . .  13

7.  KDH-Only Application Profile  . . . . . . . . . . . . . . . .  13
8.  Normative References  . . . . . . . . . . . . . . . . . . . .  14
Appendix A.  Acknowledgements . . . . . . . . . . . . . . . . . .  14

   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  15

1.  Introduction

   TLS protects many application protocols from many security problems.
   To enable this, it habitually relies on public-key cryptography.  But
   in the foreseeable future, quantum computers are expected to destroy
   these public-key underpinnings.  This is not a current problem for
   authentication, but it does endanger encrypted data being passed
   today, which may be captured and stored, ready for decryption as soon
   as quantum computers hit the playing field.

   Most present-day applications of TLS are threatened by quantum
   computers; some may not be able to live up to legal requirements for
   long-term encryption.  There even is a risk of future power
   imbalances between those who have a quantum computer and those who
   have not.

   The solution is to not rely solely on public-key cryptography, but
   instead mix in secret entropy that a future quantum computing entity



Van Rein & Vrancken     Expires February 17, 2020               [Page 2]



Internet-Draft                   TLS-KDH                     August 2019

   cannot decipher.  In this light, Kerberos offers an interesting
   perspective, as it builds a symmetric-key infrastructure including
   cross-realm connectivity options.  Kerberos is considered safe from
   quantum computers, as long as its public-key extensions are avoided.

   We therefore specify a quantum_relief extension that mixes secret
   entropy form another source into the TLS key computations, and we
   work out a concrete mechanism based on Kerberos.  This concrete
   mechanism, which relies on Kerberos for relief from quantum computing
   and on (Elliptic-Curve) Diffie-Hellman for Perfect Forward Secrecy
   and to stop the sphere of influence of the KDC administrator, shall
   be referred to as Kerberised Diffie-Hellman or KDH.  A definition is
   included for a KDH-Only Appllication Profile, to facilitate small and
   simple implementations.

   In the the TLS 1.3 key schedule, the quantum_relief extension
   replaces the input from a PSK; the two extensions are not considered
   useful when combined.  In TLS 1.2, a similar result is achieved by
   enhancing the pre-master secret independently of the negotiated
   cipher suite.

2.  Quantum Relief from Pre-Shared Keys

   The PSK mechanism in TLS 1.3 and 1.2 allows insertion of key material
   which is referenced by name alone.  A naming system is defined, but
   its interpretation resides under local policy, which is enough for
   internal use cases, but it is insufficient for general use between
   any two parties.

   Cryptographically however, the entropy from the PSK mechanism in TLS
   1.3 is secret to external observers, and mixed with the DHE material
   using a series of HKDF-Extract and -Expand operations.  When used on
   their own, the DHE material can be reversed by quantum computers and
   any subsequent HKDF computations redone, uncovering the complete key
   schedule of TLS.  The extra source of entropy inserted for a PSK
   however, will have to be uncovered separately, and this may not be
   possible in all cases.

   This specification therefore defines a quantum_relief extension that
   replaces the locally useful PSK scheme with a generally usable
   mechanism for insertion of secret entropy into the TLS 1.3 key
   schedule in the position otherwise filled by the PSK.  As a result,
   TLS-KDH does not support 0-RTT data.

   Sufficient conditions to make entropy provide Quantum Relief are:

   o  The amount of entropy must on its own suffice for the security
      level of the TLS connection.



Van Rein & Vrancken     Expires February 17, 2020               [Page 3]



Internet-Draft                   TLS-KDH                     August 2019

   o  The entropy must be secret, meaning invisible for outside
      observers.

   o  Only quantum-proof mechanisms should be used in the processing of
      the entropy.

   In terms of algorithms that are commonplace today, the third
   requirement is generally believed to be met by secure hashes and
   symmetric encryption.  The problem with these is sharing random
   information secretely and at the same time controlling who has access
   to these secrets.  The infrastructure built by Kerberos provides a
   good balance between these requirements, as a result of key
   derivation to expand central secrets in an irreversible manner, so
   that they may be distributed to various pairs of parties.

3.  The Design of TLS-KDH

   The flow of TLS 1.3 works best when encryption is provided early, and
   authentication is provided late.  These things are often the same in
   Kerberos, but KDH splits these responsibilities to be closer to TLS.
   The TLS-KDH flow uses ClientHello and ServerHello for a Kerberos-
   protected exchange of entropy, but it completely ignores client
   identity during this phase.  This allows clients to use an anonymous
   Ticket in the ClientHello message and consider authenticating with an
   identifying Ticket in later client Certificate and CertificateVerify
   messages.

   Server identity however, is observed in all Tickets, so any use of
   the Ticket's contained key by the server suffices as proof of its
   identity.  This renders the server Certificate and CertificateVerify
   messages redundant if the server accepts the KDH extension,
   especially in TLS 1.3 because the Finished message follows
   immediately.  But redundancy can be a feature; it is certainly
   legitimate to still authenticate the server with an explicit Kerberos
   Ticket, X.509 certificate or other.

   When the server desires proof of client identity, it sends a
   CertificateRequest.  KDH introduces a certificate type for a Kerberos
   Ticket, relying on a Kerberos Authenticator as CertificateVerify
   message.  The server is also able to use this to prove being able to
   use a supplied Ticket with its identity.

   The result offers almost-orthogonal Kerberos versions for (1)
   additional secret entropy for encryption, (2) client authentication
   through Kerberos Tickets and (3) server authentication through
   Kerberos Tickets.  All these aspects can independently provide
   Quantum Relief.  The only dependency between these is that the server



Van Rein & Vrancken     Expires February 17, 2020               [Page 4]



Internet-Draft                   TLS-KDH                     August 2019

   cannot initiate Kerberos, so (3) requires (1) or another Ticket
   source.

   Besides the customary client-to-server flow there is also support for
   a peer-to-peer flow in TLS-KDH.  When this is used, the ClientHello
   requests a remote peer identity and sends a TGT, possibly with
   anonymous client name.  Without documenting it here, the TLS server
   is assumed to have some method of locating the remote client and
   proxying the entire TLS connection to its endpoint.  The remote peer
   then returns a Ticket based on the TGT, obtained through the user-to-
   user flow of Kerberos.  This return Ticket will reverse the client
   and server role relative to TLS, but for peer-to-peer connectivity
   that does not matter.  The remote peer, which is now the one
   processing the TLS connection from the server side, will authenticate
   itself through its use of this return Ticket and it can decide
   whether authentication of the initiating client is desired.  When the
   client would authenticate through a Kerberos Ticket, this would
   follow the client and server roles of Kerberos; as before, for peer-
   to-peer traffic this should not be problematic, even if it imposes a
   requirement on cross-realm connections that they must be
   bidirectional.

   Whether a Ticket is supplied in the ClientHello or returned by a
   remote peer in the ServerHello, it yields a key only to the two
   connecting parties.  This key is used in standard Kerberos encryption
   of the concatenated random data from ClientHello and ServerHello.
   This means that both parties influence the entropy gathered and can
   derive a sequence of bytes that is invisible to anyone else.  The
   output from the encryption operation is plugged into the key schedule
   instead of the PSK input parameter.  This input is designed for this
   kind of loose entropy of arbitrary size.

4.  New Data Structures and Procedures

   The following data structures are used to define Quantum Relief for
   TLS 1.3 and 1.2, plus the more specific TLS-KDH form of Quantum
   Relief.

4.1.  Extension quantum_relief

   The data passed during ClientHello and ServerHello are placed in an
   extension called quantum_relief, of which KDH is currently the only
   form.  A QuantumReliefForm tag is defined to set KDH aside from
   possible future forms which, to be eligable, MUST assure the
   sufficient conditions for Quantum Relief Section 2.



Van Rein & Vrancken     Expires February 17, 2020               [Page 5]



Internet-Draft                   TLS-KDH                     August 2019

   enum {
       kdh(0),
       (65535)
   } QuantumReliefMethod;

   The value kdh is always used for the method of Quantum Relief
   proposed herein, based on Kerberos.

   The ClientHello can additionally specify a name for a remote peer,
   for which various application-independent forms may be anticipated;
   this is captured in yet another tag PeerNameForm, of which only a
   form for unencrypted Kerberos names is currently defined.

   enum {
       none(0),
       krb5princrealm(1),
       (65535)
   } PeerNameForm;

   The value none is used for standard client-to-server TLS connections.
   The value krb5princrealm is used in a ClientHello to indicate a
   Kerberos PrincipalName and Realm [Section 5.2.2 of [RFC4120]] for the
   remote peer sought behind the TLS server.

   struct {
       PeerNameForm peernameform;
       select (peernameform) {
           case none:
               /* No peer name form */
               Empty;
           case krb5princrealm:
               /* PrincipalName and Realm, resp. */
               struct {
                   opaque krb5princ<3..1023>;
                   opaque krb5realm<3..1023>;
               } krb5PrincipalRealm;
       }
       QuantumReliefMethod qr_method;
       select (qr_method) {
           case kdh:
               /* Empty, ticket or TGT */
               opaque opt_ticket<0..65535>;
       }
   } QuantumReliefExtension;

   This structure is used as extension_data following the quantum_relief
   extension_type, registered by IANA under number TBD:QREXTTYPE, to
   occur only during ClientHello and ServerHello.  IANA also created

https://datatracker.ietf.org/doc/html/rfc4120#section-5.2.2


Van Rein & Vrancken     Expires February 17, 2020               [Page 6]



Internet-Draft                   TLS-KDH                     August 2019

   registries for the QuantumReliefMethod and PeerNameForm in their
   TBD:TLSExtensionsRegistry.

4.2.  Ticket-based Encryption Procedure

   The TLS-KDH messages and cryptographic computations require the use
   of the key concealed in a Ticket to produce a binary object that
   cryptographically binds its input to the key.  It is variably used as
   a source of entropy and as proof, but it is always obtained through a
   standard encryption procedure for Kerberos.

   Signature:
    o = Ticket-Encrypt (t, u, h)

   Input:
    - Ticket t
    - KeyUsage u
    - Hash h

   Output:
    - OctetString o

   Steps:
    1. base-key     = t.enc-part.key
    2. specific-key = rfc3961.key-derivation (
                      base-key, u)
    3. init-state   = rfc3961.initial-cipher-state (
                      specific-key, DIRECTION_ENCRYPT)
    4. (state,o)    = rfc3961.encrypt (
                      specific-key, init-state)

   Not shown in the procedure, there is a need to decrypt the enc-part
   of the Ticket before the key concealed in it can be extracted.  This
   is where proof of identity comes into play; only the two parties
   connected by the Ticket should be able to perform this decryption.

   The name prefix rfc3961 points to the generic descriptions for
   Kerberos key-based procedures [RFC3961] that are implemented with
   various algorithms.  Available algorithms are listed in the IANA
   Registry of Kerberos Parameters.

   The Key Usage values are numbers, for which the following are defined
   by this specification.  Their number ranges are deliberately chosen
   to not clash with those of Kerberos, but otherwise compliant to the
   application range [Section 7.5.1 of [RFC4120]].  The Key Usage values
   are referenced by name elsewhere in this specification.

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4120#section-7.5.1


Van Rein & Vrancken     Expires February 17, 2020               [Page 7]



Internet-Draft                   TLS-KDH                     August 2019

   2008 = KEYUSAGE_TLS12KDH_PREMASTER_QR
   2018 = KEYUSAGE_TLSKDH_CLIENT_QR
   2019 = KEYUSAGE_TLSKDH_SERVER_QR
   2020 = KEYUSAGE_TLSKDH_SERVER_VFY
   2021 = KEYUSAGE_TLSKDH_CLIENT_VFY

4.3.  Kerberos Ticket and TGT

   Where this text speaks of a TGT, short for Ticket Granting Ticket, it
   imposes the following requirements to the PrincipalName in the sname
   field of a Ticket:

   o  The name-type is set to NT-SRV-INST or 2;

   o  The name-string consists of two component strings;

   o  The first name-string component string is the fixed string krbtgt.

   To be a TGT, all these requirements MUST be met by a Ticket; a Ticket
   that meets some but not all these conditions is badly formed and the
   recipient SHOULD respond to it by reporting error TODO:WHICH and
   closing the connection.

5.  Changes to TLS Messages

   There are a few modifications to TLS for the TLS-KDH message flow.
   Unless specified otherwise, the modifications apply to TLS 1.3 and
   1.2 alike.

5.1.  ClientHello

   When this message contains the quantum_relief extension, its
   qr_method MUST be set to kdh under this specification.  Further
   requirements to this extension depend on the pattern of use being
   client-to-server or peer-to-peer.

   To initiate client-to-server traffic, the peernameform MUST be set to
   none, and the opt_ticket MUST be a Ticket with the service name, host
   or domain name and Kerberos realm of the addressed service.  The
   client name in the opt_ticket MAY be an anonymous identity and the
   server MUST ignore the client identity in the opt_ticket.  When the
   server_name extension is also sent, there SHOULD be restrictions
   enforced by the server on its relation with the service name in the
   opt_ticket, but this may involve domain-to-hostname mappings, for
   instance through DNS SRV records under DNSSEC protection.

   To initiate peer-to-peer traffic that could be proxied through the
   TLS server to end at a remote peer, the peernameform MUST NOT be set



Van Rein & Vrancken     Expires February 17, 2020               [Page 8]



Internet-Draft                   TLS-KDH                     August 2019

   to none, and the opt_ticket MUST be a TGT for the TLS client, suited
   for the ticket granting service of the TLS server's realm; it is
   permitted for the client to use an anonymous identity in this TGT and
   the server MUST ignore the client identity in the opt_ticket.  When
   the peernameform is set to krb5princrealm, the krb5princ and
   krb5realm fields MUST be set to the Kerberos PrincipalName and Realm
   for the desired remote peer.  Future extensions may introduce
   alternative forms of remote peer identity and a TLS server SHOULD be
   open to the general idea of identity.

   When a ClientHello message contains a quantum_relief extension, it
   MUST NOT include any references to a PSK.  It MAY independently
   negotiate client and server certificate types and cipher suites.

5.2.  ServerHello

   When the server accepts the quantum_relief extension, it replies with
   its own quantum_relief extension and refrains from making any PSK
   references.  This specification defines a response to ClientHello
   extensions with qr_method set to kdh, for which the ServerHello
   extension MUST be set to kdh also.

   When the ClientHello extension had its peernameform set to none, the
   ServerHello extension responds to a client-to-server connection
   request.  The TLS data will be terminated on the server and the
   response extension MUST set the opt_ticket field to a zero-length
   byte string.

   When the ClientHello extension had its peernameform set to another
   value than none, then the TLS server MUST use this to locate a remote
   peer, which may have registered through a mechanism not specified
   herein, and proxy the TLS traffic to this remote peer.  The TLS
   server continues to proxy this traffic until it closes the
   connection.

   When a remote peer, possibly after registering with a TLS server as a
   recipient for client-to-client TLS connections, receives a
   ClientHello with a quantum_relief extension with qr_method set to kdh
   and a peernameform and peername that it recognises as its own and
   with a TGT in the opt_ticket field, it should engage in a user-to-
   user ticket request with the ticket granting service for its realm.
   It MUST reject the connection if this procedure fails.  When a Ticket
   is obtained, it constructs a ServerHello with a quantum_relief
   extension, sets qr_method to kdh and peernameform to none, and
   opt_ticket to the just-obtained Ticket.  Furthermore, it continues to
   act as though the client had contacted it directly, while being
   forgiving to the proxied nature of the connection that carries the
   TLS traffic.  Specifically, there are no grounds for assuming



Van Rein & Vrancken     Expires February 17, 2020               [Page 9]



Internet-Draft                   TLS-KDH                     August 2019

   anything about the client identity, which may be undesirable in a
   client-to-client connection.

5.3.  Server-sent VerifyRequest

   Since client identity is ignored by the server during ClientHello and
   ServerHello and may indeed be toned down to an anonymous identity,
   any server-side requiring to know its client MAY send a
   VerifyRequest.  When permitted by the TLS 1.3 client with the
   post_handshake_auth extension, this MAY also be sent at any later
   time.  Under TLS 1.2, TLS renegotiation permits a similar facility
   (with much broader impact).

   The handshake is not encrypted in TLS 1.2, and for TLS 1.3 in peer-
   to-peer mode the server-side identity is uncertain until the Finished
   messages.  In the interest of the privacy of client identity, it may
   be desirable to add server-side authentication even when it is not
   otherwise needed.

5.4.  Server-sent Certificate and CertificateVerify

   The Certificate and CertificateVerify messages are not always
   required, because (1) the quantum_relief extension captures the
   server identity, and (2) proof thereof is deferred to Finished, which
   under TLS 1.3 is available to the client before it sends the client
   Certificate.

   Even in cases when it is not strictly required, a server MAY opt for
   sending server Certificate and CertificateVerify, but in such cases
   clients MUST NOT fail due to the messages being withheld.

   The server_certificate_type extension may be used to negotiate any
   form for these messages, including the Kerberos Ticket certificate
   type defined herein.  When not negotiated, the default form is X.509.
   Note that a server cannot initiate a Kerberos exchange, so a Kerberos
   form cannot be used when the server rejected the quantum_relief
   extension or when the extension did not provide a Ticket or TGT such
   as it does when the qr_method is kdh.

5.5.  Client-sent Certificate and CertificateVerify

   Under TLS 1.3, the server can request client authentication at any
   time, provided that the client has sent the post_handshake_auth
   extension.  It is possible for servers to do this at any time, and
   possibly multiple times; TLS 1.3 even defines how to handle
   overlapping requests for client authentication.



Van Rein & Vrancken     Expires February 17, 2020              [Page 10]



Internet-Draft                   TLS-KDH                     August 2019

   The client_certificate_type extension may be used to negotiate any
   form for these messages, including the Kerberos Ticket certificate
   type define before.  When not negotiated, the default form is X.509.
   Note that a client can produce a Kerberos Ticket even when no
   quantum_relief extension was negotiated during ClientHello and/or
   ServerHello, or even when another qr_method than kdh was agreed.

5.6.  Length of Finished

   Under TLS 1.3, the Finished message is as long as the transcript
   hash.  Under TLS 1.2, this is negotiable.  For TLS-KDH under TLS 1.2
   the client MUST request the Finished message to be as long as the
   hash being used to compute it and the server MUST accept this.

5.7.  Selection of Cipher Suites

   Under TLS 1.3, all cipher suites incorporate (Elliptic-Curve) Diffie-
   Hellman.  Under TLS 1.2 this is optional.  For TLS-KDH under TLS 1.2
   the client MUST offer cipher suites that include these forms of key
   agreement and the server MUST NOT select a cipher suite without any
   of these forms of key agreement.

5.8.  Tickets and Connection Timing

   Tickets in Kerberos represent a key-based connection between two
   peers.  The key material in a Ticket is time-limited in the
   understanding the a client can always request a new Ticket if so
   desired.  Expiration of a Ticket SHOULD be matched with a teardown of
   the service.  In terms of TLS-KDH, that means that the connection
   SHOULD NOT exist beyond the life time of a Ticket.  Each side can
   independently close down the TLS connection with an ERROR:WHICH
   alert.

   To avoid this, it is possible to request a new client Certificate and
   CertificateVerify through a new VerifyRequest, best sent sometime
   before expiry.  The client then acquires a fresh or prolonged Ticket
   and once exchanged the connection may continue up to the timeout of
   the new Ticket.

   The timeout is updated by every new Ticket supplied in the opt_ticket
   field of a quantum_relief extension with qr_method set to kdh, or by
   a Certificate of type Kerberos Ticket, provided that it is followed
   by a valid CertificateVerify.

   A server MUST NOT send data over a connection with a timed-out
   Ticket, but SHOULD request a fresh one or disconnect.  A client MUST
   NOT send data over a connection with a timed-out Ticket, but MAY
   await the arrival a fresh Ticket.  It is a good precaution to request



Van Rein & Vrancken     Expires February 17, 2020              [Page 11]



Internet-Draft                   TLS-KDH                     August 2019

   a fresh Ticket a few minutes before the active one expires, to
   compensate for clock skew between the client and server.

   Kerberos supports Tickets with future validity times, intended for
   such things as nightly batch jobs that require authentication.  By
   default, a TLS stack MUST reject such Tickets until they start being
   valid.  It is however possible for applications to override this
   behaviour and treat the connection especially after being informed of
   the future time at which it becomes valid.

6.  Cryptographic Updates

   The introduction of TLS-KDH leads to a few cryptographic changes to
   the protocol and its implementation.  Below, the three aspects
   introduced by TLS-KDH are discussed independently.  Separate
   treatment for TLS 1.3 and 1.2 is only necessary for Quantum Relief
   for encryption.

6.1.  Quantum Relief for Encryption in TLS 1.3

   Under client-to-server TLS-KDH, the opt_ticket in the quantum_relief
   extension is used.  Under peer-to-peer TLS-KDH, the TGT in the
   opt_ticket supplies no shared key material to the client and server
   (or remote peer), but the ServerHello returns a quantum_relief
   extension with an opt_ticket field holding a Ticket that does supply
   a shared key to use.

   The key is used to compute Ticket-Encrypt (opt_ticket, usage,
   ClientHello.random | ServerHello.random) where | signifies
   concatenation and usage is either KEYUSAGE_TLSKDH_CLIENT_QR for a
   Ticket supplied by the client, or KEYUSAGE_TLSKDH_SERVER_QR for a
   Ticket supplied by the server side (or remote peer).  The output of
   this computation is provided instead of the PSK on the left of the
   Key Schedule for TLS 1.3 [page 93 of [RFC8446]].  Since none of the
   PSK facilities are used under TLS-KDH, this seeding does not arrive
   too late for the unfolding of the protocol.

   Other qr_method values than kdh are likely to come up with other
   computations.  There may be some that prefer to influence only the
   master key by replacing the 0 value for key input as it is shown in
   the TLS 1.3 key schedule.

6.2.  Quantum Relief for Encryption in TLS 1.2

   TLS 1.2 does not offer any form of encryption during the handshake,
   so the kdh method for TLS 1.2 can only be used to strengthen the
   Master Secret.  When the quantum_relief extension is accepted by the
   server, a Ticket is available while forming the ServerHello; it is in

https://datatracker.ietf.org/doc/html/rfc8446


Van Rein & Vrancken     Expires February 17, 2020              [Page 12]



Internet-Draft                   TLS-KDH                     August 2019

   the ClientHello for client-to-server mode and in the ServerHello for
   peer-to-peer mode.  This Ticket qrt is used to compute Ticket-Encrypt
   (qrt, KEYUSAGE_TLS12KDH_PREMASTER_QR, ClientHello.random |
   ServerHello.random), where | denotes concatenation.  The output of
   this procedure is a byte string.  It is represented in a TLS type

   opaque premaster_prefix<0..65535>

   and, in that form, prepended to the pre-master secret that the cipher
   suite defines.  This prepended form is then used instead of the
   normal pre-master secret during the computation of the master key.
   Note that this is only done when client and server agreed to use the
   quantum_relief extension with kdh as its method.

   TODO: Tom, dit is arbitrair.  Hergebruik van code of structuren kan
   mogelijk soepeler, ik hoor het dan wel.

6.3.  Kerberos Ticket as Certificate and CertificateVerify

   IANA has added Kerberos Ticket with value TBD:KRBTKT-CERTTP to the
   TLS Certificate Types list in the TLS Extensions Registry.  This can
   be negotiated independently as client_certificate_type and
   server_certificate_type, though the latter is impossible without a
   client certificate, even if it is anonymous or just a TGT; in TLS-
   KDH, this is available when the server accepts the quantum_relief
   extension.

   The contents of the Certificate message when the certificate type is
   negotiated as Kerberos Ticket is a Kerberos Ticket [RFC4120].

   The contents of the corresponding CertificateVerify message uses this
   Ticket k5crt to compute Ticket-Encrypt (k5crt, KEYUSAGE_CLIENT_VFY,
   th) for a client CertificateVerify message or Ticket-Encrypt (k5crt,
   KEYUSAGE_SERVER_VFY, th) for a server CertificateVerify message,
   where th is the customary hash up to and including the preceding
   Certificate message.  For TLS 1.3, this customary hash uses the
   transcript hash; for TLS 1.2, the hash algorithm must match the
   Certificate signing algorithm, which in case of a Kerberos Ticket
   means its MAC hashing algorithm.

7.  KDH-Only Application Profile

   The default use of TLS involves X.509 certificate processing with RSA
   keys, which may be a burden to some endpoints, especially when they
   are very small or aim for simplicity.  For this reason, this section
   defines an alternative, KDH-Only Application Profile.

https://datatracker.ietf.org/doc/html/rfc4120


Van Rein & Vrancken     Expires February 17, 2020              [Page 13]



Internet-Draft                   TLS-KDH                     August 2019

   TLS-KDH-compliant applications MUST implement the
   TLS_AES_128_GCM_SHA256 [GCM] cipher suite and SHOULD implement the
   TLS_AES_256_GCM_SHA384 [GCM] and TLS_CHACHA20_POLY1305_SHA256
   [RFC8439] cipher suites.

   TLS-KDH-compliant applications MUST support the Kerberos Ticket
   certificate type.  The also MUST treat X.509 as the default
   certificate type, but they MAY refuse any attempt to use it, either
   by negotiating it explicitly or failing to negotiate an alternative.

   TLS-KDH-compliant applications MUST support key exchange with
   secp256r1 (NIST P-256) and SHOULD support key exchange with X25519
   [RFC7748].

   TLS-KDH-compliant applications MUST support the quantum_relief
   extension, for which the qr_method value kdh MUST be supported, and
   the peernametype value none MUST and krb5princrealm SHOULD be
   supported.

8.  Normative References

   [RFC3961]  Raeburn, K., "Encryption and Checksum Specifications for
              Kerberos 5", RFC 3961, DOI 10.17487/RFC3961, February
              2005, <https://www.rfc-editor.org/info/rfc3961>.

   [RFC4120]  Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
              Kerberos Network Authentication Service (V5)", RFC 4120,
              DOI 10.17487/RFC4120, July 2005,
              <https://www.rfc-editor.org/info/rfc4120>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

Appendix A.  Acknowledgements

   This specification could not have matured without the insights of
   various commenters.  In order of appearance, we owe thanks to Simo
   Sorce, Ilari Liusvaara, Watson Ladd, Benjamin Kaduk, Nikos
   Mavragiannopoulos.

   This work was conducted under a grant from the programme "[veilig]
   door innovatie" from the government of the Netherlands.  It has also
   been liberally supported by the NLnet Foundation.

https://datatracker.ietf.org/doc/html/rfc8439
https://datatracker.ietf.org/doc/html/rfc7748
https://datatracker.ietf.org/doc/html/rfc3961
https://www.rfc-editor.org/info/rfc3961
https://datatracker.ietf.org/doc/html/rfc4120
https://www.rfc-editor.org/info/rfc4120
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446


Van Rein & Vrancken     Expires February 17, 2020              [Page 14]



Internet-Draft                   TLS-KDH                     August 2019

Authors' Addresses

   Rick van Rein
   ARPA2.net
   Haarlebrink 5
   Enschede, Overijssel  7544 WP
   The Netherlands

   Email: rick@openfortress.nl

   Tom Vrancken
   ARPA2.net
   TODO
   Eindhoven, Noord-Brabant  TODO
   The Netherlands

   Email: TODO



Van Rein & Vrancken     Expires February 17, 2020              [Page 15]


