draft-vasseur-mpls-nodeid-subobject-00.txt

February 2003

Jean Philippe Vasseur

Zafar Ali

Siva Sivabalan

Systems, Inc.

Cisco

IETF Internet Draft Expires: August, 2003

February, 2003

draft-vasseur-mpls-nodeid-subobject-00.txt

Definition of an RRO node-id subobject

Status of this Memo

	This document is an Internet-Draft and is in full conformance
with all	
	provisions of <u>Section 10 of RFC2026</u> . Internet-Drafts are
	Working documents of the Internet Engineering Task Force (IETF),
its	
	areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
	Internet-Drafts are draft documents valid for a maximum of six
months	
	and may be updated, replaced, or obsoleted by other documents at
any	
	time. It is inappropriate to use Internet-Drafts as reference
material	
	or to cite them other than as "work in progress."
	The list of current Internet-Drafts can be accessed at
	http://www.ietf.org/ietf/1id-abstracts.txt.
	The list of Internet-Draft Shadow Directories can be accessed at
	http://www.ietf.org/shadow.html.

Vasseur, Ali and

Abstract

Sivabalan

draft-vasseur-mpls-nodeid-subobject-00.txt

1

February 2003

	In the context of MPLS TE Fast Reroute ([<u>FAST-REROUTE</u>]), the
Merge	
(PLR) in	Point (MP) address is required at the Point of Local Repair
(FER) IN	order to select a backup tunnel intersecting a protected Traffic
	Engineering LSP on a downstream LSR. However, existing protocol
	mechanisms are not sufficient to find MP address multi-areas or
multi-	demain routing notwork. Honor, the surrent MDLC Fast Deroute
mechanism	domain routing network. Hence, the current MPLS Fast Reroute
	cannot be used to protect inter-area or inter-AS TE LSPs from a
failure	
	of an ABR (Area Border Router) or ASBR (Autonomous System Border
existing RRO	Router) respectively. This document specifies the use of
onto ching hite	IPv4 and IPv6 subobjects (with a new flag defined) to define the
node-	
	id subobject in order to solve this issue.
	Conventions used in this document
	The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL
NOT",	THE REY WORDS HOST, HOST NOT, REQUIRED, SHALE, SHALE
	"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in
this	
	document are to be interpreted as described in <u>RFC-2119</u> [i].

	<u>1</u> . Terminology
	LSR - Label Switch Router
	LSP - An MPLS Label Switched Path
	PCS - Path Computation Server (may be any kind of LSR (ABR,) or a centralized path computation server
	PCC - Path Computation Client (any head-end LSR) requesting a
path	computation of the Path Computation Server.
	Local Repair - Techniques used to repair LSP tunnels quickly when a node or link along the LSPs path fails.
	Protected LSP - An LSP is said to be protected at a given hop if it has one or multiple associated backup tunnels originating at that hop.
	Bypass Tunnel - An LSP that is used to protect a set of LSPs passing over a common facility.
	Backup Tunnel - The LSP that is used to backup up one of the
many	LSPs in many-to-one backup.
	PLR - Point of Local Repair. The head-end of a backup tunnel or a detour LSP.
	MP - Merge Point. The LSR where detour or backup tunnels meet
Sivabalan	Vasseur, Ali and 2
	<u>draft-vasseur-mpls-nodeid-subobject-00.txt</u>

February 2003

where	the protected LSP. In case of one-to-one backup, this is
	multiple detours converge. A MP may also be a PLR.
	NHOP Bypass Tunnel - Next-Hop Bypass Tunnel. A backup tunnel which bypasses a single link of the protected LSP.
	NNHOP Bypass Tunnel - Next-Next-Hop Bypass Tunnel. A backup tunnel which bypasses a single node of the protected LSP.
	Reroutable LSP - Any LSP for with the "Local protection desired"

bit is set in the Flag field of the SESSION_ATTRIBUTE object of its Path messages.

CSPF - Constraint-based Shortest Path First.

Inter-AS MPLS TE: TE LSP whose Head-end LSR and Tail-end LSR do not reside within the same Autonomous System (AS) or both Head-

LSR and Tail-end LSR are in the same AS but the TE tunnel transiting path may be across different ASes

Interconnect or ASBR Routers: Routers used to connect to another AS of a different or the same Service Provider via one or more Inter-AS links.

<u>2</u>. Introduction

end

local	MPLS Fast Reroute (FRR) ([<u>FAST-REROUTE</u>]) is a fast recovery
	protection technique used to protect Traffic Engineering LSPs
from	link/SRLG/node failure. One or more TE LSPs (called backup
LSPs) are	pre-established to protect against the failure of a link/node/
SRLG. In	case of failure, every protected TE LSP traversing the failed
resource	is rerouted onto the appropriate backup tunnels in 10s of msecs.
_	There are a couple of requirements on the backup tunnel path. At
least,	a backup tunnel should not pass through the element it protects. Additionally, a primary tunnel and a backup tunnel should
intersect at	least at two points (nodes): Point of Local Repair (PLR) and
Merge	Point (MP). The former should be the head-end LSR of the backup
tunnel,	and the latter should be the tail-end LSR of the backup tunnel.
The PLR	
	is where FRR is triggered when link/node/SRLG failure happens. Furthermore, the MP address is also required to send RSVP
Refresh	messages of the rerouted TE LSPs when the FRR is active.
tunnels.	There are different methods for computing paths for backup
	Specifically, a users can statically configures one or more

backup	
configured to computation	tunnels at the PLR, with explicit path or the PLR can be
	automatically compute a backup path or to send a path
	request to a PCS (which can be an LSR or an off-line tool). Consider the following scenario
Sivabalan	Vasseur, Ali and 3
February 2003	<u>draft-vasseur-mpls-nodeid-subobject-00.txt</u>
	Asumptions: - a multi-area network made of three areas: 0, 1 and 2. - a protected TE LSP T1 (TE LSP signaled with the "local
Protection	desired" bit set in the SESSION-ATTRIBUTE object or the FRR
object)	from R0 to R3 - a backup tunnel B1 from R1 to R2, not traversing ABR1, and
following	
ABR1	the R1-ABR3-R2 path. R1 reroutes any protected TE LSP traversing
	onto the backup tunnel B1 in case of ABR1's failure.
	< area 1> <area 0=""/> <area 2=""/> R0R1-ABR1R2ABR2R3 \ /
	\ ABR3 /
	When T1 is first signaled, the PLR R1 needs to dynamically
select an However, find engineering area multiple	appropriate backup tunnel intersecting T1 on a downstream LSR.
	existing protocol mechanisms are not sufficient to unambiguously
	MP address in a network with inter-area or inter-AS traffic
	(although the example above was given in the context of multi-
	networks, a similar reasoning applies to TE LSP spanning
	ASes). This draft addresses these limitations.
	R1 needs to ensure the following:

<i>.</i> .	1. Backup tunnel intersects with the primary tunnel at the MP
(and to	thus has a valid MP address), e.g., in Figure 1, R1 needs
	determine that T1 and B1 share the same MP node R2,
	2. Backup tunnel satisfies the primary LSP's request with
respect to	the bandwidth protection request (i.e., bandwidth
guaranteed for	the primary tunnel during failure), and the type of
protection link	(preferably, protecting against a node failure versus a
	failure), as specified in [<u>FAST-REROUTE</u>].
Record	A PLR can make sure that condition (1) is met by examining the
Record	Route Object (RRO) of the primary tunnel to see if any of the
addresses tunnel.	specified in the RRO is attached to the tail-end of the backup
	As per [<u>RSVP-TE</u>], the addresses specified in the RRO IPv4
subobjects specify	can be node-ids and/or interface addresses, with specific recommendation to use the interface address of the outgoing Path messages. Hence, in Figure 1, router R2 is more likely to
	interface addresses in the RROs for T1 and B1. Note that these interface addresses are different in this example.
node-ids	The problem of finding the MP using the interface addresses or
	can be easily solved in a single area TE. Specifically, in the
case of	single area TE, the PLR has the knowledge of all the interfaces attached to the tail-end of the backup tunnel. This information
is	available in PLR's IGP topology database. Thus, the PLR can
determine	whether a backup tunnel intersecting a protected TE LSP on a
downstream	node exists and can also find the MP address regardless of how
the	Houe exists and can also find the MF address regardless of now
Sivabalan	Vasseur, Ali and 4

draft-vasseur-mpls-nodeid-subobject-00.txt

specified However, inter-AS sure that traffic-	addresses contained in the RRO IPv4 or IPv6 subobjects are (i.e., whether using the interface addresses or the node IDs). such routing information is not available in a multi-area and traffic-engineering environments. Hence, unambiguously making condition (1) above is met with inter-area TE and inter-AS engineering TE LSPs is not possible with existing mechanisms. In this draft, we define extensions to and describe the use of
RSVP	[RSVP, RSVP-TE] to solve the above-mentioned problem.
	<u>3</u> . Signaling node-ids in RROs
the	As mentioned above, the limitation that we need to address is generality of the contents of the RRO IPv4 and IPv6 subobjects,
as	defined in [<u>RSVP-TE</u>].
<u>TE]</u> and	The IPv4 and IPv6 RRO subobjects are currently defined in [<u>RSVP-</u> have the following flags defined:
	Local protection available: 0x01
protected to-one	Indicates that the link downstream of this node is via a local repair mechanism, which can be either one- or facility backup.
maintain link it neighboring	Local protection in use: 0x02 Indicates that a local repair mechanism is in use to this tunnel (usually in the face of an outage of the was previously routed over, or an outage of the node). Bandwidth protection: 0x04
	·····

The PLR will set this when the protected LSP has a backup path which is guaranteed to provide the desired bandwidth specified in the FAST_REROUTE object or the bandwidth of the protected LSP, if no FAST_REROUTE object was included. The PLR may set this whenever the desired bandwidth is guaranteed; the PLR MUST set this flag when the desired bandwidth is guaranteed and the "bandwidth protection desired" flag was set in the SESSION_ATTRIBUTE object. If the requested bandwidth is not guaranteed, the PLR MUST NOT set this flag.

Node protection: 0x08

The PLR will set this when the protected LSP has a backup path LSR along the protected LSP. The PLR may set this whenever node protection is provided by the protected LSP's backup path; the Vasseur, Ali and

5

draft-vasseur-mpls-nodeid-subobject-00.txt

February 2003

Sivabalan

	PLR MUST set this flag when the node protection is
provided	
	and the "node protection desired" flag was set in the
	SESSION_ATTRIBUTE object. If node protection is not
provided,	
	the PLR MUST NOT set this flag. Thus, if a PLR could
only	
	setup a link-protection backup path, the "Local
protection	
	available" bit will be set but the "Node protection" bit
will	
	be cleared.

An additional flag is specified:

Node-id: 0x10

the RRO	When set, this indicates that the address specified in
	IPv4 or IPv6 subobject is a node-id address, which
refers to	the "Router Address" as defined in [<u>OSPF-TE</u>], or
"Traffic	Engineering Router ID" as defined in [<u>ISIS-TE</u>]. A node
MUST use	the same address consistently.
	An IPv4 or IPv6 RRO subobject with the node-is flag set is also
called	a node-id subobject.
0.r	The problem of finding MP address in a network with inter-area
or	inter-AS traffic engineering is solved by adding a node-id
subobject	(an RRO "IPv4" and "IPv6" sub-object with the 0x10 flag set).
	Any Head-end LSR of a protected TE LSP MUST include an RRO
object, as	defined in [<u>FAST-REROUTE</u>]. In addition, any LSR compliant with
this	draft must systematically include a node-id IPv4 or IPv6
subobject in	the RRO object for each protected TE LSP (in addition to the
sub-	objects required by MPLS TE Fast Reroute as defined in [<u>FAST-</u>
	A node MAY decide to include its node-id subobject in the RRO
object message) does	only for the TE LSP whose IPv4 or IPv6 address source address (specified in the SENDER-TEMPLATE object of the RSVP Path
	not belong to its local area/AS.
	4. Processing RRO with node-id subobjects
after the	The node-id subobject is added into the RECORD_ROUTE object

after the Label Record subobject. A node MUST not push a node-id subobject without also pushing an IPv4 or IPv6 subobjects, as defined in [FAST-REROUTE]. A node may push both IPv4 node-id and IPv6 node-id

subobjects, but that MUST be done on consistent basis. Finding Merge Point 4.1. A PLR can find the MP and suitable backup tunnel by simply comparing the node-id of the backup tunnel's tail-end with Node IDs included in the RRO of the primary tunnel. When both IPv4 node-id and IPv6 node-id Vasseur, Ali and Sivabalan 6 draft-vasseur-mpls-nodeid-subobject-00.txt February 2003 sub-objects are present, a PLR may use any or both of them in finding the MP address. Processing at the border nodes 4.2. In a network with inter-AS traffic engineering, there may be some concerns about leaking the RRO information, including node-id subobjects, outside the autonomous system (see [INTER-AS-TE-REQS]). In such cases, before forwarding the RRO object outside of an AS, the ASBR may filter some/all node-id subobjects pertaining to the downstream nodes in the AS. The RRO node-id subobjects filtration can be based on a local policy configured on the ASBR. How an ASBR handles/filters the contents of the RRO objects is outside of the scope of this draft. Backward Compatibility Note 5. To remain compatible with the nodes that do not support the RRO IPv4 or

The not be MP	IPv6 node-id subobjects, a node can safely ignore these objects. implication of this limitation will be that these nodes could
	<pre>in a network with inter-area or inter-AS traffic engineering. <u>6</u>. Security Considerations</pre>
security remain	This document does not introduce new security issues. The considerations pertaining to the original RSVP protocol [RSVP] relevant.
regard	7. Intellectual Property Considerations Cisco Systems may have intellectual property rights claimed in to some of the specification contained in this document
Carol	8. Acknowledgments We would like to acknowledge input and helpful comments from Iturralde, Anca Zamfir, and Reshad Rahman.
Version	<pre>References [RSVP] Braden, et al, " Resource ReSerVation Protocol (RSVP) - 1, Functional Specification", <u>RFC 2205</u>, September 1997. [RSVP-TE] Awduche, et al, "Extensions to RSVP for LSP Tunnels",</pre>
RFC	3209, December 2001.
Sivabalan	Vasseur, Ali and 7 <u>draft-vasseur-mpls-nodeid-subobject-00.txt</u>
February 2003	

[FAST-REROUTE] Ping Pan, et al, "Fast Reroute Extensions to RSVP-TE for LSP Tunnels", <u>draft-ietf-mpls-rsvp-lsp-fastreroute-01.txt</u>, May 2003.

Engineering	[OSPF-TE] Katz, D., Yeung, D., Kompella, K., "Traffic
	Extensions to OSPF Version 2", <u>draft-katz-yeung-ospf-traffic</u> - 09.txt(work in progress).
Engineering",	[ISIS-TE] Li, T., Smit, H., "IS-IS extensions for Traffic
	<pre>draft-ietf-isis-traffic-04.txt (work in progress)</pre>
Engineering",	[MULTI-AREA-TE] Kompella at all,"Multi-area MPLS Traffic
	draft-kompella-mpls-multiarea-te-03.txt, June 2002.
explicit	[LOOSE-PATH-REOPT] Vasseur and Ikejiri, "Reoptimization of an
	loosely routed MPLS TE paths", <u>draft-vasseur-mpls-loose-path-</u>
<u>reopt</u> -	00.txt, February 2003, Work in Progress.
Foot	[ABR-ASBR-FRR] Vasseur, Ali and Sivabalan, "Support of MPLS TE
Fast	Reroute protection of ABR/ASBR LSRs", <u>draft-vasseur-mpls-abr-</u>
<u>asbr-frr</u>	00.txt, February 2003, Work in progress.
Fraincasing	[INTER-AS-TE-REQS] Zhang et al, "MPLS Inter-AS Traffic
Engineering progress).	requirements", <u>draft-tewg-interas-te-req-01.txt</u> (work in
	[INTER-AS-TE] Vasseur and Zhang, "MPLS Inter-AS Traffic
Engineering",	draft-vasseur-mpls-inter-as-te-00.txt, February 2003, work in
progress.	
	Authors' Address:
	Jean Philippe Vasseur Cisco Systems, Inc. <u>300</u> Apollo Drive Chelmsford, MA 01824 USA Email: jpv@cisco.com
	Zafar Ali Cisco Systems, Inc. <u>100</u> South Main St. #200 Ann Arbor, MI 48104 USA zali@cisco.com

Siva Sivabalan Cisco Systems, Inc. 2000 Innovation Drive Kanata, Ontario, K2K 3E8 Canada msiva@cisco.com

Vasseur, Ali and

Sivabalan

8