
Workgroup: Internet Engineering Task Force

Internet-Draft: draft-vaughn-tlstm-update-01

Updates: 6353 (if approved)

Published: 27 June 2021

Intended Status: Standards Track

Expires: 29 December 2021

Authors: K. Vaughn, Ed.

Trevilon LLC

Transport Layer Security Verion 1.3 (TLS 1.3) Transport Model for the

Simple Network Management Protocol Version 3 (SNMPv3)

Abstract

This document updates the TLS Transport Model (TLSTM), as defined in

[RFC6353], to support Transport Layer Security Version 1.3 (TLS)

[RFC8446] and Datagram Transport Layer Security Version 1.3 (DTLS)

[I-D.ietf-tls-dtls13], which are jointly known as "(D)TLS". This

document may be applicable to future versions of SNMP and (D)TLS.

This document updates the SNMP-TLS-TM-MIB as defined in [RFC6353].

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 29 December 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc6353
https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions

2. Changes from RFC 6353

2.1. TLSTM Fingerprint

2.2. Security Level

2.3. TLS Version

2.4. SNMP Version

2.5. Common Name

3. Additional Rules for TLS 1.3

3.1. Zero Round Trip Time Resumption (0-RTT)

3.2. TLS ciphersuites, extensions and protocol invariants

4. MIB Module Definition

5. Security Considerations

5.1. MIB Module Security

6. IANA Considerations

7. Acknowledgements

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Target and Notification Configuration Example

A.1. Configuring a Notification Originator

A.2. Configuring TLSTM to Utilize a Simple Derivation of

tmSecurityName

A.3. Configuring TLSTM to Utilize Table-Driven Certificate

Mapping

Author's Address

1. Introduction

This document updates the fingerprint algorithm defined by [RFC6353]

to support the ciphersuites used by Transport Layer Security Version

1.3 (TLS) and Datagram Transport Layer Security Version 1.3 (DTLS),

which are jointly known as "(D)TLS". The update also incorporates

other less critical updates. Although the title and text of this

document specifically reference SNMPv3 and (D)TLS 1.3, this document

may be applicable to future versions of these protocols.

1.1. Conventions

Within this document the terms "TLS", "DTLS", "(D)TLS", "SNMP", and

"TLSTM" mean "TLS 1.3", "DTLS 1.3", "TLS 1.3 and/or DTLS 1.3",

"SMNPv3", and "TLSTM 1.3", respectively. These version numbers are

only used when the text needs to emphasize version numbers, such as

¶

¶

within the title. When this document refers to any other version of

these protocols, it always explicitly states the version intended.

For consistency with SNMP-related specifications, this document

favors terminology as defined in [STD62], rather than favoring

terminology that is consistent with non-SNMP specifications. This is

consistent with the IESG decision to not require the SNMPv3

terminology be modified to match the usage of other non-SNMP

specifications when SNMPv3 was advanced to a Full Standard.

"Authentication" in this document typically refers to the English

meaning of "serving to prove the authenticity of" the message, not

data source authentication or peer identity authentication. The

terms "manager" and "agent" are not used in this document because,

in the RFC3411 architecture, all SNMP entities have the capability

of acting as manager, agent, or both depending on the SNMP

application types supported in the implementation. Where distinction

is necessary, the application names of command generator, command

responder, notification originator, notification receiver, and proxy

forwarder are used. See "SNMP Applications" (RFC3411) for further

information.

Throughout this document, the terms "client" and "server" are used

to refer to the two ends of the TLS transport connection. The client

actively opens the TLS connection, and the server passively listens

for the incoming TLS connection. An SNMP entity MAY act as a TLS

client or server or both, depending on the SNMP applications

supported.

While TLS frequently refers to a user, the terminology preferred in

RFC3411 and in this memo is "principal". A principal is the "who" on

whose behalf services are provided or processing takes place. A

principal can be, among other things, an individual acting in a

particular role; a set of individuals, with each acting in a

particular role; an application or a set of applications, or a

combination of these within an administrative domain.

Throughout this document, the term "session" is used to refer to a

secure association between two TLS Transport Models that permits the

transmission of one or more SNMP messages within the lifetime of the

session. The TLS protocol also has an internal notion of a session

and although these two concepts of a session are related, when the

term "session" is used this document is referring to the TLSTM's

specific session and not directly to the TLS protocol's session.

The User-Based Security Model (USM) (RFC3414) is a mandatory-to-

implement Security Model in [STD62]. The USM derives the

securityName and securityLevel from the SNMP message received, even

when the message was received over a secure transport. It is

¶

¶

¶

¶

¶

RECOMMENDED that deployments that support the TLSTM disable the USM,

if it has been implemented.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", NOT RECOMMENDED, "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

[RFC2119].

2. Changes from RFC 6353

This document updates [RFC6353]. The changes from [RFC6353] are

defined in the following clauses.

2.1. TLSTM Fingerprint

[RFC6353] defines a fingerprint algorithm that references the one-

octet TLS 1.2 hash algorithm identifier. TLS 1.3 replaced the one-

octet hash algorithm identifier with a two-octet TLS 1.3 cipher

suite identifier thereby breaking the algorithm defined in

[RFC6353]. The update to the SNMP-TLS-TM-MIB, as defined in Section

4, deprecates the original fingerprint TEXTUAL-CONVENTION and

replaces it with a new TEXTUAL-CONVENTION.

The change also required an update to several objects within the

tables defined within the SNMP-TLS-TM-MIB; further these objects are

referernced by other (e.g., RowStatus) objects in a manner that

requires deprecating and replacing the tables in their entirety.

Thus, while the number of objects deprecated and replaced is

significant the semantics of the changes are minor.

References to the older objects within [RFC6353] are applicable to

the replacement objects. The newer objects are identified with names

similar to those used in the original MIB but with a "13" inserted

to reference TLS 1.3.

2.2. Security Level

The RFC3411 architecture recognizes three levels of security:

without authentication and without privacy (noAuthNoPriv)

with authentication but without privacy (authNoPriv)

with authentication and with privacy (authPriv)

With (D)TLS 1.3, authentication and privacy are always provided.

Hence, all exchanges conforming to the rules of this document will

include authentication and privacy, regardless of the security level

requested. This is consistent with what was prescribed in RFC6353,

where a TLS Transport Model is expected to provide for outgoing

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

connections with a security level at least that of the requested

security level.

2.3. TLS Version

[RFC6353] stated that TLSTM clients and servers MUST NOT request,

offer, or use SSL 2.0. This document extends this statement such

that TLSTM clients and servers MUST NOT request, offer, or use SSL

3.0, (D)TLSv 1.0, (D)TLS v1.1. See Appendix D.5 of [RFC8446] for

further details. For backward compatibility issues with older TLS

versions, see Appendix D of [RFC8446].

An implementation that supports these older protocols is not

considered conformant to the TLSTM while the older protocols are

enabled.

2.4. SNMP Version

[RFC6353] stated that using a non-transport-aware Security Model

with a secure Transport Model was not recommended. This document

tightens this statement such that TLSTM clients and servers MUST NOT

request, offer, or use SNMPv1 or SNMPv2c message processing

described in [RFC3584], or the User-based Security Model of SNMPv3.

An implementation that supports these older protocols is not

considered conformant to the TLSTM while the older protocols are

enabled.

2.5. Common Name

[RFC6353] stated that the use of a certificate's CommonName is

deprecated and users were encouraged to use the subjectAltName. This

document tightens this statement such that TLSTM clients and servers

MUST NOT use the CommonName.

3. Additional Rules for TLS 1.3

This document specifies additional rules and clarifications for the

use of TLS 1.3.

3.1. Zero Round Trip Time Resumption (0-RTT)

TLS 1.3 implementations for SNMPv3 MUST NOT enable the 0-RTT mode of

session resumption (either sending or accepting) and MUST NOT

automatically resend 0-RTT data if it is rejected by the server. The

reason 0-RTT is disallowed is that there are no "safe" messages that

if replayed will be guaranteed to cause no harm at a server side:

all incoming notification or command responses are meant to be acted

upon only once. See Security considerations section for further

details.

¶

¶

¶

¶

¶

¶

¶

¶

TLS TM clients and servers MUST NOT request, offer or use the 0-RTT

mode of TLS 1.3. [RFC8446] removed the renegotiation supported in

TLS 1.2 [RFC5246]; for session resumption, it introduced a zero-RTT

(0-RTT) mode, saving a round-trip at connection setup at the cost of

increased risk of replay attacks (it is possible for servers to

guard against this attack by keeping track of all the messages

received). [RFC8446] requires a profile be written for any

application that wants to use 0-RTT, specifying which messages are

"safe to use" on this mode. The reason 0-RTT is disallowed here is

that there are no "safe" SNMPv3 messages that if replayed will be

sure to cause no harm at a server side: all incoming notification or

command responses have consequences and are to be acted upon only

once.

Renegotiation of sessions is not supported as it is not supported by

TLS 1.3.

3.2. TLS ciphersuites, extensions and protocol invariants

[RFC8446] section 9 requires that, in the absence of application

profiles, certain cipher suites, TLS extensions, and TLS protocol

invariants are mandatory to implement. This document does not

specify an application profile, hence all of the compliance

requirements in [RFC8446] apply.

¶

¶

¶

4. MIB Module Definition

SNMP-TLS-TM-MIB DEFINITIONS ::= BEGIN

IMPORTS

 MODULE-IDENTITY, OBJECT-TYPE,

 OBJECT-IDENTITY, mib-2, snmpDomains,

 Counter32, Unsigned32, Gauge32, NOTIFICATION-TYPE

 FROM SNMPv2-SMI -- RFC 2578 or any update thereof

 TEXTUAL-CONVENTION, TimeStamp, RowStatus, StorageType,

 AutonomousType

 FROM SNMPv2-TC -- RFC 2579 or any update thereof

 MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP

 FROM SNMPv2-CONF -- RFC 2580 or any update thereof

 SnmpAdminString

 FROM SNMP-FRAMEWORK-MIB -- RFC 3411 or any update thereof

 snmpTargetParamsName, snmpTargetAddrName

 FROM SNMP-TARGET-MIB -- RFC 3413 or any update thereof

 ;

snmpTlstmMIB MODULE-IDENTITY

 LAST-UPDATED "202106220000Z"

 ORGANIZATION "ISMS Working Group"

 CONTACT-INFO "Kenneth Vaughn

 Trevilon LLC

 6606 FM 1488 RD, STE 503

 Magnolia, TX 77354

 USA

 kvaughn@trevilon.com

 DESCRIPTION "

 The TLS Transport Model MIB

 Copyright (c) 2010-2021 IETF Trust and the persons identified

 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject

 to the license terms contained in, the Simplified BSD License

 set forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (http://trustee.ietf.org/license-info)."

 REVISION "202106220000Z"

 DESCRIPTION "This version of this MIB module is part of

 RFC XXXX; see the RFC itself for full legal

 notices. This version updated the MIB to

 support (D)TLS 1.3."

 REVISION "201107190000Z"

 DESCRIPTION "This version of this MIB module is part of

 RFC 6353; see the RFC itself for full legal

 notices. The only change was to introduce

 new wording to reflect require changes for

 IDNA addresses in the SnmpTLSAddress TC."

 REVISION "201005070000Z"

 DESCRIPTION "This version of this MIB module is part of

 RFC 5953; see the RFC itself for full legal

 notices."

 ::= { mib-2 198 }

-- **

-- subtrees of the SNMP-TLS-TM-MIB

-- **

snmpTlstmNotifications OBJECT IDENTIFIER ::= { snmpTlstmMIB 0 }

snmpTlstmIdentities OBJECT IDENTIFIER ::= { snmpTlstmMIB 1 }

snmpTlstmObjects OBJECT IDENTIFIER ::= { snmpTlstmMIB 2 }

snmpTlstmConformance OBJECT IDENTIFIER ::= { snmpTlstmMIB 3 }

-- **

-- snmpTlstmObjects - Objects

-- **

snmpTLSTCPDomain OBJECT-IDENTITY

 STATUS current

 DESCRIPTION

 "The SNMP over TLS via TCP transport domain. The

 corresponding transport address is of type SnmpTLSAddress.

 The securityName prefix to be associated with the

 snmpTLSTCPDomain is 'tls'. This prefix may be used by

 security models or other components to identify which secure

 transport infrastructure authenticated a securityName."

 REFERENCE

 "RFC 2579: Textual Conventions for SMIv2"

 ::= { snmpDomains 8 }

snmpDTLSUDPDomain OBJECT-IDENTITY

 STATUS deprecated

 DESCRIPTION

 "The SNMP over DTLS via UDP transport domain. The

 corresponding transport address is of type SnmpTLSAddress.

 The securityName prefix to be associated with the

 snmpDTLSUDPDomain is 'dtls'. This prefix may be used by

 security models or other components to identify which secure

 transport infrastructure authenticated a securityName."

 REFERENCE

 "RFC 2579: Textual Conventions for SMIv2"

 ::= { snmpDomains 9 }

SnmpTLSAddress ::= TEXTUAL-CONVENTION

 DISPLAY-HINT "1a"

 STATUS current

 DESCRIPTION

 "Represents an IPv4 address, an IPv6 address, or a

 US-ASCII-encoded hostname and port number.

 An IPv4 address must be in dotted decimal format followed by a

 colon ':' (US-ASCII character 0x3A) and a decimal port number

 in US-ASCII.

 An IPv6 address must be a colon-separated format (as described

 in RFC 5952), surrounded by square brackets ('[', US-ASCII

 character 0x5B, and ']', US-ASCII character 0x5D), followed by

 a colon ':' (US-ASCII character 0x3A) and a decimal port number

 in US-ASCII.

 A hostname is always in US-ASCII (as per RFC 1123);

 internationalized hostnames are encoded as A-labels as

 specified in RFC 5890. The hostname is followed by a

 colon ':' (US-ASCII character 0x3A) and a decimal port number

 in US-ASCII. The name SHOULD be fully qualified whenever

 possible.

 Values of this textual convention may not be directly usable

 as transport-layer addressing information, and may require

 run-time resolution. As such, applications that write them

 must be prepared for handling errors if such values are not

 supported, or cannot be resolved (if resolution occurs at the

 time of the management operation).

 The DESCRIPTION clause of TransportAddress objects that may

 have SnmpTLSAddress values must fully describe how (and

 when) such names are to be resolved to IP addresses and vice

 versa.

 This textual convention SHOULD NOT be used directly in object

 definitions since it restricts addresses to a specific

 format. However, if it is used, it MAY be used either on its

 own or in conjunction with TransportAddressType or

 TransportDomain as a pair.

 When this textual convention is used as a syntax of an index

 object, there may be issues with the limit of 128

 sub-identifiers specified in SMIv2 (STD 58). It is

 RECOMMENDED that all MIB documents using this textual

 convention make explicit any limitations on index component

 lengths that management software must observe. This may be

 done either by including SIZE constraints on the index

 components or by specifying applicable constraints in the

 conceptual row DESCRIPTION clause or in the surrounding

 documentation."

 REFERENCE

 "RFC 1123: Requirements for Internet Hosts - Application and

 Support

 RFC 5890: Internationalized Domain Names for Applications

 (IDNA): Definitions and Document Framework

 RFC 5952: A Recommendation for IPv6 Address Text Representation

 "

 SYNTAX OCTET STRING (SIZE (1..255))

SnmpTLSFingerprint ::= TEXTUAL-CONVENTION

 DISPLAY-HINT "1x:1x"

 STATUS deprecated

 DESCRIPTION

 "A fingerprint value that can be used to uniquely reference

 other data of potentially arbitrary length.

 An SnmpTLSFingerprint value is composed of a 1-octet hashing

 algorithm identifier followed by the fingerprint value. The

 octet value encoded is taken from the IANA TLS HashAlgorithm

 Registry (RFC 5246). The remaining octets are filled using the

 results of the hashing algorithm.

 This TEXTUAL-CONVENTION allows for a zero-length (blank)

 SnmpTLSFingerprint value for use in tables where the

 fingerprint value may be optional. MIB definitions or

 implementations may refuse to accept a zero-length value as

 appropriate.

 This textual convention was deprecated because TLS 1.3 uses a

 2-octet cipher suite identifier rather than a 1-octet hashing

 algorithm identifier."

 REFERENCE "RFC 5246: The Transport Layer

 Security (TLS) Protocol Version 1.2

 http://www.iana.org/assignments/tls-parameters/

 "

 SYNTAX OCTET STRING (SIZE (0..255))

SnmpTLS13Fingerprint ::= TEXTUAL-CONVENTION

 DISPLAY-HINT "1x,1x"

 STATUS current

 DESCRIPTION

 "A fingerprint value that can be used to uniquely reference

 other data of potentially arbitrary length.

 An SnmpTLS13Fingerprint value is composed of a 2-octet cipher

 suite identifier followed by the fingerprint value. The

 octet value encoded is taken from the IANA TLS Cipher Suites

 Registry(RFC 8446). The remaining octets are filled using the

 results of the hashing algorithm, up to the first 253 octets.

 This TEXTUAL-CONVENTION allows for a zero-length (blank)

 SnmpTLS13Fingerprint value for use in tables where the

 fingerprint value may be optional. MIB definitions or

 implementations may refuse to accept a zero-length value as

 appropriate."

 REFERENCE "RFC 8446: The Transport Layer

 Security (TLS) Protocol Version 1.3

 http://www.iana.org/assignments/tls-parameters/

 "

 SYNTAX OCTET STRING (SIZE (0..255))

-- Identities for use in the snmpTlstmCertToTSNTable and

-- snmpTlstmCertToTSN13Table

snmpTlstmCertToTSNMIdentities OBJECT IDENTIFIER

 ::= { snmpTlstmIdentities 1 }

snmpTlstmCertSpecified OBJECT-IDENTITY

 STATUS current

 DESCRIPTION "Directly specifies the tmSecurityName to be used for

 this certificate. The value of the tmSecurityName

 to use is specified in the snmpTlstmCertToTSN13Data

 column. The snmpTlstmCertToTSN13Data column must

 contain a non-zero length SnmpAdminString compliant

 value or the mapping described in this row must be

 considered a failure."

 ::= { snmpTlstmCertToTSNMIdentities 1 }

snmpTlstmCertSANRFC822Name OBJECT-IDENTITY

 STATUS current

 DESCRIPTION "Maps a subjectAltName's rfc822Name to a

 tmSecurityName. The local part of the rfc822Name is

 passed unaltered but the host-part of the name must

 be passed in lowercase. This mapping results in a

 1:1 correspondence between equivalent subjectAltName

 rfc822Name values and tmSecurityName values except

 that the host-part of the name MUST be passed in

 lowercase.

 Example rfc822Name Field: FooBar@Example.COM

 is mapped to tmSecurityName: FooBar@example.com."

 ::= { snmpTlstmCertToTSNMIdentities 2 }

snmpTlstmCertSANDNSName OBJECT-IDENTITY

 STATUS current

 DESCRIPTION "Maps a subjectAltName's dNSName to a

 tmSecurityName after first converting it to all

 lowercase (RFC 5280 does not specify converting to

 lowercase so this involves an extra step). This

 mapping results in a 1:1 correspondence between

 subjectAltName dNSName values and the tmSecurityName

 values."

 REFERENCE "RFC 5280 - Internet X.509 Public Key Infrastructure

 Certificate and Certificate Revocation

 List (CRL) Profile."

 ::= { snmpTlstmCertToTSNMIdentities 3 }

snmpTlstmCertSANIpAddress OBJECT-IDENTITY

 STATUS current

 DESCRIPTION "Maps a subjectAltName's iPAddress to a

 tmSecurityName by transforming the binary encoded

 address as follows:

 1) for IPv4, the value is converted into a

 decimal-dotted quad address (e.g., '192.0.2.1').

 2) for IPv6 addresses, the value is converted into a

 32-character all lowercase hexadecimal string

 without any colon separators.

 This mapping results in a 1:1 correspondence between

 subjectAltName iPAddress values and the

 tmSecurityName values.

 The resulting length of an encoded IPv6 address is

 the maximum length supported by the View-Based

 Access Control Model (VACM). Using both the

 Transport Security Model's support for transport

 prefixes (see the SNMP-TSM-MIB's

 snmpTsmConfigurationUsePrefix object for details)

 will result in securityName lengths that exceed what

 VACM can handle."

 ::= { snmpTlstmCertToTSNMIdentities 4 }

snmpTlstmCertSANAny OBJECT-IDENTITY

 STATUS current

 DESCRIPTION "Maps any of the following fields using the

 corresponding mapping algorithms:

 |------------+----------------------------|

 | Type | Algorithm |

 |------------+----------------------------|

 | rfc822Name | snmpTlstmCertSANRFC822Name |

 | dNSName | snmpTlstmCertSANDNSName |

 | iPAddress | snmpTlstmCertSANIpAddress |

 |------------+----------------------------|

 The first matching subjectAltName value found in the

 certificate of the above types MUST be used when

 deriving the tmSecurityName. The mapping algorithm

 specified in the 'Algorithm' column MUST be used to

 derive the tmSecurityName.

 This mapping results in a 1:1 correspondence between

 subjectAltName values and tmSecurityName values. The

 three sub-mapping algorithms produced by this

 combined algorithm cannot produce conflicting

 results between themselves."

 ::= { snmpTlstmCertToTSNMIdentities 5 }

snmpTlstmCertCommonName OBJECT-IDENTITY

 STATUS deprecated

 DESCRIPTION "Maps a certificate's CommonName to a tmSecurityName

 after converting it to a UTF-8 encoding. The usage

 of CommonNames is deprecated and users are

 encouraged to use subjectAltName mapping methods

 instead. This mapping results in a 1:1

 correspondence between certificate CommonName values

 and tmSecurityName values."

 ::= { snmpTlstmCertToTSNMIdentities 6 }

-- The snmpTlstmSession Group

snmpTlstmSession OBJECT IDENTIFIER ::= { snmpTlstmObjects 1 }

snmpTlstmSessionOpens OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of times an openSession() request has been executed

 as a (D)TLS client, regardless of whether it succeeded or

 failed."

 ::= { snmpTlstmSession 1 }

snmpTlstmSessionClientCloses OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of times a closeSession() request has been

 executed as a (D)TLS client, regardless of whether it

 succeeded or failed."

 ::= { snmpTlstmSession 2 }

snmpTlstmSessionOpenErrors OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of times an openSession() request failed to open a

 session as a (D)TLS client, for any reason."

 ::= { snmpTlstmSession 3 }

snmpTlstmSessionAccepts OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of times a (D)TLS server has accepted a new

 connection from a client and has received at least one SNMP

 message through it."

 ::= { snmpTlstmSession 4 }

snmpTlstmSessionServerCloses OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of times a closeSession() request has been

 executed as a (D)TLS server, regardless of whether it

 succeeded or failed."

 ::= { snmpTlstmSession 5 }

snmpTlstmSessionNoSessions OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of times an outgoing message was dropped because

 the session associated with the passed tmStateReference was no

 longer (or was never) available."

 ::= { snmpTlstmSession 6 }

snmpTlstmSessionInvalidClientCertificates OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of times an incoming session was not established

 on a (D)TLS server because the presented client certificate

 was invalid. Reasons for invalidation include, but are not

 limited to, cryptographic validation failures or lack of a

 suitable mapping row in the snmpTlstmCertToTSNTable or the

 snmpTlstmCertToTSN13Table."

 ::= { snmpTlstmSession 7 }

snmpTlstmSessionUnknownServerCertificate OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of times an outgoing session was not established

 on a (D)TLS client because the server certificate presented

 by an SNMP over (D)TLS server was invalid because no

 configured fingerprint or Certification Authority (CA) was

 acceptable to validate it.

 This may result because there was no entry in the

 snmpTlstmAddrTable (or snmpTlstmAddr13Table) or because no

 path could be found to a known CA."

 ::= { snmpTlstmSession 8 }

snmpTlstmSessionInvalidServerCertificates OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of times an outgoing session was not established

 on a (D)TLS client because the server certificate presented

 by an SNMP over (D)TLS server could not be validated even if

 the fingerprint or expected validation path was known. That

 is, a cryptographic validation error occurred during

 certificate validation processing.

 Reasons for invalidation include, but are not

 limited to, cryptographic validation failures."

 ::= { snmpTlstmSession 9 }

snmpTlstmSessionInvalidCaches OBJECT-TYPE

 SYNTAX Counter32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The number of outgoing messages dropped because the

 tmStateReference referred to an invalid cache."

 ::= { snmpTlstmSession 10 }

-- Configuration Objects

snmpTlstmConfig OBJECT IDENTIFIER ::= {snmpTlstmObjects 2}

-- Certificate mapping

snmpTlstmCertificateMapping OBJECT IDENTIFIER ::= {snmpTlstmConfig 1}

snmpTlstmCertToTSNCount OBJECT-TYPE

 SYNTAX Gauge32

 MAX-ACCESS read-only

 STATUS deprecated

 DESCRIPTION

 "A count of the number of entries in the

 snmpTlstmCertToTSNTable."

 ::= { snmpTlstmCertificateMapping 1 }

snmpTlstmCertToTSNTableLastChanged OBJECT-TYPE

 SYNTAX TimeStamp

 MAX-ACCESS read-only

 STATUS deprecated

 DESCRIPTION

 "The value of sysUpTime.0 when the snmpTlstmCertToTSNTable was

 last modified through any means, or 0 if it has not been

 modified since the command responder was started."

 ::= { snmpTlstmCertificateMapping 2 }

snmpTlstmCertToTSNTable OBJECT-TYPE

 SYNTAX SEQUENCE OF SnmpTlstmCertToTSNEntry

 MAX-ACCESS not-accessible

 STATUS deprecated

 DESCRIPTION

 "This table is used by a (D)TLS server to map the (D)TLS

 client's presented X.509 certificate to a tmSecurityName.

 On an incoming (D)TLS/SNMP connection, the client's presented

 certificate must either be validated based on an established

 trust anchor, or it must directly match a fingerprint in this

 table. This table does not provide any mechanisms for

 configuring the trust anchors; the transfer of any needed

 trusted certificates for path validation is expected to occur

 through an out-of-band transfer.

 Once the certificate has been found acceptable (either by path

 validation or directly matching a fingerprint in this table),

 this table is consulted to determine the appropriate

 tmSecurityName to identify with the remote connection. This

 is done by considering each active row from this table in

 prioritized order according to its snmpTlstmCertToTSNID value.

 Each row's snmpTlstmCertToTSNFingerprint value determines

 whether the row is a match for the incoming connection:

 1) If the row's snmpTlstmCertToTSNFingerprint value

 identifies the presented certificate, then consider the

 row as a successful match.

 2) If the row's snmpTlstmCertToTSNFingerprint value

 identifies a locally held copy of a trusted CA

 certificate and that CA certificate was used to

 validate the path to the presented certificate, then

 consider the row as a successful match.

 Once a matching row has been found, the

 snmpTlstmCertToTSNMapType value can be used to determine how

 the tmSecurityName to associate with the session should be

 determined. See the snmpTlstmCertToTSNMapType column's

 DESCRIPTION for details on determining the tmSecurityName

 value. If it is impossible to determine a tmSecurityName from

 the row's data combined with the data presented in the

 certificate, then additional rows MUST be searched looking for

 another potential match. If a resulting tmSecurityName mapped

 from a given row is not compatible with the needed

 requirements of a tmSecurityName (e.g., VACM imposes a

 32-octet-maximum length and the certificate derived

 securityName could be longer), then it must be considered an

 invalid match and additional rows MUST be searched looking for

 another potential match.

 If no matching and valid row can be found, the connection MUST

 be closed and SNMP messages MUST NOT be accepted over it.

 Missing values of snmpTlstmCertToTSNID are acceptable and

 implementations should continue to the next highest numbered

 row. It is recommended that administrators skip index values

 to leave room for the insertion of future rows (for example,

 use values of 10 and 20 when creating initial rows).

 Users are encouraged to make use of certificates with

 subjectAltName fields that can be used as tmSecurityNames so

 that a single root CA certificate can allow all child

 certificate's subjectAltName to map directly to a

 tmSecurityName via a 1:1 transformation. However, this table

 is flexible to allow for situations where existing deployed

 certificate infrastructures do not provide adequate

 subjectAltName values for use as tmSecurityNames.

 Direct mapping from each individual

 certificate fingerprint to a tmSecurityName is also possible

 but requires one entry in the table per tmSecurityName and

 requires more management operations to completely configure a

 device.

 This table and its associated objects were deprecated because

 the fingerprint format changed to support TLS 1.3. By

 deprecating (and creating an updated) table, rather than just

 the fingerprint object, an implementation is able to support

 both the original TLS and new TLS 1.3 tables while forcing some

 agents to only use TLS 1.3."

 ::= { snmpTlstmCertificateMapping 3 }

snmpTlstmCertToTSNEntry OBJECT-TYPE

 SYNTAX SnmpTlstmCertToTSNEntry

 MAX-ACCESS not-accessible

 STATUS deprecated

 DESCRIPTION

 "A row in the snmpTlstmCertToTSNTable that specifies a mapping

 for an incoming (D)TLS certificate to a tmSecurityName to use

 for a connection."

 INDEX { snmpTlstmCertToTSNID }

 ::= { snmpTlstmCertToTSNTable 1 }

SnmpTlstmCertToTSNEntry ::= SEQUENCE {

 snmpTlstmCertToTSNID Unsigned32,

 snmpTlstmCertToTSNFingerprint SnmpTLSFingerprint,

 snmpTlstmCertToTSNMapType AutonomousType,

 snmpTlstmCertToTSNData OCTET STRING,

 snmpTlstmCertToTSNStorageType StorageType,

 snmpTlstmCertToTSNRowStatus RowStatus

}

snmpTlstmCertToTSNID OBJECT-TYPE

 SYNTAX Unsigned32 (1..4294967295)

 MAX-ACCESS not-accessible

 STATUS deprecated

 DESCRIPTION

 "A unique, prioritized index for the given entry. Lower

 numbers indicate a higher priority."

 ::= { snmpTlstmCertToTSNEntry 1 }

snmpTlstmCertToTSNFingerprint OBJECT-TYPE

 SYNTAX SnmpTLSFingerprint (SIZE(1..255))

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "A cryptographic hash of an X.509 certificate. The results of

 a successful matching fingerprint to either the trusted CA in

 the certificate validation path or to the certificate itself

 is dictated by the snmpTlstmCertToTSNMapType column.

 This object was deprecated because TLS 1.3 uses a 2-octet

 cipher suite identifier rather than a 1-octet hashing algorithm

 identifier."

 ::= { snmpTlstmCertToTSNEntry 2 }

snmpTlstmCertToTSNMapType OBJECT-TYPE

 SYNTAX AutonomousType

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "Specifies the mapping type for deriving a tmSecurityName from

 a certificate. Details for mapping of a particular type SHALL

 be specified in the DESCRIPTION clause of the OBJECT-IDENTITY

 that describes the mapping. If a mapping succeeds it will

 return a tmSecurityName for use by the TLSTM model and

 processing stops.

 If the resulting mapped value is not compatible with the

 needed requirements of a tmSecurityName (e.g., VACM imposes a

 32-octet-maximum length and the certificate derived

 securityName could be longer), then future rows MUST be

 searched for additional snmpTlstmCertToTSNFingerprint matches

 to look for a mapping that succeeds.

 Suitable values for assigning to this object that are defined

 within the SNMP-TLS-TM-MIB can be found in the

 snmpTlstmCertToTSNMIdentities portion of the MIB tree."

 DEFVAL { snmpTlstmCertSpecified }

 ::= { snmpTlstmCertToTSNEntry 3 }

snmpTlstmCertToTSNData OBJECT-TYPE

 SYNTAX OCTET STRING (SIZE(0..1024))

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "Auxiliary data used as optional configuration information for

 a given mapping specified by the snmpTlstmCertToTSNMapType

 column. Only some mapping systems will make use of this

 column. The value in this column MUST be ignored for any

 mapping type that does not require data present in this

 column."

 DEFVAL { "" }

 ::= { snmpTlstmCertToTSNEntry 4 }

snmpTlstmCertToTSNStorageType OBJECT-TYPE

 SYNTAX StorageType

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "The storage type for this conceptual row. Conceptual rows

 having the value 'permanent' need not allow write-access to

 any columnar objects in the row."

 DEFVAL { nonVolatile }

 ::= { snmpTlstmCertToTSNEntry 5 }

snmpTlstmCertToTSNRowStatus OBJECT-TYPE

 SYNTAX RowStatus

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "The status of this conceptual row. This object may be used

 to create or remove rows from this table.

 To create a row in this table, an administrator must set this

 object to either createAndGo(4) or createAndWait(5).

 Until instances of all corresponding columns are appropriately

 configured, the value of the corresponding instance of the

 snmpTlstmParamsRowStatus column is notReady(3).

 In particular, a newly created row cannot be made active until

 the corresponding snmpTlstmCertToTSNFingerprint,

 snmpTlstmCertToTSNMapType, and snmpTlstmCertToTSNData columns

 have been set.

 The following objects may not be modified while the

 value of this object is active(1):

 - snmpTlstmCertToTSNFingerprint

 - snmpTlstmCertToTSNMapType

 - snmpTlstmCertToTSNData

 An attempt to set these objects while the value of

 snmpTlstmParamsRowStatus is active(1) will result in

 an inconsistentValue error."

 ::= { snmpTlstmCertToTSNEntry 6 }

-- Maps tmSecurityNames to certificates for use by SNMP-TARGET-MIB

snmpTlstmParamsCount OBJECT-TYPE

 SYNTAX Gauge32

 MAX-ACCESS read-only

 STATUS deprecated

 DESCRIPTION

 "A count of the number of entries in the snmpTlstmParamsTable."

 ::= { snmpTlstmCertificateMapping 4 }

snmpTlstmParamsTableLastChanged OBJECT-TYPE

 SYNTAX TimeStamp

 MAX-ACCESS read-only

 STATUS deprecated

 DESCRIPTION

 "The value of sysUpTime.0 when the snmpTlstmParamsTable

 was last modified through any means, or 0 if it has not been

 modified since the command responder was started."

 ::= { snmpTlstmCertificateMapping 5 }

snmpTlstmParamsTable OBJECT-TYPE

 SYNTAX SEQUENCE OF SnmpTlstmParamsEntry

 MAX-ACCESS not-accessible

 STATUS deprecated

 DESCRIPTION

 "This table is used by a (D)TLS client when a (D)TLS

 connection is being set up using an entry in the

 SNMP-TARGET-MIB. It extends the SNMP-TARGET-MIB's

 snmpTargetParamsTable with a fingerprint of a certificate to

 use when establishing such a (D)TLS connection."

 ::= { snmpTlstmCertificateMapping 6 }

snmpTlstmParamsEntry OBJECT-TYPE

 SYNTAX SnmpTlstmParamsEntry

 MAX-ACCESS not-accessible

 STATUS deprecated

 DESCRIPTION

 "A conceptual row containing a fingerprint hash of a locally

 held certificate for a given snmpTargetParamsEntry. The

 values in this row should be ignored if the connection that

 needs to be established, as indicated by the SNMP-TARGET-MIB

 infrastructure, is not a certificate and TLS based

 connection. The connection SHOULD NOT be established if the

 certificate fingerprint stored in this entry does not point to

 a valid locally held certificate or if it points to an

 unusable certificate (such as might happen when the

 certificate's expiration date has been reached)."

 INDEX { IMPLIED snmpTargetParamsName }

 ::= { snmpTlstmParamsTable 1 }

SnmpTlstmParamsEntry ::= SEQUENCE {

 snmpTlstmParamsClientFingerprint SnmpTLSFingerprint,

 snmpTlstmParamsStorageType StorageType,

 snmpTlstmParamsRowStatus RowStatus

}

snmpTlstmParamsClientFingerprint OBJECT-TYPE

 SYNTAX SnmpTLSFingerprint

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "This object stores the hash of the public portion of a

 locally held X.509 certificate. The X.509 certificate, its

 public key, and the corresponding private key will be used

 when initiating a TLS connection as a TLS client."

 ::= { snmpTlstmParamsEntry 1 }

snmpTlstmParamsStorageType OBJECT-TYPE

 SYNTAX StorageType

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "The storage type for this conceptual row. Conceptual rows

 having the value 'permanent' need not allow write-access to

 any columnar objects in the row."

 DEFVAL { nonVolatile }

 ::= { snmpTlstmParamsEntry 2 }

snmpTlstmParamsRowStatus OBJECT-TYPE

 SYNTAX RowStatus

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "The status of this conceptual row. This object may be used

 to create or remove rows from this table.

 To create a row in this table, an administrator must set this

 object to either createAndGo(4) or createAndWait(5).

 Until instances of all corresponding columns are appropriately

 configured, the value of the corresponding instance of the

 snmpTlstmParamsRowStatus column is notReady(3).

 In particular, a newly created row cannot be made active until

 the corresponding snmpTlstmParamsClientFingerprint column has

 been set.

 The snmpTlstmParamsClientFingerprint object may not be modified

 while the value of this object is active(1).

 An attempt to set these objects while the value of

 snmpTlstmParamsRowStatus is active(1) will result in

 an inconsistentValue error."

 ::= { snmpTlstmParamsEntry 3 }

mpTlstmAddrCount OBJECT-TYPE

 SYNTAX Gauge32

 MAX-ACCESS read-only

 STATUS deprecated

 DESCRIPTION

 "A count of the number of entries in the snmpTlstmAddrTable."

 ::= { snmpTlstmCertificateMapping 7 }

snmpTlstmAddrTableLastChanged OBJECT-TYPE

 SYNTAX TimeStamp

 MAX-ACCESS read-only

 STATUS deprecated

 DESCRIPTION

 "The value of sysUpTime.0 when the snmpTlstmAddrTable

 was last modified through any means, or 0 if it has not been

 modified since the command responder was started."

 ::= { snmpTlstmCertificateMapping 8 }

snmpTlstmAddrTable OBJECT-TYPE

 SYNTAX SEQUENCE OF SnmpTlstmAddrEntry

 MAX-ACCESS not-accessible

 STATUS deprecated

 DESCRIPTION

 "This table is used by a TLS client when a TLS

 connection is being set up using an entry in the

 SNMP-TARGET-MIB. It extends the SNMP-TARGET-MIB's

 snmpTargetAddrTable so that the client can verify that the

 correct server has been reached. This verification can use

 either a certificate fingerprint, or an identity

 authenticated via certification path validation.

 If there is an active row in this table corresponding to the

 entry in the SNMP-TARGET-MIB that was used to establish the

 connection, and the row's snmpTlstmAddrServerFingerprint

 column has non-empty value, then the server's presented

 certificate is compared with the

 snmpTlstmAddrServerFingerprint value (and the

 snmpTlstmAddrServerIdentity column is ignored). If the

 fingerprint matches, the verification has succeeded. If the

 fingerprint does not match, then the connection MUST be

 closed.

 If the server's presented certificate has passed

 certification path validation [RFC5280] to a configured

 trust anchor, and an active row exists with a zero-length

 snmpTlstmAddrServerFingerprint value, then the

 snmpTlstmAddrServerIdentity column contains the expected

 host name. This expected host name is then compared against

 the server's certificate as follows:

 - Implementations MUST support matching the expected host

 name against a dNSName in the subjectAltName extension

 field

 - The '*' (ASCII 0x2a) wildcard character is allowed in the

 dNSName of the subjectAltName extension, but only as the

 left-most (least significant) DNS label in that value.

 This wildcard matches any left-most DNS label in the

 server name. That is, the subject *.example.com matches

 the server names a.example.com and b.example.com, but does

 not match example.com or a.b.example.com. Implementations

 MUST support wildcards in certificates as specified above,

 but MAY provide a configuration option to disable them.

 - If the locally configured name is an internationalized

 domain name, conforming implementations MUST convert it to

 the ASCII Compatible Encoding (ACE) format for performing

 comparisons, as specified in Section 7 of [RFC5280].

 If the expected host name fails these conditions then the

 connection MUST be closed.

 If there is no row in this table corresponding to the entry

 in the SNMP-TARGET-MIB and the server can be authorized by

 another, implementation-dependent means, then the connection

 MAY still proceed."

 ::= { snmpTlstmCertificateMapping 9 }

snmpTlstmAddrEntry OBJECT-TYPE

 SYNTAX SnmpTlstmAddrEntry

 MAX-ACCESS not-accessible

 STATUS deprecated

 DESCRIPTION

 "A conceptual row containing a copy of a certificate's

 fingerprint for a given snmpTargetAddrEntry. The values in

 this row should be ignored if the connection that needs to be

 established, as indicated by the SNMP-TARGET-MIB

 infrastructure, is not a TLS based connection. If an

 snmpTlstmAddrEntry exists for a given snmpTargetAddrEntry, then

 the presented server certificate MUST match or the connection

 MUST NOT be established. If a row in this table does not

 exist to match an snmpTargetAddrEntry row, then the connection

 SHOULD still proceed if some other certificate validation path

 algorithm (e.g., RFC 5280) can be used."

 INDEX { IMPLIED snmpTargetAddrName }

 ::= { snmpTlstmAddrTable 1 }

SnmpTlstmAddrEntry ::= SEQUENCE {

 snmpTlstmAddrServerFingerprint SnmpTLSFingerprint,

 snmpTlstmAddrServerIdentity SnmpAdminString,

 snmpTlstmAddrStorageType StorageType,

 snmpTlstmAddrRowStatus RowStatus

}

snmpTlstmAddrServerFingerprint OBJECT-TYPE

 SYNTAX SnmpTLSFingerprint

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "A cryptographic hash of a public X.509 certificate. This

 object should store the hash of the public X.509 certificate

 that the remote server should present during the TLS

 connection setup. The fingerprint of the presented

 certificate and this hash value MUST match exactly or the

 connection MUST NOT be established."

 DEFVAL { "" }

 ::= { snmpTlstmAddrEntry 1 }

snmpTlstmAddrServerIdentity OBJECT-TYPE

 SYNTAX SnmpAdminString

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "The reference identity to check against the identity

 presented by the remote system."

 DEFVAL { "" }

 ::= { snmpTlstmAddrEntry 2 }

snmpTlstmAddrStorageType OBJECT-TYPE

 SYNTAX StorageType

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "The storage type for this conceptual row. Conceptual rows

 having the value 'permanent' need not allow write-access to

 any columnar objects in the row."

 DEFVAL { nonVolatile }

 ::= { snmpTlstmAddrEntry 3 }

snmpTlstmAddrRowStatus OBJECT-TYPE

 SYNTAX RowStatus

 MAX-ACCESS read-create

 STATUS deprecated

 DESCRIPTION

 "The status of this conceptual row. This object may be used

 to create or remove rows from this table.

 To create a row in this table, an administrator must set this

 object to either createAndGo(4) or createAndWait(5).

 Until instances of all corresponding columns are

 appropriately configured, the value of the

 corresponding instance of the snmpTlstmAddrRowStatus

 column is notReady(3).

 In particular, a newly created row cannot be made active until

 the corresponding snmpTlstmAddrServerFingerprint column has

 been set.

 Rows MUST NOT be active if the snmpTlstmAddrServerFingerprint

 column is blank and the snmpTlstmAddrServerIdentity is set to

 '*' since this would insecurely accept any presented

 certificate.

 The snmpTlstmAddrServerFingerprint object may not be modified

 while the value of this object is active(1).

 An attempt to set these objects while the value of

 snmpTlstmAddrRowStatus is active(1) will result in

 an inconsistentValue error."

 ::= { snmpTlstmAddrEntry 4 }

snmpTlstmCertToTSN13Count OBJECT-TYPE

 SYNTAX Gauge32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "A count of the number of entries in the

 snmpTlstmCertToTSN13Table."

 ::= { snmpTlstmCertificateMapping 10 }

snmpTlstmCertToTSN13TableLastChanged OBJECT-TYPE

 SYNTAX TimeStamp

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The value of sysUpTime.0 when the snmpTlstmCertToTSN13Table

 was last modified through any means, or 0 if it has not been

 modified since the command responder was started."

 ::= { snmpTlstmCertificateMapping 11 }

snmpTlstmCertToTSN13Table OBJECT-TYPE

 SYNTAX SEQUENCE OF SnmpTlstmCertToTSN13Entry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "This table is used by a TLS 1.3 server to map the TLS 1.3

 client's presented X.509 certificate to a tmSecurityName.

 On an incoming TLS/SNMP connection, the client's presented

 certificate must either be validated based on an established

 trust anchor, or it must directly match a fingerprint in this

 table. This table does not provide any mechanisms for

 configuring the trust anchors; the transfer of any needed

 trusted certificates for path validation is expected to occur

 through an out-of-band transfer.

 Once the certificate has been found acceptable (either by path

 validation or directly matching a fingerprint in this table),

 this table is consulted to determine the appropriate

 tmSecurityName to identify with the remote connection. This

 is done by considering each active row from this table in

 prioritized order according to its snmpTlstmCertToTSN13ID

 value. Each row's snmpTlstmCertToTSN13Fingerprint value

 determines whether the row is a match for the incoming

 connection:

 1) If the row's snmpTlstmCertToTSN13Fingerprint value

 identifies the presented certificate, then consider the

 row as a successful match.

 2) If the row's snmpTlstmCertToTSN13Fingerprint value

 identifies a locally held copy of a trusted CA

 certificate and that CA certificate was used to

 validate the path to the presented certificate, then

 consider the row as a successful match.

 Once a matching row has been found, the

 snmpTlstmCertToTSN13MapType value can be used to determine how

 the tmSecurityName to associate with the session should be

 determined. See the snmpTlstmCertToTSN13MapType column's

 DESCRIPTION for details on determining the tmSecurityName

 value. If it is impossible to determine a tmSecurityName from

 the row's data combined with the data presented in the

 certificate, then additional rows MUST be searched looking for

 another potential match. If a resulting tmSecurityName mapped

 from a given row is not compatible with the needed

 requirements of a tmSecurityName (e.g., VACM imposes a

 32-octet-maximum length and the certificate derived

 securityName could be longer), then it must be considered an

 invalid match and additional rows MUST be searched looking for

 another potential match.

 If no matching and valid row can be found, the connection MUST

 be closed and SNMP messages MUST NOT be accepted over it.

 Missing values of snmpTlstmCertToTSN13ID are acceptable and

 implementations should continue to the next highest numbered

 row. It is recommended that administrators skip index values

 to leave room for the insertion of future rows (for example,

 use values of 10 and 20 when creating initial rows).

 Users are encouraged to make use of certificates with

 subjectAltName fields that can be used as tmSecurityNames so

 that a single root CA certificate can allow all child

 certificate's subjectAltName to map directly to a

 tmSecurityName via a 1:1 transformation. However, this table

 is flexible to allow for situations where existing deployed

 certificate infrastructures do not provide adequate

 subjectAltName values for use as tmSecurityNames.

 Direct mapping from each individual certificate fingerprint to

 a tmSecurityName is possible but requires one entry in the

 table per tmSecurityName and requires more management

 operations to completely configure a device."

 ::= { snmpTlstmCertificateMapping 12 }

snmpTlstmCertToTSN13Entry OBJECT-TYPE

 SYNTAX SnmpTlstmCertToTSN13Entry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "A row in the snmpTlstmCertToTSN13Table that specifies a

 mapping for an incoming TLS certificate to a tmSecurityName

 to use for a connection."

 INDEX { snmpTlstmCertToTSN13ID }

 ::= { snmpTlstmCertToTSN13Table 1 }

SnmpTlstmCertToTSN13Entry ::= SEQUENCE {

 snmpTlstmCertToTSN13ID Unsigned32,

 snmpTlstmCertToTSN13Fingerprint SnmpTLS13Fingerprint,

 snmpTlstmCertToTSN13MapType AutonomousType,

 snmpTlstmCertToTSN13Data OCTET STRING,

 snmpTlstmCertToTSN13StorageType StorageType,

 snmpTlstmCertToTSN13RowStatus RowStatus

}

snmpTlstmCertToTSN13ID OBJECT-TYPE

 SYNTAX Unsigned32 (1..4294967295)

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "A unique, prioritized index for the given entry. Lower

 numbers indicate a higher priority."

 ::= { snmpTlstmCertToTSN13Entry 1 }

snmpTlstmCertToTSN13Fingerprint OBJECT-TYPE

 SYNTAX SnmpTLS13Fingerprint (SIZE(2..255))

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "A cryptographic hash of an X.509 certificate. The results of

 a successful matching fingerprint to either the trusted CA in

 the certificate validation path or to the certificate itself

 is dictated by the snmpTlstmCertToTSN13MapType column."

 ::= { snmpTlstmCertToTSN13Entry 2 }

snmpTlstmCertToTSN13MapType OBJECT-TYPE

 SYNTAX AutonomousType

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "Specifies the mapping type for deriving a tmSecurityName from

 a certificate. Details for mapping of a particular type SHALL

 be specified in the DESCRIPTION clause of the OBJECT-IDENTITY

 that describes the mapping. If a mapping succeeds it will

 return a tmSecurityName for use by the TLSTM model and

 processing stops.

 If the resulting mapped value is not compatible with the

 needed requirements of a tmSecurityName (e.g., VACM imposes a

 32-octet-maximum length and the certificate derived

 securityName could be longer), then future rows MUST be

 searched for additional snmpTlstmCertToTSN13Fingerprint matches

 to look for a mapping that succeeds.

 Suitable values for assigning to this object that are defined

 within the SNMP-TLS-TM-MIB can be found in the

 snmpTlstmCertToTSNMIdentities portion of the MIB tree."

 DEFVAL { snmpTlstmCertSpecified }

 ::= { snmpTlstmCertToTSN13Entry 3 }

snmpTlstmCertToTSN13Data OBJECT-TYPE

 SYNTAX OCTET STRING (SIZE(0..1024))

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "Auxiliary data used as optional configuration information for

 a given mapping specified by the snmpTlstmCertToTSN13MapType

 column. Only some mapping systems will make use of this

 column. The value in this column MUST be ignored for any

 mapping type that does not require data present in this

 column."

 DEFVAL { "" }

 ::= { snmpTlstmCertToTSN13Entry 4 }

snmpTlstmCertToTSN13StorageType OBJECT-TYPE

 SYNTAX StorageType

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "The storage type for this conceptual row. Conceptual rows

 having the value 'permanent' need not allow write-access to

 any columnar objects in the row."

 DEFVAL { nonVolatile }

 ::= { snmpTlstmCertToTSN13Entry 5 }

snmpTlstmCertToTSN13RowStatus OBJECT-TYPE

 SYNTAX RowStatus

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "The status of this conceptual row. This object may be used

 to create or remove rows from this table.

 To create a row in this table, an administrator must set this

 object to either createAndGo(4) or createAndWait(5).

 Until instances of all corresponding columns are appropriately

 configured, the value of the corresponding instance of the

 snmpTlstmParams13RowStatus column is notReady(3).

 In particular, a newly created row cannot be made active until

 the corresponding snmpTlstmCertToTSN13Fingerprint,

 snmpTlstmCertToTSN13MapType, and snmpTlstmCertToTSN13Data

 columns have been set.

 The following objects may not be modified while the

 value of this object is active(1):

 - snmpTlstmCertToTSN13Fingerprint

 - snmpTlstmCertToTSN13MapType

 - snmpTlstmCertToTSN13Data

 An attempt to set these objects while the value of

 snmpTlstmParams13RowStatus is active(1) will result in

 an inconsistentValue error."

 ::= { snmpTlstmCertToTSN13Entry 6 }

snmpTlstmParams13Count OBJECT-TYPE

 SYNTAX Gauge32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "A count of the number of entries in the

 snmpTlstmParams13Table."

 ::= { snmpTlstmCertificateMapping 13 }

snmpTlstmParams13TableLastChanged OBJECT-TYPE

 SYNTAX TimeStamp

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The value of sysUpTime.0 when the snmpTlstmParams13Table

 was last modified through any means, or 0 if it has not been

 modified since the command responder was started."

 ::= { snmpTlstmCertificateMapping 14 }

snmpTlstmParams13Table OBJECT-TYPE

 SYNTAX SEQUENCE OF SnmpTlstmParams13Entry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "This table is used by a TLS client when a TLS

 connection is being set up using an entry in the

 SNMP-TARGET-MIB. It extends the SNMP-TARGET-MIB's

 snmpTargetParams13Table with a fingerprint of a certificate to

 use when establishing such a TLS connection."

 ::= { snmpTlstmCertificateMapping 15 }

snmpTlstmParams13Entry OBJECT-TYPE

 SYNTAX SnmpTlstmParams13Entry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "A conceptual row containing a fingerprint hash of a locally

 held certificate for a given snmpTargetParamsEntry. The

 values in this row should be ignored if the connection that

 needs to be established, as indicated by the SNMP-TARGET-MIB

 infrastructure, is not a certificate and TLS based

 connection. The connection SHOULD NOT be established if the

 certificate fingerprint stored in this entry does not point to

 a valid locally held certificate or if it points to an

 unusable certificate (such as might happen when the

 certificate's expiration date has been reached)."

 INDEX { IMPLIED snmpTargetParamsName }

 ::= { snmpTlstmParams13Table 1 }

SnmpTlstmParams13Entry ::= SEQUENCE {

 snmpTlstmParams13ClientFingerprint SnmpTLS13Fingerprint,

 snmpTlstmParams13StorageType StorageType,

 snmpTlstmParams13RowStatus RowStatus

}

snmpTlstmParams13ClientFingerprint OBJECT-TYPE

 SYNTAX SnmpTLS13Fingerprint

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "This object stores the hash of the public portion of a

 locally held X.509 certificate. The X.509 certificate, its

 public key, and the corresponding private key will be used

 when initiating a TLS connection as a TLS client."

 ::= { snmpTlstmParams13Entry 1 }

snmpTlstmParams13StorageType OBJECT-TYPE

 SYNTAX StorageType

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "The storage type for this conceptual row. Conceptual rows

 having the value 'permanent' need not allow write-access to

 any columnar objects in the row."

 DEFVAL { nonVolatile }

 ::= { snmpTlstmParams13Entry 2 }

snmpTlstmParams13RowStatus OBJECT-TYPE

 SYNTAX RowStatus

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "The status of this conceptual row. This object may be used

 to create or remove rows from this table.

 To create a row in this table, an administrator must set this

 object to either createAndGo(4) or createAndWait(5).

 Until instances of all corresponding columns are appropriately

 configured, the value of the corresponding instance of the

 snmpTlstmParams13RowStatus column is notReady(3).

 In particular, a newly created row cannot be made active until

 the corresponding snmpTlstmParams13ClientFingerprint column has

 been set.

 The snmpTlstmParams13ClientFingerprint object may not be

 modified while the value of this object is active(1).

 An attempt to set these objects while the value of

 snmpTlstmParams13RowStatus is active(1) will result in

 an inconsistentValue error."

 ::= { snmpTlstmParams13Entry 3 }

snmpTlstmAddr13Count OBJECT-TYPE

 SYNTAX Gauge32

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "A count of the number of entries in the snmpTlstmAddr13Table."

 ::= { snmpTlstmCertificateMapping 16 }

snmpTlstmAddr13TableLastChanged OBJECT-TYPE

 SYNTAX TimeStamp

 MAX-ACCESS read-only

 STATUS current

 DESCRIPTION

 "The value of sysUpTime.0 when the snmpTlstmAddr13Table

 was last modified through any means, or 0 if it has not been

 modified since the command responder was started."

 ::= { snmpTlstmCertificateMapping 17 }

snmpTlstmAddr13Table OBJECT-TYPE

 SYNTAX SEQUENCE OF SnmpTlstmAddr13Entry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "This table is used by a TLS client when a TLS

 connection is being set up using an entry in the

 SNMP-TARGET-MIB. It extends the SNMP-TARGET-MIB's

 snmpTargetAddrTable so that the client can verify that the

 correct server has been reached. This verification can use

 either a certificate fingerprint, or an identity

 authenticated via certification path validation.

 If there is an active row in this table corresponding to the

 entry in the SNMP-TARGET-MIB that was used to establish the

 connection, and the row's snmpTlstmAddr13ServerFingerprint

 column has non-empty value, then the server's presented

 certificate is compared with the

 snmpTlstmAddr13ServerFingerprint value (and the

 snmpTlstmAddr13ServerIdentity column is ignored). If the

 fingerprint matches, the verification has succeeded. If the

 fingerprint does not match, then the connection MUST be

 closed.

 If the server's presented certificate has passed

 certification path validation [RFC5280] to a configured

 trust anchor, and an active row exists with a zero-length

 snmpTlstmAddr13ServerFingerprint value, then the

 snmpTlstmAddr13ServerIdentity column contains the expected

 host name. This expected host name is then compared against

 the server's certificate as follows:

 - Implementations MUST support matching the expected host

 name against a dNSName in the subjectAltName extension

 field.

 - The '*' (ASCII 0x2a) wildcard character is allowed in the

 dNSName of the subjectAltName extension, but only as the

 left-most (least significant) DNS label in that value.

 This wildcard matches any left-most DNS label in the

 server name. That is, the subject *.example.com matches

 the server names a.example.com and b.example.com, but does

 not match example.com or a.b.example.com. Implementations

 MUST support wildcards in certificates as specified above,

 but MAY provide a configuration option to disable them.

 - If the locally configured name is an internationalized

 domain name, conforming implementations MUST convert it to

 the ASCII Compatible Encoding (ACE) format for performing

 comparisons, as specified in Section 7 of [RFC5280].

 If the expected host name fails these conditions then the

 connection MUST be closed.

 If there is no row in this table corresponding to the entry

 in the SNMP-TARGET-MIB and the server can be authorized by

 another, implementation-dependent means, then the connection

 MAY still proceed."

 ::= { snmpTlstmCertificateMapping 18 }

snmpTlstmAddr13Entry OBJECT-TYPE

 SYNTAX SnmpTlstmAddr13Entry

 MAX-ACCESS not-accessible

 STATUS current

 DESCRIPTION

 "A conceptual row containing a copy of a certificate's

 fingerprint for a given snmpTargetAddrEntry. The values in

 this row should be ignored if the connection that needs to be

 established, as indicated by the SNMP-TARGET-MIB

 infrastructure, is not a TLS based connection. If an

 snmpTlstmAddr13Entry exists for a given snmpTargetAddrEntry,

 then the presented server certificate MUST match or the

 connection MUST NOT be established. If a row in this table

 does not exist to match an snmpTargetAddrEntry row, then the

 connection SHOULD still proceed if some other certificate

 validation path algorithm (e.g., RFC 5280) can be used."

 INDEX { IMPLIED snmpTargetAddrName }

 ::= { snmpTlstmAddr13Table 1 }

SnmpTlstmAddr13Entry ::= SEQUENCE {

 snmpTlstmAddr13ServerFingerprint SnmpTLS13Fingerprint,

 snmpTlstmAddr13ServerIdentity SnmpAdminString,

 snmpTlstmAddr13StorageType StorageType,

 snmpTlstmAddr13RowStatus RowStatus

}

snmpTlstmAddr13ServerFingerprint OBJECT-TYPE

 SYNTAX SnmpTLS13Fingerprint

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "A cryptographic hash of a public X.509 certificate. This

 object should store the hash of the public X.509 certificate

 that the remote server should present during the TLS

 connection setup. The fingerprint of the presented

 certificate and this hash value MUST match exactly or the

 connection MUST NOT be established."

 DEFVAL { "" }

 ::= { snmpTlstmAddr13Entry 1 }

snmpTlstmAddr13ServerIdentity OBJECT-TYPE

 SYNTAX SnmpAdminString

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "The reference identity to check against the identity

 presented by the remote system."

 DEFVAL { "" }

 ::= { snmpTlstmAddr13Entry 2 }

snmpTlstmAddr13StorageType OBJECT-TYPE

 SYNTAX StorageType

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "The storage type for this conceptual row. Conceptual rows

 having the value 'permanent' need not allow write-access to

 any columnar objects in the row."

 DEFVAL { nonVolatile }

 ::= { snmpTlstmAddr13Entry 3 }

snmpTlstmAddr13RowStatus OBJECT-TYPE

 SYNTAX RowStatus

 MAX-ACCESS read-create

 STATUS current

 DESCRIPTION

 "The status of this conceptual row. This object may be used

 to create or remove rows from this table.

 To create a row in this table, an administrator must set this

 object to either createAndGo(4) or createAndWait(5).

 Until instances of all corresponding columns are

 appropriately configured, the value of the

 corresponding instance of the snmpTlstmAddr13RowStatus

 column is notReady(3).

 In particular, a newly created row cannot be made active until

 the corresponding snmpTlstmAddr13ServerFingerprint column has

 been set.

 Rows MUST NOT be active if the snmpTlstmAddr13ServerFingerprint

 column is blank and the snmpTlstmAddr13ServerIdentity is set to

 '*' since this would insecurely accept any presented

 certificate.

 The snmpTlstmAddr13ServerFingerprint object may not be modified

 while the value of this object is active(1).

 An attempt to set these objects while the value of

 snmpTlstmAddr13RowStatus is active(1) will result in

 an inconsistentValue error."

 ::= { snmpTlstmAddr13Entry 4 }

-- **

-- snmpTlstmNotifications - Notifications Information

-- **

snmpTlstmServerCertificateUnknown NOTIFICATION-TYPE

 OBJECTS { snmpTlstmSessionUnknownServerCertificate }

 STATUS current

 DESCRIPTION

 "Notification that the server certificate presented by an SNMP

 over (D)TLS server was invalid because no configured

 fingerprint or CA was acceptable to validate it. This may be

 because there was no entry in the snmpTlstmAddrTable (or

 snmpTlstmAddr13Table) or

 because no path could be found to known Certification

 Authority.

 To avoid notification loops, this notification MUST NOT be

 sent to servers that themselves have triggered the

 notification."

 ::= { snmpTlstmNotifications 1 }

snmpTlstmServerInvalidCertificate NOTIFICATION-TYPE

 OBJECTS { snmpTlstmAddrServerFingerprint,

 snmpTlstmSessionInvalidServerCertificates}

 STATUS deprecated

 DESCRIPTION

 "Notification that the server certificate presented by an SNMP

 over (D)TLS server could not be validated even if the

 fingerprint or expected validation path was known. That is, a

 cryptographic validation error occurred during certificate

 validation processing.

 To avoid notification loops, this notification MUST NOT be

 sent to servers that themselves have triggered the

 notification."

 ::= { snmpTlstmNotifications 2 }

snmpTlstmServerInvalidCertificate13 NOTIFICATION-TYPE

 OBJECTS { snmpTlstmAddr13ServerFingerprint,

 snmpTlstmSessionInvalidServerCertificates}

 STATUS current

 DESCRIPTION

 "Notification that the server certificate presented by an SNMP

 over TLS server could not be validated even if the

 fingerprint or expected validation path was known. That is, a

 cryptographic validation error occurred during certificate

 validation processing.

 To avoid notification loops, this notification MUST NOT be

 sent to servers that themselves have triggered the

 notification."

 ::= { snmpTlstmNotifications 3 }

-- **

-- snmpTlstmCompliances - Conformance Information

-- **

snmpTlstmCompliances OBJECT IDENTIFIER ::= { snmpTlstmConformance 1 }

snmpTlstmGroups OBJECT IDENTIFIER ::= { snmpTlstmConformance 2 }

-- **

-- Compliance statements

-- **

snmpTlstmCompliance MODULE-COMPLIANCE

 STATUS deprecated

 DESCRIPTION

 "The compliance statement for SNMP engines that support the

 SNMP-TLS-TM-MIB"

 MODULE

 MANDATORY-GROUPS { snmpTlstmStatsGroup,

 snmpTlstmIncomingGroup,

 snmpTlstmOutgoingGroup,

 snmpTlstmNotificationGroup }

 ::= { snmpTlstmCompliances 1 }

snmpTlstmCompliance13 MODULE-COMPLIANCE

 STATUS current

 DESCRIPTION

 "The compliance statement for SNMP engines that support the

 SNMP-TLS-TM-MIB"

 MODULE

 MANDATORY-GROUPS { snmpTlstmStatsGroup,

 snmpTlstmIncoming13Group,

 snmpTlstmOutgoing13Group,

 snmpTlstmNotification13Group }

 ::= { snmpTlstmCompliances 2 }

-- **

-- Units of conformance

-- **

snmpTlstmStatsGroup OBJECT-GROUP

 OBJECTS {

 snmpTlstmSessionOpens,

 snmpTlstmSessionClientCloses,

 snmpTlstmSessionOpenErrors,

 snmpTlstmSessionAccepts,

 snmpTlstmSessionServerCloses,

 snmpTlstmSessionNoSessions,

 snmpTlstmSessionInvalidClientCertificates,

 snmpTlstmSessionUnknownServerCertificate,

 snmpTlstmSessionInvalidServerCertificates,

 snmpTlstmSessionInvalidCaches

 }

 STATUS current

 DESCRIPTION

 "A collection of objects for maintaining

 statistical information of an SNMP engine that

 implements the SNMP TLS Transport Model."

 ::= { snmpTlstmGroups 1 }

snmpTlstmIncomingGroup OBJECT-GROUP

 OBJECTS {

 snmpTlstmCertToTSNCount,

 snmpTlstmCertToTSNTableLastChanged,

 snmpTlstmCertToTSNFingerprint,

 snmpTlstmCertToTSNMapType,

 snmpTlstmCertToTSNData,

 snmpTlstmCertToTSNStorageType,

 snmpTlstmCertToTSNRowStatus

 }

 STATUS deprecated

 DESCRIPTION

 "A collection of objects for maintaining

 incoming connection certificate mappings to

 tmSecurityNames of an SNMP engine that implements the

 SNMP TLS Transport Model."

 ::= { snmpTlstmGroups 2 }

snmpTlstmOutgoingGroup OBJECT-GROUP

 OBJECTS {

 snmpTlstmParamsCount,

 snmpTlstmParamsTableLastChanged,

 snmpTlstmParamsClientFingerprint,

 snmpTlstmParamsStorageType,

 snmpTlstmParamsRowStatus,

 snmpTlstmAddrCount,

 snmpTlstmAddrTableLastChanged,

 snmpTlstmAddrServerFingerprint,

 snmpTlstmAddrServerIdentity,

 snmpTlstmAddrStorageType,

 snmpTlstmAddrRowStatus

 }

 STATUS deprecated

 DESCRIPTION

 "A collection of objects for maintaining

 outgoing connection certificates to use when opening

 connections as a result of SNMP-TARGET-MIB settings."

 ::= { snmpTlstmGroups 3 }

snmpTlstmNotificationGroup NOTIFICATION-GROUP

 NOTIFICATIONS {

 snmpTlstmServerCertificateUnknown,

 snmpTlstmServerInvalidCertificate

 }

 STATUS deprecated

 DESCRIPTION

 "Notifications"

 ::= { snmpTlstmGroups 4 }

snmpTlstmIncoming13Group OBJECT-GROUP

 OBJECTS {

 snmpTlstmCertToTSN13Count,

 snmpTlstmCertToTSN13TableLastChanged,

 snmpTlstmCertToTSN13Fingerprint,

 snmpTlstmCertToTSN13MapType,

 snmpTlstmCertToTSN13Data,

 snmpTlstmCertToTSN13StorageType,

 snmpTlstmCertToTSN13RowStatus

 }

 STATUS current

 DESCRIPTION

 "A collection of objects for maintaining

 incoming connection certificate mappings to

 tmSecurityNames of an SNMP engine that implements the

 SNMP TLS 1.3 Transport Model."

 ::= { snmpTlstmGroups 5 }

snmpTlstmOutgoing13Group OBJECT-GROUP

 OBJECTS {

 snmpTlstmParams13Count,

 snmpTlstmParams13TableLastChanged,

 snmpTlstmParams13ClientFingerprint,

 snmpTlstmParams13StorageType,

 snmpTlstmParams13RowStatus,

 snmpTlstmAddr13Count,

 snmpTlstmAddr13TableLastChanged,

 snmpTlstmAddr13ServerFingerprint,

 snmpTlstmAddr13ServerIdentity,

 snmpTlstmAddr13StorageType,

 snmpTlstmAddr13RowStatus

 }

 STATUS current

 DESCRIPTION

 "A collection of objects for maintaining

 outgoing connection certificates to use when opening

 TLS 1.3 connections as a result of SNMP-TARGET-MIB settings."

 ::= { snmpTlstmGroups 6 }

snmpTlstmNotification13Group NOTIFICATION-GROUP

 NOTIFICATIONS {

 snmpTlstmServerCertificateUnknown,

 snmpTlstmServerInvalidCertificate13

 }

 STATUS current

 DESCRIPTION

 "Notifications for the SNMP TLS 1.3 Transport Model"

 ::= { snmpTlstmGroups 7 }

END

5. Security Considerations

This document updates a transport model that permits SNMP to utilize

TLS security services. The security threats and how the TLS

transport model mitigates these threats are covered throughout this

document and in [RFC6353]. Security considerations for TLS are

described in Section 10 and Appendix E of TLS 1.3 [RFC8446].

5.1. MIB Module Security

There are a number of management objects defined in this MIB module

with a MAX-ACCESS clause of read-write and/or read-create. Such

objects might be considered sensitive or vulnerable in some network

¶

¶

environments. The support for SET operations in a non-secure

environment without proper protection can have a negative effect on

network operations. These are the tables and objects and their

sensitivity/vulnerability:

The snmpTlstmParams13Table can be used to change the outgoing X.

509 certificate used to establish a TLS connection. Modifications

to objects in this table need to be adequately authenticated

since modifying the values in this table will have profound

impacts to the security of outbound connections from the device.

Since knowledge of authorization rules and certificate usage

mechanisms might be considered sensitive, protection from

disclosure of the SNMP traffic via encryption is automatically

acheived via TLS 1.3.

The snmpTlstmAddr13Table can be used to change the expectations

of the certificates presented by a remote TLS server.

Modifications to objects in this table need to be adequately

authenticated since modifying the values in this table will have

profound impacts to the security of outbound connections from the

device. Since knowledge of authorization rules and certificate

usage mechanisms might be considered sensitive, protection from

disclosure of the SNMP traffic via encryption is automatically

acheived via TLS 1.3.

The snmpTlstmCertToTSN13Table is used to specify the mapping of

incoming X.509 certificates to tmSecurityNames, which eventually

get mapped to an SNMPv3 securityName. Modifications to objects in

this table need to be adequately authenticated since modifying

the values in this table will have profound impacts to the

security of incoming connections to the device. Since knowledge

of authorization rules and certificate usage mechanisms might be

considered sensitive, protection from disclosure of the SNMP

traffic via encryption is automatically acheived via TLS 1.3.

When this table contains a significant number of rows it might

affect the system performance when accepting new TLS connections.

Some of the readable objects in this MIB module (i.e., objects with

a MAX-ACCESS other than not-accessible) might be considered

sensitive or vulnerable in some network environments. It is thus

important to control even GET and/or NOTIFY access to these objects

and encrypt the values of these objects when sending them over the

network via SNMP. These are the tables and objects and their

sensitivity/vulnerability:

This MIB contains a collection of counters that monitor the TLS

connections being established with a device. Since knowledge of

connection and certificate usage mechanisms might be considered

¶

*

¶

*

¶

*

¶

¶

*

[I-D.ietf-tls-dtls13]

[RFC2119]

[RFC3584]

sensitive, protection from disclosure of the SNMP traffic via

encryption is automatically acheived via TLS 1.3.

SNMP versions prior to SNMPv3 did not include adequate security.

Even if the network itself is secure (for example, by using IPsec),

even then, there is no control as to who on the secure network is

allowed to access and GET/SET (read/change/create/delete) the

objects in this MIB module.

As defined in Section 2.4, TLSTM clients and servers MUST NOT

request, offer, or use SNMPv1 or SNMPv2c message processing

described in [RFC3584], or the User-based Security Model of SNMPv3.

Instead, it is RECOMMENDED to deploy SNMPv3 and to enable

cryptographic security. It is then a customer/operator

responsibility to ensure that the SNMP entity giving access to an

instance of this MIB module is properly configured to give access to

the objects only to those principals (users) that have legitimate

rights to indeed GET or SET (change/create/delete) them.

6. IANA Considerations

This document has no IANA actions beyond those performed as a part

of [RFC6353].

7. Acknowledgements

Acknowledgements This document is based on [RFC6353]. This document

was reviewed by the following people who helped provide useful

comments: Michaela Vanderveen.

8. References

8.1. Normative References

Rescorla, E., Tschofenig, H., and N. Modadugu,

"The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3", Work in Progress, Internet-Draft, draft-

ietf-tls-dtls13-43, 30 April 2021, <https://

datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Frye, R., Levi, D., Routhier, S., and B. Wijnen,

"Coexistence between Version 1, Version 2, and Version 3

of the Internet-standard Network Management Framework",

BCP 74, RFC 3584, DOI 10.17487/RFC3584, August 2003,

<https://www.rfc-editor.org/info/rfc3584>.

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-43
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc3584

[RFC5280]

[RFC5591]

[RFC6353]

[RFC8446]

[STD62]

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Harrington, D. and W. Hardaker, "Transport Security Model

for the Simple Network Management Protocol (SNMP)", STD

78, RFC 5591, DOI 10.17487/RFC5591, June 2009, <https://

www.rfc-editor.org/info/rfc5591>.

Hardaker, W., "Transport Layer Security (TLS) Transport

Model for the Simple Network Management Protocol (SNMP)",

STD 78, RFC 6353, DOI 10.17487/RFC6353, July 2011,

<https://www.rfc-editor.org/info/rfc6353>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Harrington, D., Presuhn, R., and B. Wijnen, "An

Architecture for Describing Simple Network Management

Protocol (SNMP) Management Frameworks", STD 62, RFC 3411,

December 2002.

Case, J., Harrington, D., Presuhn, R., and B. Wijnen,

"Message Processing and Dispatching for the Simple

Network Management Protocol (SNMP)", STD 62, RFC 3412,

December 2002.

Levi, D., Meyer, P., and B. Stewart, "Simple Network

Management Protocol (SNMP) Applications", STD 62, RFC

3413, December 2002.

Blumenthal, U. and B. Wijnen, "User-based Security Model

(USM) for version 3 of the Simple Network Management

Protocol (SNMPv3)", STD 62, RFC 3414, December 2002.

Wijnen, B., Presuhn, R., and K. McCloghrie, "View-based

Access Control Model (VACM) for the Simple Network

Management Protocol (SNMP)", STD 62, RFC 3415, December

2002.

Presuhn, R., Ed., "Version 2 of the Protocol Operations

for the Simple Network Management Protocol (SNMP)", STD

62, RFC 3416, December 2002.

Presuhn, R., Ed., "Transport Mappings for the Simple

Network Management Protocol (SNMP)", STD 62, RFC 3417,

December 2002.

Presuhn, R., Ed., "Management Information Base (MIB) for

the Simple Network Management Protocol (SNMP)", STD 62,

RFC 3418, December 2002.

https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5591
https://www.rfc-editor.org/info/rfc5591
https://www.rfc-editor.org/info/rfc6353
https://www.rfc-editor.org/info/rfc8446

[RFC5246]

[STD58]

8.2. Informative References

Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/

RFC5246, August 2008, <https://www.rfc-editor.org/info/

rfc5246>.

McCloghrie, K., Ed., Perkins, D., Ed., and J.

Schoenwaelder, Ed., "Structure of Management Information

Version 2 (SMIv2)", STD 58, RFC 2578, April 1999.

McCloghrie, K., Ed., Perkins, D., Ed., and J.

Schoenwaelder, Ed., "Textual Conventions for SMIv2", STD

58, RFC 2579, April 1999.

McCloghrie, K., Ed., Perkins, D., Ed., and J.

Schoenwaelder, Ed., "Conformance Statements for SMIv2",

STD 58, RFC 2580, April 1999.

Appendix A. Target and Notification Configuration Example

The following sections describe example configuration for the SNMP-

TLS-TM-MIB, the SNMP-TARGET-MIB, the NOTIFICATION-MIB, and the SNMP-

VIEW-BASED-ACM-MIB.

A.1. Configuring a Notification Originator

The following row adds the "Joe Cool" user to the "administrators"

group:

The following row configures the snmpTlstmAddr13Table to use

certificate path validation and to require the remote notification

receiver to present a certificate for the "server.example.org"

identity.

The following row configures the snmpTargetAddrTable to send

notifications using TLS/TCP to the snmptls-trap port at 192.0.2.1:

¶

¶

 vacmSecurityModel = 4 (TSM)

 vacmSecurityName = "Joe Cool"

 vacmGroupName = "administrators"

 vacmSecurityToGroupStorageType = 3 (nonVolatile)

 vacmSecurityToGroupStatus = 4 (createAndGo)

¶

¶

 snmpTargetAddrName = "toNRAddr"

 snmpTlstmAddr13ServerFingerprint = ""

 snmpTlstmAddr13ServerIdentity = "server.example.org"

 snmpTlstmAddr13StorageType = 3 (nonVolatile)

 snmpTlstmAddr13RowStatus = 4 (createAndGo)

¶

¶

https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246

The following row configures the snmpTargetParamsTable to send the

notifications to "Joe Cool", using authPriv SNMPv3 notifications

through the TransportSecurityModel [[RFC5591]]:

A.2. Configuring TLSTM to Utilize a Simple Derivation of

tmSecurityName

The following row configures the snmpTlstmCertToTSN13Table to map a

validated client certificate, referenced by the client's public X.

509 hash fingerprint, to a tmSecurityName using the subjectAltName

component of the certificate.

This type of configuration should only be used when the naming

conventions of the (possibly multiple) Certification Authorities are

well understood, so two different principals cannot inadvertently be

identified by the same derived tmSecurityName.

A.3. Configuring TLSTM to Utilize Table-Driven Certificate Mapping

The following row configures the snmpTlstmCertToTSN13Table to map a

validated client certificate, referenced by the client's public X.

509 hash fingerprint, to the directly specified tmSecurityName of

"Joe Cool".

 snmpTargetAddrName = "toNRAddr"

 snmpTargetAddrTDomain = snmpTLSTCPDomain

 snmpTargetAddrTAddress = "192.0.2.1:10162"

 snmpTargetAddrTimeout = 1500

 snmpTargetAddrRetryCount = 3

 snmpTargetAddrTagList = "toNRTag"

 snmpTargetAddrParams = "toNR" (MUST match below)

 snmpTargetAddrStorageType = 3 (nonVolatile)

 snmpTargetAddrRowStatus = 4 (createAndGo)

¶

¶

 snmpTargetParamsName = "toNR" (MUST match above)

 snmpTargetParamsMPModel = 3 (SNMPv3)

 snmpTargetParamsSecurityModel = 4 (TransportSecurityModel)

 snmpTargetParamsSecurityName = "Joe Cool"

 snmpTargetParamsSecurityLevel = 3 (authPriv)

 snmpTargetParamsStorageType = 3 (nonVolatile)

 snmpTargetParamsRowStatus = 4 (createAndGo)

¶

¶

 snmpTlstmCertToTSN13ID = 1

 (chosen by ordering preference)

 snmpTlstmCertToTSN13Fingerprint = HASH (appropriate fingerprint)

 snmpTlstmCertToTSN13MapType = snmpTlstmCertSANAny

 snmpTlstmCertToTSN13Data = "" (not used)

 snmpTlstmCertToTSN13StorageType = 3 (nonVolatile)

 snmpTlstmCertToTSN13RowStatus = 4 (createAndGo)

¶

¶

¶

Author's Address

Kenneth Vaughn (editor)

Trevilon LLC

6606 FM 1488 RD

Suite 148-503

Magnolia, TX 77354

United States of America

Phone: +1 571 331 5670

Email: kvaughn@trevilon.com

 snmpTlstmCertToTSN13ID = 2

 (chosen by ordering preference)

 snmpTlstmCertToTSN13Fingerprint = HASH (appropriate fingerprint)

 snmpTlstmCertToTSN13MapType = snmpTlstmCertSpecified

 snmpTlstmCertToTSN13SecurityName = "Joe Cool"

 snmpTlstmCertToTSN13StorageType = 3 (nonVolatile)

 snmpTlstmCertToTSN13RowStatus = 4 (createAndGo)

¶

tel:+1%20571%20331%205670
mailto:kvaughn@trevilon.com

	Transport Layer Security Verion 1.3 (TLS 1.3) Transport Model for the Simple Network Management Protocol Version 3 (SNMPv3)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions

	2. Changes from RFC 6353
	2.1. TLSTM Fingerprint
	2.2. Security Level
	2.3. TLS Version
	2.4. SNMP Version
	2.5. Common Name

	3. Additional Rules for TLS 1.3
	3.1. Zero Round Trip Time Resumption (0-RTT)
	3.2. TLS ciphersuites, extensions and protocol invariants

	4. MIB Module Definition
	5. Security Considerations
	5.1. MIB Module Security

	6. IANA Considerations
	7. Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Target and Notification Configuration Example
	A.1. Configuring a Notification Originator
	A.2. Configuring TLSTM to Utilize a Simple Derivation of tmSecurityName
	A.3. Configuring TLSTM to Utilize Table-Driven Certificate Mapping

	Author's Address

