
Network Working Group J. Vcelak
Internet-Draft CZ.NIC
Intended status: Standards Track S. Goldberg
Expires: July 2, 2019 Boston University
 D. Papadopoulos
 HKUST
 S. Huque
 Salesforce
 D. Lawrence
 Dyn
 December 29, 2018

NSEC5, DNSSEC Authenticated Denial of Existence
draft-vcelak-nsec5-08

Abstract

 The Domain Name System Security Extensions (DNSSEC) introduced two
 resource records (RR) for authenticated denial of existence: the NSEC
 RR and the NSEC3 RR. This document introduces NSEC5 as an
 alternative mechanism for DNSSEC authenticated denial of existence.
 NSEC5 uses verifiable random functions (VRFs) to prevent offline
 enumeration of zone contents. NSEC5 also protects the integrity of
 the zone contents even if an adversary compromises one of the
 authoritative servers for the zone. Integrity is preserved because
 NSEC5 does not require private zone-signing keys to be present on all
 authoritative servers for the zone, in contrast to DNSSEC online
 signing schemes like NSEC3 White Lies.

Ed note

 Text inside square brackets ([]) is additional background
 information, answers to frequently asked questions, general musings,
 etc. They will be removed before publication. This document is
 being collaborated on in GitHub at <https://github.com/fcelda/

nsec5-draft>. The most recent version of the document, open issues,
 etc should all be available there. The authors gratefully accept
 pull requests.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute

Vcelak, et al. Expires July 2, 2019 [Page 1]

https://github.com/fcelda/nsec5-draft
https://github.com/fcelda/nsec5-draft
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft NSEC5 December 2018

 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 2, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Rationale . 3
1.2. Requirements . 6
1.3. Terminology . 6

2. Backward Compatibility 6
3. How NSEC5 Works . 7
4. NSEC5 Algorithms . 8
5. The NSEC5KEY Resource Record 9
5.1. NSEC5KEY RDATA Wire Format 9
5.2. NSEC5KEY RDATA Presentation Format 9

6. The NSEC5 Resource Record 9
6.1. NSEC5 RDATA Wire Format 10
6.2. NSEC5 Flags Field . 10
6.3. NSEC5 RDATA Presentation Format 11

7. The NSEC5PROOF Resource Record 11
7.1. NSEC5PROOF RDATA Wire Format 11
7.2. NSEC5PROOF RDATA Presentation Format 12

8. Types of Authenticated Denial of Existence with NSEC5 12
8.1. Name Error Responses 12
8.2. No Data Responses . 13
8.2.1. No Data Response, Opt-Out Not In Effect 13

https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Vcelak, et al. Expires July 2, 2019 [Page 2]

Internet-Draft NSEC5 December 2018

8.2.2. No Data Response, Opt-Out In Effect 14
8.3. Wildcard Responses 14
8.4. Wildcard No Data Responses 14

9. Authoritative Server Considerations 15
9.1. Zone Signing . 15
9.1.1. Precomputing Closest Provable Encloser Proofs 16

9.2. Zone Serving . 17
9.3. NSEC5KEY Rollover Mechanism 18
9.4. Secondary Servers . 18
9.5. Zones Using Unknown NSEC5 Algorithms 18
9.6. Dynamic Updates . 18

10. Resolver Considerations 19
11. Validator Considerations 19
11.1. Validating Responses 19
11.2. Validating Referrals to Unsigned Subzones 20
11.3. Responses With Unknown NSEC5 Algorithms 20

12. Special Considerations 20
12.1. Transition Mechanism 20
12.2. Private NSEC5 keys 20
12.3. Domain Name Length Restrictions 21

13. Implementation Status . 21
14. Performance Considerations 21
15. Security Considerations 21
15.1. Zone Enumeration Attacks 21
15.2. Compromise of the Private NSEC5 Key 22
15.3. Key Length Considerations 22
15.4. NSEC5 Hash Collisions 22

16. IANA Considerations . 23
17. Contributors . 23
18. References . 24
18.1. Normative References 24
18.2. Informative References 25

Appendix A. Examples . 27
A.1. Name Error Example 27
A.2. No Data Example . 29

 A.3. Delegation to an Unsigned Zone in an Opt-Out span Example 30
A.4. Wildcard Example . 31
A.5. Wildcard No Data Example 32

Appendix B. Change Log . 33
 Authors' Addresses . 34

1. Introduction

1.1. Rationale

 NSEC5 provides an alternative mechanism for authenticated denial of
 existence for the DNS Security Extensions (DNSSEC). NSEC5 has two
 key security properties. First, NSEC5 protects the integrity of the

Vcelak, et al. Expires July 2, 2019 [Page 3]

Internet-Draft NSEC5 December 2018

 zone contents even if an adversary compromises one of the
 authoritative servers for the zone. Second, NSEC5 prevents offline
 zone enumeration, where an adversary makes a small number of online
 DNS queries and then processes them offline in order to learn all of
 the names in a zone. Zone enumeration can be used to identify
 routers, servers or other "things" that could then be targeted in
 more complex attacks. An enumerated zone can also be a source of
 probable email addresses for spam, or as a "key for multiple WHOIS
 queries to reveal registrant data that many registries may have legal
 obligations to protect" [RFC5155].

 All other DNSSEC mechanisms for authenticated denial of existence
 either fail to preserve integrity against a compromised server, or
 fail to prevent offline zone enumeration.

 When offline signing with NSEC is used [RFC4034], an NSEC chain of
 all existing domain names in the zone is constructed and signed
 offline. The chain is made of resource records (RRs), where each RR
 represents two consecutive domain names in canonical order present in
 the zone. The authoritative server proves the non-existence of a
 name by presenting a signed NSEC RR which covers the name. Because
 the authoritative server does not need not to know the private zone-
 signing key, the integrity of the zone is protected even if the
 server is compromised. However, the NSEC chain allows for easy zone
 enumeration: N queries to the server suffice to learn all N names in
 the zone (see e.g., [nmap-nsec-enum], [nsec3map], and [ldns-walk]).

 When offline signing with NSEC3 is used [RFC5155], the original names
 in the NSEC chain are replaced by their cryptographic hashes.
 Offline signing ensures that NSEC3 preserves integrity even if an
 authoritative server is compromised. However, offline zone
 enumeration is still possible with NSEC3 (see e.g., [nsec3walker],
 [nsec3gpu]), and is part of standard network reconnaissance tools
 (e.g., [nmap-nsec3-enum], [nsec3map]).

 When online signing is used, the authoritative server holds the
 private zone-signing key and uses this key to synthesize NSEC or
 NSEC3 responses on the fly (e.g. NSEC3 White Lies (NSEC3-WL) or
 Minimally-Covering NSEC, both described in [RFC7129]). Because the
 synthesized response only contains information about the queried name
 (but not about any other name in the zone), offline zone enumeration
 is not possible. However, because the authoritative server holds the
 private zone-signing key, integrity is lost if the authoritative
 server is compromised.

https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc7129

Vcelak, et al. Expires July 2, 2019 [Page 4]

Internet-Draft NSEC5 December 2018

 +----------+-------------+---------------+----------------+---------+
Scheme	Integrity	Integrity vs	Prevents	Online
	vs network	compromised	offline zone	crypto?
	attacks?	auth. server?	enumeration?	
+----------+-------------+---------------+----------------+---------+				
Unsigned	NO	NO	YES	NO
NSEC	YES	YES	NO	NO
NSEC3	YES	YES	NO	NO
NSEC3-WL	YES	NO	YES	YES
NSEC5	YES	YES	YES	YES
 +----------+-------------+---------------+----------------+---------+

 NSEC5 prevents offline zone enumeration and also protects integrity
 even if a zone's authoritative server is compromised. To do this,
 NSEC5 replaces the unkeyed cryptographic hash function used in NSEC3
 with a verifiable random function (VRF) [I-D.irtf-cfrg-vrf] [MRV99].
 A VRF is the public-key version of a keyed cryptographic hash. Only
 the holder of the private VRF key can compute the hash, but anyone
 with public VRF key can verify the correctness of the hash.

 The public VRF key is distributed in an NSEC5KEY RR, similar to a
 DNSKEY RR, and is used to verify NSEC5 hash values. The private VRF
 key is present on all authoritative servers for the zone, and is used
 to compute hash values. For every query that elicits a negative
 response, the authoritative server hashes the query on the fly using
 the private VRF key, and also returns the corresponding precomputed
 NSEC5 record(s). In contrast to the online signing approach
 [RFC7129], the private key that is present on all authoritative
 servers for NSEC5 cannot be used to modify the zone contents.

 Like online signing approaches, NSEC5 requires the authoritative
 server to perform online public key cryptographic operations for
 every query eliciting a denying response. This is necessary; [nsec5]
 proved that online cryptography is required to prevent offline zone
 enumeration while still protecting the integrity of zone contents
 against network attacks.

 NSEC5 is not intended to replace NSEC or NSEC3. It is an alternative
 mechanism for authenticated denial of existence. This document
 specifies NSEC5 based on the VRFs in [I-D.irtf-cfrg-vrf] over the
 FIPS 186-3 P-256 elliptic curve and over the the Ed25519 elliptic
 curve. A formal cryptographic proof of security for NSEC5 is in
 [nsec5ecc].

https://datatracker.ietf.org/doc/html/rfc7129

Vcelak, et al. Expires July 2, 2019 [Page 5]

Internet-Draft NSEC5 December 2018

1.2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

1.3. Terminology

 The reader is assumed to be familiar with the basic DNS and DNSSEC
 concepts described in [RFC1034], [RFC1035], [RFC4033], [RFC4034], and
 [RFC4035]; subsequent RFCs that update them in [RFC2136], [RFC2181],
 [RFC2308], [RFC5155], and [RFC7129]; and DNS terms in [RFC7719].

 The reader should also be familiar with verifiable random functions
 (VRFs) as defined in [I-D.irtf-cfrg-vrf].

 The following terminology is used through this document:

 Base32hex: The "Base 32 Encoding with Extended Hex Alphabet" as
 specified in [RFC4648]. The padding characters ("=") are not used
 in the NSEC5 specification.

 Base64: The "Base 64 Encoding" as specified in [RFC4648].

 QNAME: The domain name being queried (query name).

 Private NSEC5 key: The private key for the verifiable random
 function (VRF).

 Public NSEC5 key: The public key for the VRF.

 NSEC5 proof: A VRF proof. The holder of the private NSEC5 key
 (e.g., authoritative server) can compute the NSEC5 proof for an
 input domain name. Anyone who knows the public VRF key can verify
 that the NSEC5 proof corresponds to the input domain name.

 NSEC5 hash: A cryptographic digest of an NSEC5 proof. If the NSEC5
 proof is known, anyone can compute its corresponding NSEC5 hash.

 NSEC5 algorithm: A triple of VRF algorithms that compute an NSEC5
 proof (VRF_prove), verify an NSEC5 proof (VRF_verify), and process
 an NSEC5 proof to obtain its NSEC5 hash (VRF_proof2hash).

2. Backward Compatibility

 The specification describes a protocol change that is not backward
 compatible with [RFC4035] and [RFC5155]. An NSEC5-unaware resolver
 will fail to validate responses introduced by this document.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc2181
https://datatracker.ietf.org/doc/html/rfc2308
https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc7129
https://datatracker.ietf.org/doc/html/rfc7719
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4035
https://datatracker.ietf.org/doc/html/rfc5155

Vcelak, et al. Expires July 2, 2019 [Page 6]

Internet-Draft NSEC5 December 2018

 To prevent NSEC5-unaware resolvers from attempting to validate the
 responses, new DNSSEC algorithms identifiers are introduced in

Section 16 which alias existing algorithm numbers. The zones signed
 according to this specification MUST use only these algorithm
 identifiers, thus NSEC5-unaware resolvers will treat the zone as
 insecure.

3. How NSEC5 Works

 With NSEC5, the original domain name is hashed using a VRF
 [I-D.irtf-cfrg-vrf] using the following steps:

 1. The domain name is processed using a VRF keyed with the private
 NSEC5 key to obtain the NSEC5 proof. Anyone who knows the public
 NSEC5 key, normally acquired via an NSEC5KEY RR, can verify that
 a given NSEC5 proof corresponds to a given domain name.

 2. The NSEC5 proof is then processed using a publicly-computable VRF
 proof2hash function to obtain the NSEC5 hash. The NSEC5 hash can
 be computed by anyone who knows the input NSEC5 proof.

 The NSEC5 hash determines the position of a domain name in an NSEC5
 chain.

 To sign a zone, the private NSEC5 key is used to compute the NSEC5
 hashes for each name in the zone. These NSEC5 hashes are sorted in
 canonical order [RFC4034], and each consecutive pair forms an NSEC5
 RR. Each NSEC5 RR is signed offline using the private zone-signing
 key. The resulting signed chain of NSEC5 RRs is provided to all
 authoritative servers for the zone, along with the private NSEC5 key.

 To prove non-existence of a particular domain name in response to a
 query, the server uses the private NSEC5 key to compute the NSEC5
 proof and NSEC5 hash corresponding to the queried name. The server
 then identifies the NSEC5 RR that covers the NSEC5 hash, and responds
 with this NSEC5 RR and its corresponding RRSIG signature RRset, as
 well as a synthesized NSEC5PROOF RR that contains the NSEC5 proof
 corresponding to the queried name.

 To validate the response, the client verifies the following items:

 o The client uses the public NSEC5 key, normally acquired from the
 NSEC5KEY RR, to verify that the NSEC5 proof in the NSEC5PROOF RR
 corresponds to the queried name.

 o The client uses the VRF proof2hash function to compute the NSEC5
 hash from the NSEC5 proof in the NSEC5PROOF RR. The client
 verifies that the NSEC5 hash is covered by the NSEC5 RR.

https://datatracker.ietf.org/doc/html/rfc4034

Vcelak, et al. Expires July 2, 2019 [Page 7]

Internet-Draft NSEC5 December 2018

 o The client verifies that the NSEC5 RR is validly signed by the
 RRSIG RRset.

4. NSEC5 Algorithms

 The algorithms used for NSEC5 authenticated denial are independent of
 the algorithms used for DNSSEC signing. An NSEC5 algorithm defines
 how the NSEC5 proof and the NSEC5 hash are computed and validated.

 The NSEC5 proof corresponding to a name is computed using
 ECVRF_prove(), as specified in [I-D.irtf-cfrg-vrf]. The input to
 ECVRF_prove() is a public NSEC5 key followed by a private NSEC5 key
 followed by an RR owner name in [RFC4034] canonical wire format. The
 output NSEC5 proof is an octet string.

 An NSEC5 hash corresponding to a name is computed from its NSEC5
 proof using ECVRF_proof2hash(), as specified in [I-D.irtf-cfrg-vrf].
 The input to VRF_proof2hash() is an NSEC5 proof as an octet string.
 The output NSEC5 hash is either an octet string, or INVALID.

 An NSEC5 proof for a name is verified using ECVRF_verify(), as
 specified in [I-D.irtf-cfrg-vrf]. The input is the NSEC5 public key,
 followed by an NSEC5 proof as an octet string, followed by an RR
 owner name in [RFC4034] canonical wire format. The output is either
 VALID or INVALID.

 This document defines the EC-P256-SHA256 NSEC5 algorithm as follows:

 o The VRF is the ECVRF algorithm using the ECVRF-P256-SHA256
 ciphersuite specified in [I-D.irtf-cfrg-vrf].

 o The public key format to be used in the NSEC5KEY RR is defined in
Section 4 of [RFC6605] and thus is the same as the format used to

 store ECDSA public keys in DNSKEY RRs.
 [NOTE: This specification does not compress the elliptic curve
 point used for the public key, but we do compress curve points in
 every other place we use them. The NSEC5KEY record can be shrunk
 by 31 additional octets by encoding the public key with point
 compression.]

 This document defines the EC-ED25519-SHA512 NSEC5 algorithm as
 follows:

 o The VRF is the EC-VRF algorithm using the ECVRF-ED25519-SHA512
 ciphersuite specified in [I-D.irtf-cfrg-vrf].

https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc6605#section-4

Vcelak, et al. Expires July 2, 2019 [Page 8]

Internet-Draft NSEC5 December 2018

 o The public key format to be used in the NSEC5KEY RR is defined in
Section 3 of [RFC8080] and thus is the same as the format used to

 store Ed25519 public keys in DNSKEY RRs.

 [NOTE: Could alternatively have the EC-ED25519-SHA512 NSEC5
 ciphersuite use the EC-VRF-ED25519-SHA512-ELLIGATOR2 ciphersuite
 specified in [I-D.irtf-cfrg-vrf].]

5. The NSEC5KEY Resource Record

 The NSEC5KEY RR stores a public NSEC5 key. The key allows clients to
 validate an NSEC5 proof sent by a server.

5.1. NSEC5KEY RDATA Wire Format

 The RDATA for the NSEC5KEY RR is as shown below:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Algorithm | Public Key /
 +-+

 Algorithm is a single octet identifying the NSEC5 algorithm.

 Public Key is a variable-sized field holding public key material for
 NSEC5 proof verification.

5.2. NSEC5KEY RDATA Presentation Format

 The presentation format of the NSEC5KEY RDATA is as follows:

 The Algorithm field is represented as an unsigned decimal integer.

 The Public Key field is represented in Base64 encoding. Whitespace
 is allowed within the Base64 text.

6. The NSEC5 Resource Record

 The NSEC5 RR provides authenticated denial of existence for an RRset
 or domain name. One NSEC5 RR represents one piece of an NSEC5 chain,
 proving existence of the owner name and non-existence of other domain
 names in the part of the hashed domain space that is covered until
 the next owner name hashed in the RDATA.

https://datatracker.ietf.org/doc/html/rfc8080#section-3

Vcelak, et al. Expires July 2, 2019 [Page 9]

Internet-Draft NSEC5 December 2018

6.1. NSEC5 RDATA Wire Format

 The RDATA for the NSEC5 RR is as shown below:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Key Tag | Flags | Next Length |
 +-+
 | Next Hashed Owner Name /
 +-+
 / Type Bit Maps /
 +-+

 The Key Tag field contains the key tag value of the NSEC5KEY RR that
 validates the NSEC5 RR, in network byte order. The value is computed
 from the NSEC5KEY RDATA using the same algorithm used to compute key
 tag values for DNSKEY RRs. This algorithm is defined in [RFC4034].

 The Flags field is a single octet. The meaning of individual bits of
 the field is defined in Section 6.2.

 The Next Length field is an unsigned single octet specifying the
 length of the Next Hashed Owner Name field in octets.

 The Next Hashed Owner Name field is a sequence of binary octets. It
 contains an NSEC5 hash of the next domain name in the NSEC5 chain.

 Type Bit Maps is a variable-sized field encoding RR types present at
 the original owner name matching the NSEC5 RR. The format of the
 field is equivalent to the format used in the NSEC3 RR, described in
 [RFC5155].

6.2. NSEC5 Flags Field

 The following one-bit NSEC5 flags are defined:

 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+
 | |W|O|
 +-+-+-+-+-+-+-+-+

 O - Opt-Out flag

 W - Wildcard flag

 All the other flags are reserved for future use and MUST be zero.

https://datatracker.ietf.org/doc/html/rfc4034
https://datatracker.ietf.org/doc/html/rfc5155

Vcelak, et al. Expires July 2, 2019 [Page 10]

Internet-Draft NSEC5 December 2018

 The Opt-Out flag has the same semantics as in NSEC3. The definition
 and considerations in [RFC5155] are valid, except that NSEC3 is
 replaced by NSEC5.

 The Wildcard flag indicates that a wildcard synthesis is possible at
 the original domain name level (i.e., there is a wildcard node
 immediately descending from the immediate ancestor of the original
 domain name). The purpose of the Wildcard flag is to reduce the
 maximum number of RRs required for an authenticated denial of
 existence proof from (at most) three to (at most) two, as originally
 described in [I-D.gieben-nsec4] Section 7.2.1.

6.3. NSEC5 RDATA Presentation Format

 The presentation format of the NSEC5 RDATA is as follows:

 The Key Tag field is represented as an unsigned decimal integer.

 The Flags field is represented as an unsigned decimal integer.

 The Next Length field is not represented.

 The Next Hashed Owner Name field is represented as a sequence of
 case-insensitive Base32hex digits without any whitespace and without
 padding.

 The Type Bit Maps representation is equivalent to the representation
 used in NSEC3 RR, described in [RFC5155].

7. The NSEC5PROOF Resource Record

 The NSEC5PROOF record is not to be included in the zone file. The
 NSEC5PROOF record contains the NSEC5 proof, proving the position of
 the owner name in an NSEC5 chain.

7.1. NSEC5PROOF RDATA Wire Format

 The RDATA for the NSEC5PROOF RR is shown below:

 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Key Tag | Owner Name Hash /
 +-+

 Key Tag field contains the key tag value of the NSEC5KEY RR that
 validates the NSEC5PROOF RR, in network byte order.

https://datatracker.ietf.org/doc/html/rfc5155
https://datatracker.ietf.org/doc/html/rfc5155

Vcelak, et al. Expires July 2, 2019 [Page 11]

Internet-Draft NSEC5 December 2018

 Owner Name Hash is a variable-sized sequence of binary octets
 encoding the NSEC5 proof of the owner name of the RR.

7.2. NSEC5PROOF RDATA Presentation Format

 The presentation format of the NSEC5PROOF RDATA is as follows:

 The Key Tag field is represented as an unsigned decimal integer.

 The Owner Name Hash is represented in Base64 encoding. Whitespace is
 allowed within the Base64 text.

8. Types of Authenticated Denial of Existence with NSEC5

 This section summarizes all possible types of authenticated denial of
 existence. For each type the following lists are included:

 1. Facts to prove: the minimum amount of information that an
 authoritative server must provide to a client to assure the
 client that the response content is valid.

 2. Authoritative server proofs: the names for which the NSEC5PROOF
 RRs are synthesized and added into the response along with the
 NSEC5 RRs matching or covering each such name. These records
 together prove the listed facts.

 3. Validator checks: the individual checks that a validating server
 is required to perform on a response. The response content is
 considered valid only if all of the checks pass.

 If NSEC5 is said to match a domain name, the owner name of the NSEC5
 RR has to be equivalent to an NSEC5 hash of that domain name. If an
 NSEC5 RR is said to cover a domain name, the NSEC5 hash of the domain
 name must sort in canonical order between that NSEC5 RR's Owner Name
 and Next Hashed Owner Name.

8.1. Name Error Responses

 Facts to prove:

 Non-existence of the domain name that explictly matches the QNAME.

 Non-existence of the wildcard that matches the QNAME.

 Authoritative server proofs:

 NSEC5PROOF for closest encloser and matching NSEC5 RR.

Vcelak, et al. Expires July 2, 2019 [Page 12]

Internet-Draft NSEC5 December 2018

 NSEC5PROOF for next closer name and covering NSEC5 RR.

 Validator checks:

 Closest encloser is in the zone.

 The NSEC5 RR matching the closest encloser has its Wildcard flag
 cleared.

 The NSEC5 RR matching the closest encloser does not have NS
 without SOA in the Type Bit Map.

 The NSEC5 RR matching the closest encloser does not have DNAME in
 the Type Bit Map.

 Next closer name is not in the zone.

8.2. No Data Responses

 The processing of a No Data response for DS QTYPE differs if the Opt-
 Out is in effect. For DS QTYPE queries, the validator has two
 possible checking paths. The correct path can be simply decided by
 inspecting if the NSEC5 RR in the response matches the QNAME.

 Note that the Opt-Out is valid only for DS QTYPE queries.

8.2.1. No Data Response, Opt-Out Not In Effect

 Facts to prove:

 Existence of an RRset explicitly matching the QNAME.

 Non-existence of QTYPE RRset matching the QNAME.

 Non-existence of CNAME RRset matching the QNAME.

 Authoritative server proofs:

 NSEC5PROOF for the QNAME and matching NSEC5 RR.

 Validator checks:

 QNAME is in the zone.

 NSEC5 RR matching the QNAME does not have QTYPE in Type Bit Map.

 NSEC5 RR matching the QNAME does not have CNAME in Type Bit Map.

Vcelak, et al. Expires July 2, 2019 [Page 13]

Internet-Draft NSEC5 December 2018

8.2.2. No Data Response, Opt-Out In Effect

 Facts to prove:

 The delegation is not covered by the NSEC5 chain.

 Authoritative server proofs:

 NSEC5PROOF for closest provable encloser and matching NSEC5 RR.

 Validator checks:

 Closest provable encloser is in zone.

 Closest provable encloser covers (not matches) the QNAME.

 NSEC5 RR matching the closest provable encloser has Opt-Out flag
 set.

8.3. Wildcard Responses

 Facts to prove:

 A signed positive response to the QNAME demonstrating the
 existence of the wildcard (label count in RRSIG is less than in
 QNAME), and also providing closest encloser name.

 Non-existence of the domain name matching the QNAME.

 Authoritative server proofs:

 A signed positive response for the wildcard expansion of the
 QNAME.

 NSEC5PROOF for next closer name and covering NSEC5 RR.

 Validator checks:

 Next closer name is not in the zone.

8.4. Wildcard No Data Responses

 Facts to prove:

 The existence of the wildcard at the closest encloser to the
 QNAME.

Vcelak, et al. Expires July 2, 2019 [Page 14]

Internet-Draft NSEC5 December 2018

 Non-existence of both the QTYPE and of the CNAME type that matches
 QNAME via wildcard expansion.

 Authoritative server proofs:

 NSEC5PROOF for source of synthesis (i.e., wildcard at closest
 encloser) and matching NSEC5 RR.

 NSEC5PROOF for next closer name and covering NSEC5 RR.

 Validator checks:

 Closest encloser to the QNAME exists.

 NSEC5 RR matching the wildcard label prepended to the closest
 encloser, and which does not have the bits corresponding to the
 QTYPE and CNAME types set it the type bitmap.

9. Authoritative Server Considerations

9.1. Zone Signing

 Zones using NSEC5 MUST satisfy the same properties as described in
Section 7.1 of [RFC5155], with NSEC3 replaced by NSEC5. In addition,

 the following conditions MUST be satisfied as well:

 o If the original owner name has a wildcard label immediately
 descending from the original owner name, the corresponding NSEC5
 RR MUST have the Wildcard flag set in the Flags field. Otherwise,
 the flag MUST be cleared.

 o The zone apex MUST include an NSEC5KEY RRset containing a NSEC5
 public key allowing verification of the current NSEC5 chain.

 The following steps describe one possible method to properly add
 required NSEC5 related records into a zone. This is not the only
 such existing method.

 1. Select an algorithm for NSEC5 and generate the public and private
 NSEC5 keys.

 2. Add an NSEC5KEY RR into the zone apex containing the public NSEC5
 key.

 3. For each unique original domain name in the zone and each empty
 non-terminal, add an NSEC5 RR. If Opt-Out is used, owner names
 of unsigned delegations MAY be excluded.

https://datatracker.ietf.org/doc/html/rfc5155#section-7.1

Vcelak, et al. Expires July 2, 2019 [Page 15]

Internet-Draft NSEC5 December 2018

 A. The owner name of the NSEC5 RR is the NSEC5 hash of the
 original owner name encoded in Base32hex without padding,
 prepended as a single label to the zone name.

 B. Set the Key Tag field to be the key tag corresponding to the
 public NSEC5 key.

 C. Clear the Flags field. If Opt-Out is being used, set the
 Opt-Out flag. If there is a wildcard label directly descending
 from the original domain name, set the Wildcard flag. Note that
 the wildcard can be an empty non-terminal (i.e., the wildcard
 synthesis does not take effect and therefore the flag is not to
 be set).

 D. Set the Next Length field to a value determined by the used
 NSEC5 algorithm. Leave the Next Hashed Owner Name field blank.

 E. Set the Type Bit Maps field based on the RRsets present at
 the original owner name.

 4. Sort the set of NSEC5 RRs into canonical order.

 5. For each NSEC5 RR, set the Next Hashed Owner Name field by using
 the owner name of the next NSEC5 RR in the canonical order. If
 the updated NSEC5 is the last NSEC5 RR in the chain, the owner
 name of the first NSEC5 RR in the chain is used instead.

 The NSEC5KEY and NSEC5 RRs MUST have the same class as the zone SOA
 RR. Also the NSEC5 RRs SHOULD have the same TTL value as the SOA
 minimum TTL field.

 Notice that a use of Opt-Out is not indicated in the zone. This does
 not affect the ability of a server to prove insecure delegations.
 The Opt-Out MAY be part of the zone-signing tool configuration.

9.1.1. Precomputing Closest Provable Encloser Proofs

 Per Section 8, the worst-case scenario when answering a negative
 query with NSEC5 requires the authoritative server to respond with
 two NSEC5PROOF RRs and two NSEC5 RRs. One pair of NSEC5PROOF and
 NSEC5 RRs corresponds to the closest provable encloser, and the other
 pair corresponds to the next closer name. The NSEC5PROOF
 corresponding to the next closer name MUST be computed on the fly by
 the authoritative server when responding to the query. However, the
 NSEC5PROOF corresponding to the closest provable encloser MAY be
 precomputed and stored as part of zone signing.

Vcelak, et al. Expires July 2, 2019 [Page 16]

Internet-Draft NSEC5 December 2018

 Precomputing NSEC5PROOF RRs can halve the number of online
 cryptographic computations required when responding to a negative
 query. NSEC5PROOF RRs MAY be precomputed as part of zone signing as
 follows: For each NSEC5 RR, compute an NSEC5PROOF RR corresponding to
 the original owner name of the NSEC5 RR. The content of the
 precomputed NSEC5PROOF record MUST be the same as if the record was
 computed on the fly when serving the zone. NSEC5PROOF records are
 not part of the zone and SHOULD be stored separately from the zone
 file.

9.2. Zone Serving

 This specification modifies DNSSEC-enabled DNS responses generated by
 authoritative servers. In particular, it replaces use of NSEC or
 NSEC3 RRs in such responses with NSEC5 RRs and adds NSEC5PROOF RRs.

 According to the type of a response, an authoritative server MUST
 include NSEC5 RRs in the response, as defined in Section 8. For each
 NSEC5 RR in the response, a corresponding RRSIG RRset and an
 NSEC5PROOF MUST be added as well. The NSEC5PROOF RR has its owner
 name set to the domain name required according to the description in

Section 8. The class and TTL of the NSEC5PROOF RR MUST be the same
 as the class and TTL value of the corresponding NSEC5 RR. The RDATA
 payload of the NSEC5PROOF is set according to the description in

Section 7.1.

 Notice that the NSEC5PROOF owner name can be a wildcard (e.g., source
 of synthesis proof in wildcard No Data responses). The name also
 always matches the domain name required for the proof while the NSEC5
 RR may only cover (not match) the name in the proof (e.g., closest
 encloser in Name Error responses).

 If NSEC5 is used, an answering server MUST use exactly one NSEC5
 chain for one signed zone.

 NSEC5 MUST NOT be used in parallel with NSEC, NSEC3, or any other
 authenticated denial of existence mechanism that allows for
 enumeration of zone contents, as this would defeat a principal
 security goal of NSEC5.

 Similarly to NSEC3, the owner names of NSEC5 RRs are not represented
 in the NSEC5 chain and therefore NSEC5 records deny their own
 existence. The desired behavior caused by this paradox is the same
 as described in Section 7.2.8 of [RFC5155].

https://datatracker.ietf.org/doc/html/rfc5155#section-7.2.8

Vcelak, et al. Expires July 2, 2019 [Page 17]

Internet-Draft NSEC5 December 2018

9.3. NSEC5KEY Rollover Mechanism

 Replacement of the NSEC5 key implies generating a new NSEC5 chain.
 The NSEC5KEY rollover mechanism is similar to "Pre-Publish Zone
 Signing Key Rollover" as specified in [RFC6781]. The NSEC5KEY
 rollover MUST be performed as a sequence of the following steps:

 1. A new public NSEC5 key is added into the NSEC5KEY RRset in the
 zone apex.

 2. The old NSEC5 chain is replaced by a new NSEC5 chain constructed
 using the new key. This replacement MUST happen as a single
 atomic operation; the server MUST NOT be responding with RRs from
 both the new and old chain at the same time.

 3. The old public key is removed from the NSEC5KEY RRset in the zone
 apex.

 The minimum delay between steps 1 and 2 MUST be the time it takes for
 the data to propagate to the authoritative servers, plus the TTL
 value of the old NSEC5KEY RRset.

 The minimum delay between steps 2 and 3 MUST be the time it takes for
 the data to propagate to the authoritative servers, plus the maximum
 zone TTL value of any of the data in the previous version of the
 zone.

9.4. Secondary Servers

 This document does not define mechanism to distribute private NSEC5
 keys. See Section 15.2 for security considerations for private NSEC5
 keys.

9.5. Zones Using Unknown NSEC5 Algorithms

 Zones that are signed with an unknown NSEC5 algorithm or with an
 unavailable private NSEC5 key cannot be effectively served. Such
 zones SHOULD be rejected when loading and servers SHOULD respond with
 RCODE=2 (Server failure) when handling queries that would fall under
 such zones.

9.6. Dynamic Updates

 A zone signed using NSEC5 MAY accept dynamic updates [RFC2136]. The
 changes to the zone MUST be performed in a way that ensures that the
 zone satisfies the properties specified in Section 9.1 at any time.
 The process described in [RFC5155] Section 7.5 describes how to

https://datatracker.ietf.org/doc/html/rfc6781
https://datatracker.ietf.org/doc/html/rfc2136
https://datatracker.ietf.org/doc/html/rfc5155#section-7.5

Vcelak, et al. Expires July 2, 2019 [Page 18]

Internet-Draft NSEC5 December 2018

 handle the issues surrounding the handling of empty non-terminals as
 well as Opt-Out.

 It is RECOMMENDED that the server rejects all updates containing
 changes to the NSEC5 chain and its related RRSIG RRs, and performs
 itself any required alternations of the NSEC5 chain induced by the
 update. Alternatively, the server MUST verify that all the
 properties are satisfied prior to performing the update atomically.

10. Resolver Considerations

 The same considerations as described in Section 9 of [RFC5155] for
 NSEC3 apply to NSEC5. In addition, as NSEC5 RRs can be validated
 only with appropriate NSEC5PROOF RRs, the NSEC5PROOF RRs MUST be all
 together cached and included in responses with NSEC5 RRs.

11. Validator Considerations

11.1. Validating Responses

 The validator MUST ignore NSEC5 RRs with Flags field values other
 than the ones defined in Section 6.2.

 The validator MAY treat responses as bogus if the response contains
 NSEC5 RRs that refer to a different NSEC5KEY.

 According to a type of a response, the validator MUST verify all
 conditions defined in Section 8. Prior to making decision based on
 the content of NSEC5 RRs in a response, the NSEC5 RRs MUST be
 validated.

 To validate a denial of existence, public NSEC5 keys for the zone are
 required in addition to DNSSEC public keys. Similarly to DNSKEY RRs,
 the NSEC5KEY RRs are present at the zone apex.

 The NSEC5 RR is validated as follows:

 1. Select a correct public NSEC5 key to validate the NSEC5 proof.
 The Key Tag value of the NSEC5PROOF RR must match with the key
 tag value computed from the NSEC5KEY RDATA.

 2. Validate the NSEC5 proof present in the NSEC5PROOF Owner Name
 Hash field using the public NSEC5 key. If there are multiple
 NSEC5KEY RRs matching the key tag, at least one of the keys must
 validate the NSEC5 proof.

 3. Compute the NSEC5 hash value from the NSEC5 proof and check if
 the response contains NSEC5 RR matching or covering the computed

https://datatracker.ietf.org/doc/html/rfc5155#section-9

Vcelak, et al. Expires July 2, 2019 [Page 19]

Internet-Draft NSEC5 December 2018

 NSEC5 hash. The TTL values of the NSEC5 and NSEC5PROOF RRs must
 be the same.

 4. Validate the signature on the NSEC5 RR.

 If the NSEC5 RR fails to validate, it MUST be ignored. If some of
 the conditions required for an NSEC5 proof are not satisfied, the
 response MUST be treated as bogus.

 Notice that determining the closest encloser and next closer name in
 NSEC5 is easier than in NSEC3. NSEC5 and NSEC5PROOF RRs are always
 present in pairs in responses and the original owner name of the
 NSEC5 RR matches the owner name of the NSEC5PROOF RR.

11.2. Validating Referrals to Unsigned Subzones

 The same considerations as defined in Section 8.9 of [RFC5155] for
 NSEC3 apply to NSEC5.

11.3. Responses With Unknown NSEC5 Algorithms

 A validator MUST ignore NSEC5KEY RRs with unknown NSEC5 algorithms.
 The practical result of this is that zones signed with unknown
 algorithms will be considered bogus.

12. Special Considerations

12.1. Transition Mechanism

 [TODO: The following information will be covered.]

 o Transition to NSEC5 from NSEC/NSEC3

 o Transition from NSEC5 to NSEC/NSEC3

 o Transition to new NSEC5 algorithms

12.2. Private NSEC5 keys

 This document does not define a format to store private NSEC5 keys.
 Use of a standardized and adopted format is RECOMMENDED.

 The private NSEC5 key MAY be shared between multiple zones, however a
 separate key is RECOMMENDED for each zone.

https://datatracker.ietf.org/doc/html/rfc5155#section-8.9

Vcelak, et al. Expires July 2, 2019 [Page 20]

Internet-Draft NSEC5 December 2018

12.3. Domain Name Length Restrictions

 NSEC5 creates additional restrictions on domain name lengths. In
 particular, zones with names that, when converted into hashed owner
 names, exceed the 255 octet length limit imposed by [RFC1035] cannot
 use this specification.

 The actual maximum length of a domain name depends on the length of
 the zone name and the NSEC5 algorithm used.

 All NSEC5 algorithms defined in this document use 256-bit NSEC5 hash
 values. Such a value can be encoded in 52 characters in Base32hex
 without padding. When constructing the NSEC5 RR owner name, the
 encoded hash is prepended to the name of the zone as a single label
 which includes the length field of a single octet. The maximum
 length of the zone name in wire format using the 256-bit hash is
 therefore 202 octets (255 - 53).

13. Implementation Status

 NSEC5 has been implemented for the Knot DNS authoritative server
 (version 1.6.4) and the Unbound recursive server (version 1.5.9).
 The implementations did not introduce additional library
 dependencies; all cryptographic primitives are already present in
 OpenSSL v1.0.2j, which is used by both implementations. The
 implementations support the full spectrum of negative responses,
 (i.e., NXDOMAIN, NODATA, Wildcard, Wildcard NODATA, and unsigned
 delegation) using the EC-P256-SHA256 algorithm. The code is
 deliberately modular, so that the EC-ED25519-SHA256 algorithm could
 be implemented by using the Ed25519 elliptic curve [RFC8080] as a
 drop-in replacement for the P256 elliptic curve. The authoritative
 server implements the optimization from Section 9.1.1 to precompute
 the NSEC5PROOF RRs matching each NSEC5 record.

14. Performance Considerations

 The performance of NSEC5 has been evaluated in [nsec5ecc].

15. Security Considerations

15.1. Zone Enumeration Attacks

 NSEC5 is robust to zone enumeration via offline dictionary attacks by
 any attacker that does not know the private NSEC5 key. Without the
 private NSEC5 key, that attacker cannot compute the NSEC5 proof that
 corresponds to a given domain name. The only way it can learn the
 NSEC5 proof value for a domain name is by querying the authoritative
 server for that name. Without the NSEC5 proof value, the attacker

https://datatracker.ietf.org/doc/html/rfc1035
https://datatracker.ietf.org/doc/html/rfc8080

Vcelak, et al. Expires July 2, 2019 [Page 21]

Internet-Draft NSEC5 December 2018

 cannot learn the NSEC5 hash value. Thus, even an attacker that
 collects the entire chain of NSEC5 RR for a zone cannot use offline
 attacks to "reverse" that NSEC5 hash values in these NSEC5 RR and
 thus learn which names are present in the zone. A formal
 cryptographic proof of this property is in [nsec5] and [nsec5ecc].

15.2. Compromise of the Private NSEC5 Key

 NSEC5 requires authoritative servers to hold the private NSEC5 key,
 but not the private zone-signing keys or the private key-signing keys
 for the zone.

 The private NSEC5 key cannot be used to modify zone contents, because
 zone contents are signed using the private zone-signing key. As
 such, a compromise of the private NSEC5 key does not compromise the
 integrity of the zone. An adversary that learns the private NSEC5
 key can, however, perform offline zone-enumeration attacks. For this
 reason, the private NSEC5 key need only be as secure as the DNSSEC
 records whose privacy (against zone enumeration) is being protected
 by NSEC5. A formal cryptographic proof of this property is in
 [nsec5] and [nsec5ecc].

 To preserve this property of NSEC5, the private NSEC5 key MUST be
 different from the private zone-signing keys or key-signing keys for
 the zone.

15.3. Key Length Considerations

 The NSEC5 key must be long enough to withstand attacks for as long as
 the privacy of the zone contents is important. Even if the NSEC5 key
 is rolled frequently, its length cannot be too short, because zone
 privacy may be important for a period of time longer than the
 lifetime of the key. For example, an attacker might collect the
 entire chain of NSEC5 RR for the zone over one short period, and
 then, later (even after the NSEC5 key expires) perform an offline
 dictionary attack that attempts to reverse the NSEC5 hash values
 present in the NSEC5 RRs. This is in contrast to zone-signing and
 key-signing keys used in DNSSEC; these keys, which ensure the
 authenticity and integrity of the zone contents, need to remain
 secure only during their lifetime.

15.4. NSEC5 Hash Collisions

 If the NSEC5 hash of a QNAME collides with the NSEC5 hash of the
 owner name of an NSEC5 RR, it will be impossible to prove the non-
 existence of the colliding QNAME. However, the NSEC5 VRFs ensure
 that obtaining such a collision is as difficult as obtaining a
 collision in the SHA-256 hash function, requiring approximately 2^128

Vcelak, et al. Expires July 2, 2019 [Page 22]

Internet-Draft NSEC5 December 2018

 effort. Note that DNSSEC already relies on the assumption that a
 cryptographic hash function is collision-resistant, since these hash
 functions are used for generating and validating signatures and DS
 RRs. See also the discussion on key lengths in [nsec5].

16. IANA Considerations

 This document updates the IANA registry "Domain Name System (DNS)
 Parameters" in subregistry "Resource Record (RR) TYPEs", by defining
 the following new RR types:

 NSEC5KEY value TBD.

 NSEC5 value TBD.

 NSEC5PROOF value TBD.

 This document creates a new IANA registry for NSEC5 algorithms. This
 registry is named "DNSSEC NSEC5 Algorithms". The initial content of
 the registry is:

 0 is Reserved.

 1 is EC-P256-SHA256.

 2 is EC-ED25519-SHA256.

 3-255 is Available for assignment.

 This document updates the IANA registry "DNS Security Algorithm
 Numbers" by defining following aliases:

 TBD is NSEC5-ECDSAP256SHA256 alias for ECDSAP256SHA256 (13).

 TBD is NSEC5-ED25519, alias for ED25519 (15).

17. Contributors

 This document would not be possible without help of Moni Naor
 (Weizmann Institute), Sachin Vasant (Cisco Systems), Leonid Reyzin
 (Boston University), and Asaf Ziv (Weizmann Institute) who
 contributed to the design of NSEC5. Ondrej Sury (CZ.NIC Labs), and
 Duane Wessels (Verisign Labs) provided advice on the implementation
 of NSEC5, and assisted with evaluating its performance.

Vcelak, et al. Expires July 2, 2019 [Page 23]

Internet-Draft NSEC5 December 2018

18. References

18.1. Normative References

 [FIPS-186-3]
 National Institute for Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-3, June 2009.

 [I-D.irtf-cfrg-vrf]
 Goldberg, S., Reyzin, L., Papadopoulos, D., and J. Vcelak,
 "Verifiable Random Functions (VRFs)", draft-irtf-cfrg-

vrf-03 (work in progress), September 2018.

 [RFC1034] Mockapetris, P., "Domain names - concepts and facilities",
 STD 13, RFC 1034, DOI 10.17487/RFC1034, November 1987,
 <https://www.rfc-editor.org/info/rfc1034>.

 [RFC1035] Mockapetris, P., "Domain names - implementation and
 specification", STD 13, RFC 1035, DOI 10.17487/RFC1035,
 November 1987, <https://www.rfc-editor.org/info/rfc1035>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC2136] Vixie, P., Ed., Thomson, S., Rekhter, Y., and J. Bound,
 "Dynamic Updates in the Domain Name System (DNS UPDATE)",

RFC 2136, DOI 10.17487/RFC2136, April 1997,
 <https://www.rfc-editor.org/info/rfc2136>.

 [RFC2181] Elz, R. and R. Bush, "Clarifications to the DNS
 Specification", RFC 2181, DOI 10.17487/RFC2181, July 1997,
 <https://www.rfc-editor.org/info/rfc2181>.

 [RFC2308] Andrews, M., "Negative Caching of DNS Queries (DNS
 NCACHE)", RFC 2308, DOI 10.17487/RFC2308, March 1998,
 <https://www.rfc-editor.org/info/rfc2308>.

 [RFC4033] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "DNS Security Introduction and Requirements",

RFC 4033, DOI 10.17487/RFC4033, March 2005,
 <https://www.rfc-editor.org/info/rfc4033>.

 [RFC4034] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Resource Records for the DNS Security Extensions",

RFC 4034, DOI 10.17487/RFC4034, March 2005,
 <https://www.rfc-editor.org/info/rfc4034>.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-03
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vrf-03
https://datatracker.ietf.org/doc/html/rfc1034
https://www.rfc-editor.org/info/rfc1034
https://datatracker.ietf.org/doc/html/rfc1035
https://www.rfc-editor.org/info/rfc1035
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2136
https://www.rfc-editor.org/info/rfc2136
https://datatracker.ietf.org/doc/html/rfc2181
https://www.rfc-editor.org/info/rfc2181
https://datatracker.ietf.org/doc/html/rfc2308
https://www.rfc-editor.org/info/rfc2308
https://datatracker.ietf.org/doc/html/rfc4033
https://www.rfc-editor.org/info/rfc4033
https://datatracker.ietf.org/doc/html/rfc4034
https://www.rfc-editor.org/info/rfc4034

Vcelak, et al. Expires July 2, 2019 [Page 24]

Internet-Draft NSEC5 December 2018

 [RFC4035] Arends, R., Austein, R., Larson, M., Massey, D., and S.
 Rose, "Protocol Modifications for the DNS Security
 Extensions", RFC 4035, DOI 10.17487/RFC4035, March 2005,
 <https://www.rfc-editor.org/info/rfc4035>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

 [RFC5114] Lepinski, M. and S. Kent, "Additional Diffie-Hellman
 Groups for Use with IETF Standards", RFC 5114,
 DOI 10.17487/RFC5114, January 2008,
 <https://www.rfc-editor.org/info/rfc5114>.

 [RFC5155] Laurie, B., Sisson, G., Arends, R., and D. Blacka, "DNS
 Security (DNSSEC) Hashed Authenticated Denial of
 Existence", RFC 5155, DOI 10.17487/RFC5155, March 2008,
 <https://www.rfc-editor.org/info/rfc5155>.

 [RFC6234] Eastlake 3rd, D. and T. Hansen, "US Secure Hash Algorithms
 (SHA and SHA-based HMAC and HKDF)", RFC 6234,
 DOI 10.17487/RFC6234, May 2011,
 <https://www.rfc-editor.org/info/rfc6234>.

 [RFC6605] Hoffman, P. and W. Wijngaards, "Elliptic Curve Digital
 Signature Algorithm (DSA) for DNSSEC", RFC 6605,
 DOI 10.17487/RFC6605, April 2012,
 <https://www.rfc-editor.org/info/rfc6605>.

 [RFC7748] Langley, A., Hamburg, M., and S. Turner, "Elliptic Curves
 for Security", RFC 7748, DOI 10.17487/RFC7748, January
 2016, <https://www.rfc-editor.org/info/rfc7748>.

 [RFC8080] Sury, O. and R. Edmonds, "Edwards-Curve Digital Security
 Algorithm (EdDSA) for DNSSEC", RFC 8080,
 DOI 10.17487/RFC8080, February 2017,
 <https://www.rfc-editor.org/info/rfc8080>.

18.2. Informative References

 [I-D.gieben-nsec4]
 Gieben, R. and M. Mekking, "DNS Security (DNSSEC)
 Authenticated Denial of Existence", draft-gieben-nsec4-01
 (work in progress), July 2012.

 [ldns-walk]
 NLNetLabs, "ldns", 2015,
 <http://git.nlnetlabs.nl/ldns/tree/examples/ldns-walk.c>.

https://datatracker.ietf.org/doc/html/rfc4035
https://www.rfc-editor.org/info/rfc4035
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5114
https://www.rfc-editor.org/info/rfc5114
https://datatracker.ietf.org/doc/html/rfc5155
https://www.rfc-editor.org/info/rfc5155
https://datatracker.ietf.org/doc/html/rfc6234
https://www.rfc-editor.org/info/rfc6234
https://datatracker.ietf.org/doc/html/rfc6605
https://www.rfc-editor.org/info/rfc6605
https://datatracker.ietf.org/doc/html/rfc7748
https://www.rfc-editor.org/info/rfc7748
https://datatracker.ietf.org/doc/html/rfc8080
https://www.rfc-editor.org/info/rfc8080
https://datatracker.ietf.org/doc/html/draft-gieben-nsec4-01
http://git.nlnetlabs.nl/ldns/tree/examples/ldns-walk.c

Vcelak, et al. Expires July 2, 2019 [Page 25]

Internet-Draft NSEC5 December 2018

 [MRV99] Michali, S., Rabin, M., and S. Vadhan, "Verifiable Random
 Functions", in FOCS, 1999.

 [nmap-nsec-enum]
 Bond, J., "nmap: dns-nsec-enum", 2011,
 <https://nmap.org/nsedoc/scripts/dns-nsec-enum.html>.

 [nmap-nsec3-enum]
 Nikolic, A. and J. Bond, "nmap: dns-nsec3-enum", 2011,
 <https://nmap.org/nsedoc/scripts/dns-nsec3-enum.html>.

 [nsec3gpu]
 Wander, M., Schwittmann, L., Boelmann, C., and T. Weis,
 "GPU-Based NSEC3 Hash Breaking", in IEEE Symp. Network
 Computing and Applications (NCA), 2014.

 [nsec3map]
 anonion0, "nsec3map with John the Ripper plugin", 2015,
 <https://github.com/anonion0/nsec3map.>.

 [nsec3walker]
 Bernstein, D., "Nsec3 walker", 2011,
 <http://dnscurve.org/nsec3walker.html>.

 [nsec5] Goldberg, S., Naor, M., Papadopoulos, D., Reyzin, L.,
 Vasant, S., and A. Ziv, "NSEC5: Provably Preventing DNSSEC
 Zone Enumeration", in NDSS'15, July 2014,
 <https://eprint.iacr.org/2014/582.pdf>.

 [nsec5ecc]
 Papadopoulos, D., Wessels, D., Huque, S., Vcelak, J.,
 Naor, M., Reyzin, L., and S. Goldberg, "Can NSEC5 be
 Practical for DNSSEC Deployments?", in ePrint Cryptology
 Archive 2017/099, February 2017,
 <https://eprint.iacr.org/2017/099.pdf>.

 [RFC6781] Kolkman, O., Mekking, W., and R. Gieben, "DNSSEC
 Operational Practices, Version 2", RFC 6781,
 DOI 10.17487/RFC6781, December 2012,
 <https://www.rfc-editor.org/info/rfc6781>.

 [RFC7129] Gieben, R. and W. Mekking, "Authenticated Denial of
 Existence in the DNS", RFC 7129, DOI 10.17487/RFC7129,
 February 2014, <https://www.rfc-editor.org/info/rfc7129>.

 [RFC7719] Hoffman, P., Sullivan, A., and K. Fujiwara, "DNS
 Terminology", RFC 7719, DOI 10.17487/RFC7719, December
 2015, <https://www.rfc-editor.org/info/rfc7719>.

https://nmap.org/nsedoc/scripts/dns-nsec-enum.html
https://nmap.org/nsedoc/scripts/dns-nsec3-enum.html
https://github.com/anonion0/nsec3map
http://dnscurve.org/nsec3walker.html
https://eprint.iacr.org/2014/582.pdf
https://eprint.iacr.org/2017/099.pdf
https://datatracker.ietf.org/doc/html/rfc6781
https://www.rfc-editor.org/info/rfc6781
https://datatracker.ietf.org/doc/html/rfc7129
https://www.rfc-editor.org/info/rfc7129
https://datatracker.ietf.org/doc/html/rfc7719
https://www.rfc-editor.org/info/rfc7719

Vcelak, et al. Expires July 2, 2019 [Page 26]

Internet-Draft NSEC5 December 2018

Appendix A. Examples

 We use a small DNS zone to illustrate how negative responses are
 handled with NSEC5. For brevity, the class is not shown (defaults to
 IN) and the SOA record is shortened, resulting in the following zone
 file:

 example.org. SOA (...)
 example.org. NS a.example.org

 a.example.org. A 192.0.2.1

 c.example.org. A 192.0.2.2
 c.example.org. TXT "c record"

 d.example.org. NS ns1.d.example.org

 ns1.d.example.org. A 192.0.2.4

 g.example.org. A 192.0.2.1
 g.example.org. TXT "g record"

 *.a.example.org. TXT "wildcard record"

 Notice the delegation to an unsigned zone d.example.org served by
 ns1.d.example.org. (Note: if the d.example.org zone was signed, then
 the example.org zone have a DS record for d.example.org.)

 Next we present example responses. All cryptographic values are
 shortened as indicated by "..." and ADDITIONAL sections have been
 removed.

A.1. Name Error Example

 Consider a query for a type A record for a.b.c.example.org.

 The server must prove the following facts:

 o Existence of closest encloser c.example.org.

 o Non-existence of wildcard at closest encloser *.c.example.org.

 o Non-existence of next closer b.c.example.org.

 To do this, the server returns:

Vcelak, et al. Expires July 2, 2019 [Page 27]

Internet-Draft NSEC5 December 2018

;; ->>HEADER<<- opcode: QUERY; status: NXDOMAIN; id: 5937

;; QUESTION SECTION:
;; a.b.c.example.org. IN A

;; AUTHORITY SECTION:
example.org. 3600 IN SOA a.example.org. hostmaster.example.org. (
 2010111214 21600 3600 604800 86400)

example.org. 3600 IN RRSIG SOA 16 2 3600 (
 20170412024301 20170313024301 5137 example.org. rT231b1rH...)

 This is an NSEC5PROOF RR for c.example.com. It's RDATA is the NSEC5
 proof corresponding to c.example.com. (NSEC5 proofs are randomized
 values, because NSEC5 proof values are computed uses the EC-VRF from
 [I-D.irtf-cfrg-vrf].) Per Section 9.1.1, this NSEC5PROOF RR may be
 precomputed.

 c.example.org. 86400 IN NSEC5PROOF 48566 Amgn22zUiZ9JVyaT...

 This is a signed NSEC5 RR "matching" c.example.org, which proves the
 existence of closest encloser c.example.org. The NSEC5 RR has its
 owner name equal to the NSEC5 hash of c.example.org, which is O4K89V.
 (NSEC5 hash values are deterministic given the public NSEC5 key.)
 The NSEC5 RR also has its Wildcard flag cleared (see the "0" after
 the key ID 48566). This proves the non-existence of the wildcard at
 the closest encloser *.c.example.com. NSEC5 RRs are precomputed.

o4k89v.example.org. 86400 IN NSEC5 48566 0 0O49PI A TXT RRSIG
o4k89v.example.org. 86400 IN RRSIG NSEC5 16 3 86400 (
 20170412024301 20170313024301 5137 example.org. zDNTSMQNlz...)

 This is an NSEC5PROOF RR for b.c.example.org. It's RDATA is the
 NSEC5 proof corresponding to b.c.example.com. This NSEC5PROOF RR
 must be computed on the fly.

 b.c.example.org. 86400 IN NSEC5PROOF 48566 AuvvJqbUcEs8sCpY...

 This is a signed NSEC5 RR "covering" b.c.example.org, which proves
 the non-existence of the next closer name b.c.example.org The NSEC5
 hash of b.c.example.org, which is AO5OF, sorts in canonical order
 between the "covering" NSEC5 RR's Owner Name (which is 0O49PI) and
 Next Hashed Owner Name (which is BAPROH).

Vcelak, et al. Expires July 2, 2019 [Page 28]

Internet-Draft NSEC5 December 2018

0o49pi.example.org. 86400 IN NSEC5 48566 0 BAPROH (
 NS SOA RRSIG DNSKEY NSEC5KEY)

0o49pi.example.org. 86400 IN RRSIG NSEC5 16 3 86400 (
 20170412024301 20170313024301 5137 example.org. 4HT1uj1YlMzO)

[TODO: Add discussion of CNAME and DNAME to the example?]

A.2. No Data Example

 Consider a query for a type MX record for c.example.org.

 The server must prove the following facts:

 o Existence of c.example.org. for any type other than MX or CNAME

 To do this, the server returns:

;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 38781

;; QUESTION SECTION:
;; c.example.org. IN MX

;; AUTHORITY SECTION:
example.org. 3600 IN SOA a.example.org. hostmaster.example.org. (
 2010111214 21600 3600 604800 86400)

example.org. 3600 IN RRSIG SOA 16 2 3600 20170412024301 20170313024301
5137 example.org. /rT231b1rH/p

 This is an NSEC5PROOF RR for c.example.com. Its RDATA corresponds to
 the NSEC5 proof for c.example.com. which is a randomized value. Per

Section 9.1.1, this NSEC5PROOF RR may be precomputed.

 c.example.org. 86400 IN NSEC5PROOF 48566 Amgn22zUiZ9JVyaT

 This is a signed NSEC5 RR "matching" c.example.org. with CNAME and MX
 Type Bits cleared and its TXT Type Bit set. This NSEC5 RR has its
 owner name equal to the NSEC5 hash of c.example.org. This proves the
 existence of c.example.org. for a type other than MX and CNAME.
 NSEC5 RR are precomputed.

o4k89v.example.org. 86400 IN NSEC5 48566 0 0O49PI A TXT RRSIG

o4k89v.example.org. 86400 IN RRSIG NSEC5 16 3 86400 (
 20170412024301 20170313024301 5137 example.org. zDNTSMQNlz/J)

Vcelak, et al. Expires July 2, 2019 [Page 29]

Internet-Draft NSEC5 December 2018

A.3. Delegation to an Unsigned Zone in an Opt-Out span Example

 Consider a query for a type A record for foo.d.example.org.

 Here, d.example.org is a delegation to an unsigned zone, which lies
 within an Opt-Out span.

 The server must prove the following facts:

 o Non-existence of signature on next closer name d.example.org.

 o Opt-out bit is set in NSEC5 record covering next closer name
 d.example.org.

 o Existence of closest provable encloser example.org

 To do this, the server returns:

 ;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 45866

 ;; QUESTION SECTION:
 ;; foo.d.example.org. IN A

 ;; AUTHORITY SECTION:
 d.example.org. 3600 IN NS ns1.d.example.org.

 This is an NSEC5PROOF RR for d.example.org. Its RDATA is the NSEC5
 proof corresponding to d.example.org. This NSEC5PROOF RR is computed
 on the fly.

d.example.org. 86400 IN NSEC5PROOF 48566 A9FpmeH79q7g6VNW

 This is a signed NSEC5 RR "covering" d.example.org with its Opt-out
 bit set (see the "1" after the key ID 48566). The NSEC5 hash of
 d.example.org (which is BLE8LR) sorts in canonical order between the
 "covering" NSEC5 RR's Owner Name (BAPROH) and Next Hashed Owner Name
 (JQBMG4). This proves that no signed RR exists for d.example.org,
 but that the zone might contain a unsigned RR for a name whose NSEC5
 hash sorts in canonical order between BAPROH and JQBMG4.

baproh.example.org. 86400 IN NSEC5 48566 1 JQBMG4 A TXT RRSIG

baproh.example.org. 86400 IN RRSIG NSEC5 16 3 86400 (
 20170412024301 20170313024301 5137 example.org. fjTcoRKgdML1)

 This is an NSEC5PROOF RR for example.com. It's RDATA is the NSEC5
 proof corresponding to example.com. Per Section 9.1.1, this
 NSEC5PROOF RR may be precomputed.

Vcelak, et al. Expires July 2, 2019 [Page 30]

Internet-Draft NSEC5 December 2018

 example.org. 86400 IN NSEC5PROOF 48566 AjwsPCJZ8zH/D0Tr

 This is a signed NSEC5 RR "matching" example.org which proves the
 existence of a signed RRs for example.org. This NSEC5 RR has its
 owner name equal to the NSEC5 hash of example.org which is 0O49PI.
 NSEC5 RR are precomputed.

0o49pi.example.org. 86400 IN NSEC5 48566 0 BAPROH (
 NS SOA RRSIG DNSKEY NSEC5KEY)

0o49pi.example.org. 86400 IN RRSIG NSEC5 16 3 86400 (
 20170412034216 20170313034216 5137 example.org. 4HT1uj1YlMzO)

A.4. Wildcard Example

 Consider a query for a type TXT record for foo.a.example.org.

 The server must prove the following facts:

 o Existence of the TXT record for the wildcard *.a.example.org

 o Non-existence of the next closer name foo.a.example.org.

 To do this, the server returns:

 ;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 53731

 ;; QUESTION SECTION:
 ;; foo.a.example.org. IN TXT

 This is a signed TXT record for the wildcard at a.example.org (number
 of labels is set to 3 in the RRSIG record).

;; ANSWER SECTION:
foo.a.example.org. 3600 IN TXT "wildcard record"

foo.a.example.org. 3600 IN RRSIG TXT 16 3 3600 (
 20170412024301 20170313024301 5137 example.org. aeaLgZ8sk+98)

;; AUTHORITY SECTION:
example.org. 3600 IN NS a.example.org.

example.org. 3600 IN RRSIG NS 16 2 3600 (
 20170412024301 20170313024301 5137 example.org. 8zuN0h2x5WyF)

 This is an NSEC5PROOF RR for foo.a.example.org. This NSEC5PROOF RR
 must be computed on-the-fly.

Vcelak, et al. Expires July 2, 2019 [Page 31]

Internet-Draft NSEC5 December 2018

 foo.a.example.org. 86400 IN NSEC5PROOF 48566 AjqF5FGGVso40Lda

 This is a signed NSEC5 RR "covering" foo.a.example.org. The NSEC5
 hash of foo.a.example.org is FORDMO and sorts in canonical order
 between the NSEC5 RR's Owner Name (which is BAPROH) and Next Hashed
 Owner Name (which is JQBMG4). This proves the non-existence of the
 next closer name foo.a.example.com. NSEC5 RRs are precomputed.

 baproh.example.org. 86400 IN NSEC5 48566 1 JQBMG4 A TXT RRSIG
 baproh.example.org. 86400 IN RRSIG NSEC5 16 3 86400 (
 20170412024301 20170313024301 5137 example.org. fjTcoRKgdML1

A.5. Wildcard No Data Example

 Consider a query for a type MX record for foo.a.example.org.

 The server must prove the following facts:

 o Existence of wildcard at closest encloser *.a.example.org. for any
 type other than MX or CNAME.

 o Non-existence of the next closer name foo.a.example.org.

 To do this, the server returns:

;; ->>HEADER<<- opcode: QUERY; status: NOERROR; id: 17332

;; QUESTION SECTION:
;; foo.a.example.org. IN MX

;; AUTHORITY SECTION:
example.org. 3600 IN SOA a.example.org. hostmaster.example.org. (
 2010111214 21600 3600 604800 86400)

example.org. 3600 IN RRSIG SOA 16 2 3600 (
 20170412024301 20170313024301 5137 example.org. /rT231b1rH/p)

 This is an NSEC5PROOF RR for *.a.example.com, with RDATA equal to the
 NSEC5 proof for *.a.example.com. Per Section 9.1.1, this NSEC5PROOF
 RR may be precomputed.

 *.a.example.org. 86400 IN NSEC5PROOF 48566 Aq38RWWPhbs/vtih

 This is a signed NSEC5 RR "matching" *.a.example.org with its CNAME
 and MX Type Bits cleared and its TXT Type Bit set. This NSEC5 RR has
 its owner name equal to the NSEC5 hash of *.a.example.org. NSEC5 RRs
 are precomputed.

Vcelak, et al. Expires July 2, 2019 [Page 32]

Internet-Draft NSEC5 December 2018

mpu6c4.example.org. 86400 IN NSEC5 48566 0 O4K89V TXT RRSIG

mpu6c4.example.org. 86400 IN RRSIG NSEC5 16 3 86400 (
 20170412024301 20170313024301 5137 example.org. m3I75ttcWwVC)

 This is an NSEC5PROOF RR for foo.a.example.com. This NSEC5PROOF RR
 must be computed on-the-fly.

 foo.a.example.org. 86400 IN NSEC5PROOF 48566 AjqF5FGGVso40Lda

 This is a signed NSEC5 RR "covering" foo.a.example.org. The NSEC5
 hash of foo.a.example.org is FORDMO, and sorts in canonical order
 between this covering NSEC5 RR's Owner Name (which is BAPROH) and
 Next Hashed Owner Name (which is JQBMG4). This proves the existence
 of the wildcard at closest encloser *.a.example.org. for any type
 other than MX or CNAME. NSEC5 RRs are precomputed.

baproh.example.org. 86400 IN NSEC5 48566 1 JQBMG4 A TXT RRSIG

baproh.example.org. 86400 IN RRSIG NSEC5 16 3 86400 (
 20170412024301 20170313024301 5137 example.org. fjTcoRKgdML1)

Appendix B. Change Log

 Note to RFC Editor: if this document does not obsolete an existing
 RFC, please remove this appendix before publication as an RFC.

 pre 00 - initial version of the document submitted to mailing list
 only

 00 - fix NSEC5KEY rollover mechanism, clarify NSEC5PROOF RDATA,
 clarify inputs and outputs for NSEC5 proof and NSEC5 hash
 computation.

 01 - Add Performance Considerations section.

 02 - Add elliptic curve based VRF. Add measurement of response
 sizes based on empirical data.

 03 - Mention precomputed NSEC5PROOF Values in Performance
 Considerations section.

 04 - Edit Rationale, How NSEC5 Works, and Security Consideration
 sections for clarity. Edit Zone Signing section, adding
 precomputation of NSEC5PROOFs. Remove RSA-based NSEC5
 specification. Rewrite Performance Considerations and
 Implementation Status sections.

Vcelak, et al. Expires July 2, 2019 [Page 33]

Internet-Draft NSEC5 December 2018

 05 - Remove appendix specifying VRFs and add reference to draft-
goldbe-vrf. Add Appendix A.

 06 - Editorial changes. Minor updates to Section 8.1.

 07 - Updated reference to [I-D.irtf-cfrg-vrf], updated VRF
 ciphersuites.

Authors' Addresses

 Jan Vcelak
 CZ.NIC
 Milesovska 1136/5
 Praha 130 00
 CZ

 EMail: jan.vcelak@nic.cz

 Sharon Goldberg
 Boston University
 111 Cummington St, MCS135
 Boston, MA 02215
 USA

 EMail: goldbe@cs.bu.edu

 Dimitrios Papadopoulos
 HKUST
 Clearwater Bay
 Hong Kong

 EMail: dipapado@ust.hk

 Shumon Huque
 Salesforce
 2550 Wasser Terr
 Herndon, VA 20171
 USA

 EMail: shuque@gmail.com

https://datatracker.ietf.org/doc/html/draft-goldbe-vrf
https://datatracker.ietf.org/doc/html/draft-goldbe-vrf

Vcelak, et al. Expires July 2, 2019 [Page 34]

Internet-Draft NSEC5 December 2018

 David C Lawrence
 Dyn
 150 Dow Street, Tower Two
 Manchester, NH 03101
 USA

 EMail: tale@dd.org

Vcelak, et al. Expires July 2, 2019 [Page 35]

