
SIP Working Group L. Veltri
Internet-Draft Univ. of Parma
Intended status: Informational S. Salsano
Expires: October 29, 2008 A. Polidoro
 Univ. of Rome Tor Vergata
 April 27, 2008

HTTP digest authentication using alternate password storage schemes
draft-veltri-sip-alt-auth-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on October 29, 2008.

Veltri, et al. Expires October 29, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft SIP auth. using alternate schemes April 2008

Abstract

 This document proposes to extend the HTTP Digest Authentication by
 adding a set new algorithms. These algorithms use different hash
 functions and combination of various information such as user name,
 realm, password, salt, and/or other data, in order to achieve
 compatibility with existing mechanisms used to store user credentials
 in various authentication/autorization servers.

Table of Contents

1. Introduction . 3

2. HTTP Digest Authentication for SIP 4

3. New extensible authentication scheme 8
3.1. First solution . 11
3.2. Second solution . 13

4. Security considerations 17

5. Informative References . 18

 Authors' Addresses . 19
 Intellectual Property and Copyright Statements 20

Veltri, et al. Expires October 29, 2008 [Page 2]

Internet-Draft SIP auth. using alternate schemes April 2008

1. Introduction

 According to the current SIP specification [RFC3261], the SIP
 protocol uses the HTTP Digest Authentication defined in [RFC2617] as
 default mechanism for authenticating and authorizing User Agent
 Clients (UACs) against remote User Agent Servers (UASs) or
 intermediate proxys. HTTP Digest Authentication is a challenge-
 response authentication method and requires that both the supplicant
 (i.e. the UAC) and the authenticator (i.e. the UAS or the proxy)
 access the clear-text user password or a non-revertible function
 (hash-derived) of the password and other information. The HTTP
 Digest Authentication [RFC2617] specifically define also an
 authentication scheme named MD5 that requires the UAs and proxys to
 compute or retrive from a database the MD5 digest of a concatenation
 (colon-separated) of username, realm, and password. Unfortunately
 other user authentication/authorization mechanisms use different and
 non compatible mechanisms to store non-revertible hashes of
 passwords. This prevents using an existing database of user
 credentials to offer SIP based services requiring authentication.
 This document tries to extend the stantard SIP/HTTP Digest
 Authentication mechanism in order to consider other password-storing
 schemes that do not naturally cooperate with the current HTTP Digest
 Authentication scheme. Examples of such password-storing schemes are
 those generally used in LDAP servers, Unix shadow/password files,
 Apache's htpasswd file, or SQL-based storage systems used by other
 specific applications.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617

Veltri, et al. Expires October 29, 2008 [Page 3]

Internet-Draft SIP auth. using alternate schemes April 2008

2. HTTP Digest Authentication for SIP

 HTTP Digest Authentication [RFC2617] is a general challenge-response
 mechanism in which a UAS authenticates a UAC based on a shared
 secret. The challenge response is computed through the use of a one-
 way function based on various user's credentials. The standard also
 specifies the use of a particular function (in turn based on the MD5
 hash function) that requires that both the client and server knows
 the user secret (normally a password) or, at least, the hash of the
 concatenation of the user name, the realm, and the password.

 When the HTTP Digest Authentication [RFC2617] is used in SIP, an UAS
 that receives a SIP request (example a REGISTER) may challenge the
 UAC by sending a 401 "Unauthorized" error response (or 407 "Proxy
 Authentication Required" for proxy authentication) containing a fresh
 random nonce value as challenge. Both the UAC and the UAS share a
 secret (usually a password) and they use this secret, together with
 the nonce value, realm, and other information, respectively to
 compute the challenge response (the UAC) and to verify such the
 response (the UAS). The UAS sends the challenge in the 401
 "Unauthorized" SIP response within a WWW-Authenticate header field
 (Proxy-Authenticate header for proxy authentication), then the UAC
 sends the challenge response in a new request message within a
 Authorization header field (Proxy-Authorization header for proxy
 authentication), and finally the UAS sends the authentication and
 authorization result with a new response message (2xx if it
 successed).

 According to [RFC2617] the challenge response is computed as:

 response = KD(H(A1), nonce:nc:cnonce:qop:H(method:uri))

 where KD(secret,data) is a general two-parameters digest algorithm
 applied to "data" with secret "secret", while H(data) is a digest
 algorithm applied to "data", and A1 is a quantity that should take
 into account user credentials.

 As specified in [RFC2617], by default or in case of "algorithm=MD5,
 the KD(,) H(), and A1 are respectively:

 KD(secret, data) = MD5(secret:data)

 H(data) = MD5(data)

 A1 = username:realm:passwd

 Particularly, the first term of KD(,) (indicated as "secret") and
 computed as H(A1) becomes:

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617

Veltri, et al. Expires October 29, 2008 [Page 4]

Internet-Draft SIP auth. using alternate schemes April 2008

 secret = H(A1) = MD5(username:realm:passwd)

 Note that both the requestor (the UAC) and the auhenticator (the UAS)
 do not need to know the user password (eventually retrieved from a
 local archive), but rather this "secret" i.e. a digest function of
 username, realm and password itself.

 Unfortunately, current user's credential databases or storage systems
 often protect user's password by implementing one-way cryptographic
 algorithms different from the MD5 hashing mechanism specified for the
 HTTP Digest Authentication.

 For example, in LDAP (Lightweight Directory Access Protocol) servers,
 password values can be stored as plaintext or as one of a variety of
 hashes. [RFC3112] specifically describes the "MD5" and "SHA1"
 schemes for a LDAP directory. The MD5 scheme computes the hashed-
 protected password as the base64 encoding of an MD5 [RFC1321] digest
 of the concatenation the user password and salt that must be at least
 64 bit long. The SHA1 scheme computes the hashed-protected password
 in the same way, by using SHA1 [RFC3174] hash function instead of
 MD5.

 These two hash-protected password schemes are also referred as:

 o SSHA - Salted SHA-1 based hash

 o SMD5 - Salted MD5 based hash

 Other hash-protected password schemes normally supported by an LDAP
 server are:

 o SHA - SHA-1 based hash.

 o MD5 - MD5 based hash.

 o CRYPT - Unix crypt() hash, based on DES, also referred as UNIX;
 see later.

 Note that these three schemes are weaker than the previous two, due
 to the absence of a security salt value. In some lucky cases a LDAP
 server may also support other schemes that use pre-calculated hash
 values compatible with HTTP Digest Authentication.

 An other example is the Unix system in which passwords are usually
 stored in the "/etc/shadow" file or, in older Unix versions, in the
 "/etc/password" file. In both cases, passwords are normally stored
 encrypted (actually hashed) with a one-way algorithm generally
 referred as "crypt", together with a salt value and an indication of

https://datatracker.ietf.org/doc/html/rfc3112
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc3174

Veltri, et al. Expires October 29, 2008 [Page 5]

Internet-Draft SIP auth. using alternate schemes April 2008

 the used algorithm. The traditional crypt algorithm implementation
 uses a modified form of the DES algorithm that performs 25 DES passes
 to encrypt an all-bits-zero block using with a 56-bit key formed by
 the first 7 password characters. A 12-bit salt is used to perturb
 the original DES algorithm. The salt and the final ciphertext are
 base64-encoded into a printable string stored in the password or
 shadow file. Other more robust crypt functions have been defined
 based on other cryptographic or hash algorithms such as MD5,
 blowfish, or SHA-1. Such functions generally allow users to have any
 length password (> 8bytes), and do not limit the password to ASCII
 (7-bit) text. Currently, the most common crypt function used by
 Unix/Linux systems supports both the original DES-based and the MD5-
 based (MD5-crypt) algorithms. The MD5-crypt function is really not a
 straight implementation of MD5: first the password and salt are MD5
 hashed together in a first digest, then 1000 iteration loops
 continuously remix the password, salt and intermediate digest values;
 the output of the last of these rounds is the resulting hash. A
 typical output of the stored password together with username, salt,
 and other information is:

 alice:1BZftq3sP$xEeZmr2fGEnKjVAxzj:12747:0:99999:7:::

 where 1 indicates the use of MD5-crypt, while BZftq3sP is the
 base-64 encoding of the salt and xEeZmr2fGEnKjVAxzjQo68 is the
 password hash.

 Other applications also store user's credentials in local files or
 database, that have they own format but that re-use similar hashing
 algorithms. For example the Apache's htpasswd tool supports four
 different methods:

 PLAINTEXT: passwords are stored without any encryption mechanism.
 In this case in the file will contain lines of the form: user:
 passwd

 CRYPT: passwords are stored encrypted using the traditional Unix
 crypt function described in the previous section.

 SHA1: passwords are stored by base64-encoding the SHA-1 digest of
 the password. The corresponding htpasswd file has lines that look
 like:

 alice:{SHA1}VBPuJHI7uixaa6LQGWx4s+5GKNE=

 where VBPuJHI7uixaa6LQGWx4s+5GKNE= is the base-64 hash of the
 password.

Veltri, et al. Expires October 29, 2008 [Page 6]

Internet-Draft SIP auth. using alternate schemes April 2008

 MD5: passwords are stored encrypted through the MD5-crypt function
 described in the previous section using an Apache-modified version
 of MD5. An example of a corresponding htpasswd line is:

 alice:$apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

 where $apr1$ indicates the use of the Apache's MD5-crypt
 function, followed by the salt and the effective password hash.

Veltri, et al. Expires October 29, 2008 [Page 7]

Internet-Draft SIP auth. using alternate schemes April 2008

3. New extensible authentication scheme

 The HTTP Digest Authentication [RFC2617] requires that the response
 to the challenge, regardless of the selected algorithm, is in the
 form of:

 response = KD(H(A1),nonce:nc:cnonce:qop:H(method:uri))

 In case of "algorithm=MD5", KD(secret,data) is MD5(secret:data),
 H(data) is MD5(data), while the H(A1) becomes MD5(username:realm:
 passwd).

 Assuming for the moment that we have no interest in changing the KD
 function, we can envisage two possible solutions:

 a. we can define a different A1 and H(A1) function compatible with
 the specific authentication system (A1 is a formatted set of
 parameters that are taken into account by the H() function). For
 example A1 could be the concatenation passwd:salt and H(A1) could
 become: H(A1) = MD5(passwd:salt)

 b. we can reuse the definition of H(A1) and only replace the
 password parameter with a new derived pseudo-password A3 defined
 as A3=KP(password,other-params). In this case we are introducing
 a new function KP() with a new set of parameters that includes
 the user password. The value A1 becomes: A1=username:realm:A3.

 For example, if we chose KP() as MD5(passwd:salt) the value H(A1)
 becomes:

 H(A1) = MD5(username:realm:A3), i.e.:

 H(A1) = MD5(username:realm:MD5(passwd:salt))

 The first solution (a) has the advantage that it may save some
 computation of crypto functions. The second option (b) has the
 advantage that it inherits all the security properties of the current
 MD5 solution. Moreover one could store in the client the derived
 password (i.e. the A3 value) instead of the password and maintain a
 compatibility with existing clients. We are here referring to the
 approach of several SIP user agents to store the SIP user password
 rather then requesting it to the user each time. During this "one-
 time" password storing operation, the A3 value could be computed
 externally and then manually stored in the SIP client. Of course
 this is not our suggested solution, i.e. we believe that SIP stacks
 should be enhanced with the proposed solution so that SIP UA can
 natively support the new authentication method, anyway it was worth
 mentioning this possibility to reuse legacy clients in the short

https://datatracker.ietf.org/doc/html/rfc2617

Veltri, et al. Expires October 29, 2008 [Page 8]

Internet-Draft SIP auth. using alternate schemes April 2008

 term.

 Once that we have chosen which solution for the algorithm, we should
 discuss:

 1. how to introduce the indication of this different authentication
 algorithms within SIP signaling;

 2. how to convey the parameters that are needed by the new
 authentication algorithms.

 Again, we introduce two different options concerning issue 1):

 i introduce new algorithms specified as parameter "algorithm"
 within authentication headers. We could have for example
 algorithm=md5-ldap-sha1, algorithm=md5-crypt-des and so on.

 ii introduce a new authentication parameter called "pwd-algo" in
 order to indicate the chosen algorithm used to compute only the
 derived-passwd A3.

 These two choices are not completely independent from the choice of
 the algorithm definition, as shown in the following table.

 |----------------------|----------------------|----------------------|
 | |i)introduce new values|ii)introduce a new |
 | | for the algorithm | pwd-algo parameter |
	parameter	
a)definition of a		
new A1 and H(A1)	Yes	No
----------------------	----------------------	----------------------
b)reuse H(A1) and		
include a new		
A3=KP(pwd,params) in	Possible	Suggested
place of the passwd		
value		
----------------------	----------------------	----------------------

 Figure 1: Alternatives

 If we define new A1 and H(A1) this should be signaled by introducing
 new values for the algorithm parameter. At the contrary, if we reuse
 H(A1) and introduce A3=KP() in place of the clear password, both
 options for the signaling are feasible, but we think that keeping the
 algorithm parameter unchanged (that specify A1, H(), and KD()) and
 introducing a new pwd-algo is preferable.

Veltri, et al. Expires October 29, 2008 [Page 9]

Internet-Draft SIP auth. using alternate schemes April 2008

 Now we finally need to discuss how to convey the additional parameter
 that may be needed by the different authentication mechanisms. We
 think that three options are possible:

 1. introduce new parameters with specific names for each
 authentication algorithm;

 2. introduce a generic parameter named pwd-param to carry algorithm
 specific parameters;

 3. carry the new parameters added inside the nonce parameter. This
 is the approach that has been followed for example in the
 specification of the AKA authentication mechanism.

 We believe that 1) is the worst solution as it may lead to add
 several new parameters. 2) and 3) are both feasible, where 2) is a
 "cleaner" approach that requires the definition of an additional
 parameter, while 3) has the advantage that does not require any new
 parameter. Considering the various discussed options, we believe
 that a first possible solution is based on:

 a. reuse of H(A1) with a modified version of A1 in which the
 password value is simply replaced by A3 = KP(password,other-
 params)

 b. introduction of new "pwd-algo" parameter

 c. introduction of a new generic "pwd-param" parameter

 Examples of the new pwd-algo parameter are:

 pwd-algo= ssha

 pwd-algo= crypt-md5

 pwd-algo= crypt-apache

 A second possible solution, more conservative from the point of view
 of SIP signaling is the use of A3 = KP(password,other-params) as
 above, but specifying the chosen algorithm in the existing
 "algorithm" parameter and carrying the algorithm specific parameters
 within the "nonce" parameter. Examples of the "algorithm" parameter
 are:

 algorithm=md5-pwd-hashed

 algorithm=sha1-pwd-salt-hashed

Veltri, et al. Expires October 29, 2008 [Page 10]

Internet-Draft SIP auth. using alternate schemes April 2008

 When we need to specify variants of the algorithm we think that a
 simple and efficient solution is to carry the name of the variant
 into the eventual pwd-param or as part of the nonce value.

3.1. First solution

 In the first solution we define two new parameters as follows:

 pwd-algo = "pwd-algo" "=" ("plain" | token)

 pwd-param = "pwd-param" "=" quoted-string

 where "pwd-algo" specifies the function KP() used to compute the
 derived-password A3, while "pwd-param" has a completely opaque value,
 depending on the particular selected function KP, indicating the
 values of the (eventual) parameters used in KP() computation. A
 "pwd-algo=plain" value should indicate that none algorithm has to be
 used, and hence A3=password. This corresponds to the case in which
 no pwd-algo parameter is present, as in case of standard MD5-based
 Digest Authentication. Examples of such parameters are:

 pwd-algo=crypt-des, pwd-param="fzwhEV6E"

 pwd-algo=alternative, pwd-param="12"

 pwd-algo=plain

 Particularly, in order to support current LDAP, Unix-based, and other
 storing mechanisms, the following new values are defined:

 pwd-algo = "pwd-algo" "=" ("plain" | "ssha" | "smd5" | "sha" |
 "md5" | crypt-algo | token)

 crypt-algo = "crypt-" crypt-hash

 crypt-hash = "des" | "md5" | "blowfish" | "apache" | token

 pwd-param = "pwd-param" "=" LDQUOT salt-value RDQUOT

 salt-value = <base-64 encoding of the salt value>

 In case of ssha or smd5 or crypt-XXX, the A3 value is computed as
 follows:

 A3 = KP(password,salt) = H(password||salt)

 where H() is respectively SHA1, MD5, or the the Unix crypt function.

Veltri, et al. Expires October 29, 2008 [Page 11]

Internet-Draft SIP auth. using alternate schemes April 2008

 Instead, in the remaining cases:

 A3 = KP(password) = H(password)

 In case of ssha or smd5 or crypt-XXX, the pwd-param will contain the
 base-64 encoding of the salt value.

 Examples of use of such parameters within a SIP transaction are:

 INVITE sip:bob@neverland.net SIP/2.0

 To: sip:bob@neverland.net

 From: sip:alice@wonderland.net

 [...]

 SIP/2.0 401 Unauthorized

 To: sip:bob@neverland.net

 From: sip:alice@wonderland.net

 WWW-Authenticate: Digest realm="example.com",

 nonce="cc5a61b2954e03541847f227102f",

 qop="auth", algorithm="MD5", pwd-algo="crypt-md5",

 pwd-param="fzwhEV6E"

 [...]

 INVITE sip:bob@neverland.net SIP/2.0

 To: sip:bob@neverland.net

 From: sip:alice@wonderland.net

 Authorization: Digest username="alice", realm="example.com",

 nonce="cc5a61b2954e03541847f227102f",

 pwd-algo="crypt-md5", pwd-param="MD5-fzwhEV6E"

 response="587410ee2dc5edd9bbe9370ddc1fA3a1",

 uri="sip:bob@neverland.net", qop="auth", nc="00000001"

Veltri, et al. Expires October 29, 2008 [Page 12]

Internet-Draft SIP auth. using alternate schemes April 2008

 cnonce="226827CAD1C949A18B17FD71EC68"

 [...]

 SIP/2.0 200 OK

 To: sip:bob@neverland.net

 From: sip:alice@wonderland.net

 [...]

3.2. Second solution

 The second solution does not require any new authentication
 parameters since both the selected function KP() (used to generate
 the new "password" value A3 used in A1) and the eventual parameters
 of KP() are indicated respectively in the standard algorithm and
 nonce authentication parameters. According with this solution, the
 "algorithm" parameter defined in [RFC3261] can be extended as
 follows:

 algorithm = "algorithm" EQUAL (algorithm-value | new-algorithm)

 algorithm-value = "MD5" | "MD5-sess" | token

 where "new-algorithm" is a new algorithm name that completely
 specifies the KD(), H(), A1, and KP() functions for the new
 authentication scheme. For example, in order to support
 authentication against a server with Unix-based password archive, we
 could define:

 new-algorithm = crypt-algorithm

 crypt-algorithm = algorithm-value "-crypt"

 Examples of the use of "algorithm" parameter are:

 algorithm=MD5

 algorithm=MD5-crypt

 In case of KP() function requires additional parameters such as sub-
 algorithm type, salt, etc, their values will be included within the
 nonce parameter, in a form named compound-nonce. According to
 [RFC3261], the "nonce" parameter can be extended as follows:

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc3261

Veltri, et al. Expires October 29, 2008 [Page 13]

Internet-Draft SIP auth. using alternate schemes April 2008

 nonce = "nonce" EQUAL (nonce-value | compound-nonce)

 compound-nonce = LDQUOT compound-nonce-value RDQUOT

 compound-nonce-value = algo-param ":" nonce-value

 algo-param = *(unreserved | algo-mark)

 algo-mark = ";" | "/" | "?" | "@" | "&" | "=" | "+" | "$" | ","

 Examples of the use of nonce parameter are:

 nonce="cc5a61b2954e0354184"

 nonce=":cc5a61b2954e0354184"

 nonce="1BZftq3sP:cc5a61b2954e0354184"

 Particularly, in order to support current LDAP, Unix-based, and other
 storing mechanisms, the following new values are defined:

 algorithm = "algorithm" EQUAL (algorithm-value | new-algorithm)

 new-algorithm = algorithm-value ("-pwd-hashed" | "-pwd-salt-
 hashed")

 In this case, the nonce parameter will contains indication of both
 password hash algorithm and salt, together with the actual nonce
 value; that is:

 nonce = "nonce" EQUAL (nonce-value | compound-nonce)

 compound-nonce = LDQUOT compound-nonce-value RDQUOT

 compound-nonce-value = (salted-hash-algo | hash-algo) ":" nonce-
 value

 compound-nonce-value = (crypt-algo-nonce) ":" nonce-value

 hash-algo = "sha" | "md5" | "des" | "blowfish" | "apache" | token

 salted-hash-algo = (hash-algo | crypt-algo) "-" salt-value

 crypt-algo = "crypt-" hash-algo

 salt-value = <base-64 encoding of the salt value>.

 Examples of use of such parameters within a SIP transaction are:

Veltri, et al. Expires October 29, 2008 [Page 14]

Internet-Draft SIP auth. using alternate schemes April 2008

 INVITE sip:bob@neverland.net SIP/2.0

 To: sip:bob@neverland.net

 From: sip:alice@wonderland.net

 [...]

 SIP/2.0 401 Unauthorized

 To: sip:bob@neverland.net

 From: sip:alice@wonderland.net

 WWW-Authenticate: Digest realm="example.com",

 nonce="crypt-des-fzwhEV6E:cc5a61b2954e03541847f2",

 qop="auth", algorithm="MD5-crypt"

 [...]

 INVITE sip:bob@neverland.net SIP/2.0

 To: sip:bob@neverland.net

 From: sip:alice@wonderland.net

 Authorization: Digest username="alice", realm="example.com",

 nonce="crypt-des-fzwhEV6E:cc5a61b2954e03541847f2",

 response="587410ee2dc5edd9bbe9370ddc1fA3a1",

 uri="sip:bob@neverland.net", qop="auth", nc="00000001"

 cnonce="226827CAD1C949A18B17FD71EC68"

 [...]

 SIP/2.0 200 OK

 To: sip:bob@neverland.net

 From: sip:alice@wonderland.net

 [...]

Veltri, et al. Expires October 29, 2008 [Page 15]

Internet-Draft SIP auth. using alternate schemes April 2008

 We believe that this second solution is to be preferred to the one
 presented in the previous sub-section, as it does not require
 addition of new parameters. This is the same approach that has been
 followed when defining the SIP-AKA authentication mechanism
 [RFC3310].

Veltri, et al. Expires October 29, 2008 [Page 16]

https://datatracker.ietf.org/doc/html/rfc3310

Internet-Draft SIP auth. using alternate schemes April 2008

4. Security considerations

 Put security considerations here

Veltri, et al. Expires October 29, 2008 [Page 17]

Internet-Draft SIP auth. using alternate schemes April 2008

5. Informative References

 [RFC3261] J. Rosenberg et al., "SIP: Session Initiation Protocol",
RFC 3261, June 2002.

 [RFC2617] J. Franks et al., "HTTP Authentication: Basic and Digest
 Access Authentication", RFC 2617, June 1999.

 [RFC2401] "Security Architecture for the Internet Protocol", RFC
2401, November 1998.

 [RFC3310] "Hypertext Transfer Protocol (HTTP) Digest Authentication
 Using Authentication and Key Agreement (AKA)", RFC 3310,
 September 2002.

 [RFC3112] "LDAP Authentication Password Schema", RFC 3112, May 2001.

 [RFC1321] "The MD5 Message-Digest Algorithm", RFC 1321, April 1992.

 [RFC3174] "US Secure Hash Algorithm 1 (SHA1)", RFC 3174,
 September 2001.

https://datatracker.ietf.org/doc/html/rfc3261
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc2401
https://datatracker.ietf.org/doc/html/rfc3310
https://datatracker.ietf.org/doc/html/rfc3112
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc3174

Veltri, et al. Expires October 29, 2008 [Page 18]

Internet-Draft SIP auth. using alternate schemes April 2008

Authors' Addresses

 Luca Veltri
 DII, University of Parma
 Viale delle Scienze 181/A
 Parma 43100
 Italy

 Phone: +39 0521 90 5768
 Email: luca.veltri@unipr.it
 URI: http://www.tlc.unipr.it/veltri

 Stefano Salsano
 DIE, University of Rome "TorVergata"
 Via Politecnico, 1
 Rome 00133
 Italy

 Phone: +39 06 7259 7770
 Email: stefano.salsano@uniroma2.it
 URI: http://netgroup.uniroma2.it/Stefano_Salsano

 Andrea Polidoro
 DIE, University of Rome "TorVergata"
 Via Politecnico, 1
 Rome 00133
 Italy

 Phone: +39 06 7259 7773
 Email: andrea.polidoro@uniroma2.it
 URI: http://netgroup.uniroma2.it

http://www.tlc.unipr.it/veltri
http://netgroup.uniroma2.it/Stefano_Salsano
http://netgroup.uniroma2.it

Veltri, et al. Expires October 29, 2008 [Page 19]

Internet-Draft SIP auth. using alternate schemes April 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Veltri, et al. Expires October 29, 2008 [Page 20]

