
Network Working Group S. Venaas

Internet-Draft cisco Systems

Intended status: Informational X. Li

Expires: December 23, 2011 C.X. Bao

CERNET Center/Tsinghua University

June 21, 2011

Framework for IPv4/IPv6 Multicast Translation

draft-venaas-behave-v4v6mc-framework-03.txt

Abstract

This draft describes how IPv4/IPv6 multicast translation may be used in

various scenarios and attempts to be a framework for possible

solutions. This can be seen as a companion document to the document

"Framework for IPv4/IPv6 Translation" by Baker et al. When considering

scenarios and solutions for unicast translation, one should also see

how they may be extended to provide multicast translation.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on December 23, 2011.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction*

2. Translation scenarios

2.1. Scenario 1: An IPv6 network receiving multicast from the

IPv4 Internet

2.2. Scenario 2: The IPv4 Internet receiving multicast from an

IPv6 network

2.3. Scenario 3: The IPv6 Internet receiving multicast from an

IPv4 network

2.4. Scenario 4: An IPv4 network receiving multicast from the

IPv6 Internet

2.5. Scenario 5: An IPv6 network receiving multicast from an IPv4

network

2.6. Scenario 6: An IPv4 network receiving multicast from an IPv6

network

3. Framework

3.1. Addressing

3.1.1. Source addressing

3.1.2. Group addressing

3.2. Routing

3.2.1. Translation with PIM and SSM

3.2.2. Translation with PIM and ASM

3.2.3. Translation with IGMP/MLD

3.3. Translation in operation

3.3.1. Stateless Translation

3.3.2. Stateful Translation

3.4. Application layer issues

3.5. Further Work

4. IANA Considerations

5. Security Considerations

6. Acknowledgements

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

7. References

7.1. Normative References

7.2. Informative References

Authors' Addresses

1. Introduction

There will be a long period of time where IPv4 and IPv6 systems and

networks need to coexist. There are various solutions for how this can

be done for unicast, some of which are based on translation. The

document [RFC6144] discusses the needs and provides a framework for

unicast translation for various scenarios. Here we discuss the need for

multicast translation for those scenarios.

For unicast the problem is basically how two hosts can communicate when

they are not able to use the same IP protocol. For multicast we can

restrict ourselves to looking at how a single source can efficiently

send to multiple receivers. When using a single IP protocol one builds

a multicast distribution tree from the source to the receivers, and

independent of the number of receivers, one sends each data packet only

once on each link. We wish to maintain the same characteristics when

there are different IP protocols used. That is, when the nodes of the

tree (source, receivers and routers) cannot all use the same IP

protocol. In general there may be multiple sources sending to a

multicast group, but that can be thought of as separate trees, one per

source. We will focus on the case where the source and the receivers

cannot all use the same IP protocol. If the issue is the network in

between, encapsulation may be a better alternative. Note that if the

source supports both IPv4 and IPv6, then one alternative could be for

the source to send two streams. This need not be the same host. There

could be two different hosts, and in different locations/networks,

sending the same content.

2. Translation scenarios

We will consider six different translation scenarios. For each of the

scenarios we will look at how host in one network can receive multicast

from a source in another network. For unicast one might consider the

following six scenarios as described in [RFC6144]:

Scenario 1: An IPv6 network to the IPv4 Internet

Scenario 2: The IPv4 Internet to an IPv6 network

Scenario 3: The IPv6 Internet to an IPv4 network

Scenario 4: An IPv4 network to the IPv6 Internet

Scneario 5: An IPv6 network to an IPv4 network

Scenario 6: An IPv4 network to an IPv6 network

We have intentionally left out how one might connect the entire IPv4

Internet with the entire IPv6 Internet. In these scenarios one would

*

*

*

*

look at how a host in one network initiates a uni- or bi-directional

flow to another network. The initiator needs to somehow know which

address to send the initial packet to, and the initial packet gets

translated before reaching its destination.

For unicast translation it is quite natural to talk about networks and

the Internet. For multicast this is not so clear, since there is

limited use of multicast on the Internet. Certain parts of the

Internet, e.g. academic and research networks and the links connecting

them do carry multicast though. Also, the challenges and ideas

described here regarding the Internet, also applies in other cases

where there are multiple connected networks exchanging multicast.

For multicast one generally need a receiver to signal the group (and

sometimes also the source) it wants to receive from. The signalling

generally goes hop-by-hop towards the source to build multicast

forwarding state that later is used to forward multicast in the reverse

direction. This means that for the receiving host to receive multicast,

it must first somehow know which group (and possibly source) it should

signal that it wants to receive. These signals would then probably go

hop-by-hop to a translator, and then the translated signalling would go

hop-by-hop from the translator to the source. Note that this

description is correct for SSM (source-specific multicast), but is in

reality more complex for ASM (any-source multicast). An anology to

unicast might perhaps be TCP streaming where a SYN is sent from the

host that wants to receive the stream to the source of the stream. Then

the application data flows in the reverse direction of the initial

signal. Hence we argue that the above unicast scenarios correspond to

the following multicast scenarios, respectively:

Scenario 1: An IPv6 network receiving multicast from the IPv4 Internet

Scenario 2: The IPv4 Internet receiving multicast from an IPv6 network

Scneario 3: The IPv6 Internet receiving multicast from an IPv4 network

Scenario 4: An IPv4 network receiving multicast from the IPv6 Internet

Scenario 5: An IPv6 network receiving multicast from an IPv4 network

Scenario 6: An IPv4 network receiving multicast from an IPv6 network

2.1. Scenario 1: An IPv6 network receiving multicast from the IPv4

Internet

Here we have a network, say ISP or enterprise, that for some reason is

IPv6-only, but the hosts in the IPv6-only network should be able to

receive multicast from sources in the IPv4 internet. The unicast

equivalent is "IPv6 network to the IPv4 Internet".

This is simple because the global IPv4 address space can be embedded

into IPv6 [RFC6052]. Unicast addresses according to the unicast

translation in use. For multicast one may embed all IPv4 multicast

addresses inside a single IPv6 multicast prefix. Or one may have

multiple embeddings to allow for appropriate mapping of scopes and ASM

versus SSM. Using this embedding, the IPv6 host (or an application

running on the host) can send IPv6 MLD reports for IPv6 groups (and if

SSM, also sources) that specify which IPv4 source and groups that it

wants to receive. The usual IPv6 state (including MLD and possibly PIM)

needs to be created. If PIM is involved we need to use RPF to set up

the tree and accept data, so the source addresses must be routed

towards some translation device. This is likely to be the same device

that would do the unicast translation. The translation device can in

this case be completely stateless. There is some multicast state, but

that is similar to the state in a multicast router when translation is

not performed. Basically if the translator receives MLD or PIM messages

asking for a specific group (or source and group), it uses these

mappings to find out which IPv4 group (or source and group) it needs to

send IGMP or PIM messages for. This is no different than multicast in

general, except for the translation. Whenever the translator receives

data from the IPv4 source, it checks if it has anyone interested in the

respective IPv6 group (or source and group), and if so, translates and

forwards the data packets.

IPv6 applications need to somehow learn which IPv6 group (or source and

group) to join. This is further discussed in Section 3.4.

2.2. Scenario 2: The IPv4 Internet receiving multicast from an IPv6

network

Here we will consider an IPv6 network connected to the IPv4 internet,

and how any IPv4 host may receive multicast from a source in the IPv6

network. The unicast equivalent is "the IPv4 Internet to an IPv6

network".

This is difficult since the IPv6 multicast address space cannot be

embedded into IPv4. Indeed this case has many similarities with how

IPv4 networks can receive from the IPv6 Internet. See scenario (4),

Section 2.4. However, in this case, all IPv4 hosts on the Internet

should use the same mapping, and it might make sense to have additional

requirements on the IPv6 network, rather than to add requirements for

the IPv4 Internet.

One solution here might be for the IPv6 source application to somehow

register with the translator to set up a mapping and receive an IPv4

address. The application could then possibly send SDP that includes

both its IPv6 source and group, and the IPv4 source and group it got

from the translator. Of course the signalling could also be done by

manually adding a static mapping to the translator and specifying that

address to the application. If instead we were to do signalling on the

IPv4 side, then an IPv4 receiver would probably need a mechanism for

finding an IPv4 address of the translator for a given IPv6 group. The

IPv4 address could perhaps be embedded in the IPv6 group address? Or

with say SDP there could be a way of specifying the IPv4 translator

address. The IPv4 host could then communicate with the translator to

establish a mapping (unless one exists) and learn which IPv4 group to

join.

The best alternative might be to restrict the IPv6 multicast groups

that should be accessible on the IPv4 internet to a certain IPv6

prefix. This may allow stateless translation. This could also be used

in the reverse direction, for an IPv6 host to receive from an IPv4

source. Or in other words, the same mapping can be used in both

directions. This has similarities with IVI [I-D.xli-behave-ivi],

[RFC6145], [RFC6052] and also [I-D.venaas-behave-mcast46]. By using IVI

source addresses (IPv4-translatable addresses) and a similar technique

for multicast addresses, the correct IPv4 source and group addresses

can be derived from those. This method has many benefits, the main

issue is that it cannot work for arbitrary IPv6 multicast addresses.

2.3. Scenario 3: The IPv6 Internet receiving multicast from an IPv4

network

We here consider the case where the Internet is IPv6, but there is some

network of perhaps legacy IPv4 hosts that is IPv4-only. We want any

IPv6 host on the Internet to be able to receive multicast from an IPv4

source. The unicast equivalent is "the IPv6 Internet to an IPv4

network".

This scenario can be solved using the same techniques as in Scenario 1,

Section 2.1. There may however be differences regarding exactly which

mappings are used and how applications may become aware of them. To

obtain full benefit of multicast, all IPv6 hosts need to use the same

mappings.

2.4. Scenario 4: An IPv4 network receiving multicast from the IPv6

Internet

Here we consider how an IPv4-only host in an IPv4 network may receive

from an IPv6 multicast sender on the Internet. The unicast equivalent

is "an IPv4 network to the IPv6 Internet".

For dual-stack hosts in an IPv4 network one should consider tunneling.

This is difficult since we cannot embed the entire IPv6 space into

IPv4. One might consider some of the techniques from scenario (2),

Section 2.2. That scenario is however much easier since one may

restrict which IPv6 groups are used and there is a limited number of

sources.

For unicast one might use a DNS-ALG for this, where the ALG would

instantiate translator mappings as needed. This is the technique used

in NAT-PT [RFC2766], which was deprecated by [RFC4966].

However, for multicast one generally does not use DNS. One could

consider doing the same with an ALG for some other protocol. E.g.

translate addresses in SDP files when they pass the translator, or in

any other protocol that might transfer multicast addresses. This would

be very complicated and not recommended.

Rather than using an ALG that translates addresses in application

protocol payload, one could consider new signalling mechanisms for more

explicit signalling. The additional signalling could be either on the

IPv6 or the IPv4 side. It may however not be a good idea to require

additional behavior by host and applications on the IPv6 Internet to

accomodate legacy IPv4 networks. Also, since one may not be able to

provide unique IPv4 multicast addresses for all the IPv6 multicast

groups that are in use, it makes more sense that the mappings are done

locally in each of the IPv4 networks, where IPv4 multicast addresses

might be assigned on-demand. An IPv4 receiver might somehow request an

IPv4 mapping for an IPv6 group (and possibly source). This creates a

mapping in the translator so that when the IPv4 receiver joins the IPv4

group, the translator knows which IPv6 group (and possibly source) to

translate it into. Of course the signalling could also be done manually

by adding a static mapping to the translator and somehow specifying the

right IPv4 address to the application.

2.5. Scenario 5: An IPv6 network receiving multicast from an IPv4

network

In this scenario we consider IPv4 and IPv6 networks belonging to the

same organization. The unicast equivalent is "an IPv6 network to an

IPv4 network".

We would like any IPv6 host to receive from any IPv4 sources. Here one

can use the same techniques as for an IPv6 network receiving from the

IPv4 internet. It is really a special case of scenario (1), Section

2.1.

The fact that the number of hosts are limited and that there is common

management might simplify things. Due to the limited scale, one could

perhaps just manually configure all the static mappings needed in the

translator and manually create the necessary announcements or in some

cases have the applications create the necessary announcements. But it

might be better to use a stateless approach where IPv4 unicast and

multicast addresses are embedded into IPv6. Like IVI [I-D.xli-behave-

ivi], or [I-D.venaas-behave-mcast46].

2.6. Scenario 6: An IPv4 network receiving multicast from an IPv6

network

In this scenario we consider IPv4 and IPv6 networks belonging to the

same organization. The unicast equialent is "an IPv4 network to an IPv6

network".

We would like any IPv4 host to receive from any IPv6 source. This can

be seen as special cases of either scenario (2), Section 2.2 or

scenario (4), Section 2.4, where any of those techniques might apply.

However, as discussed in scenario (5) Section 2.5 where we looked at

how to do multicast in the reverse direction; the limited number of

hosts and common managment might allow us to just use static mappings

or a stateless approach by restricting which IPv6 addresses are used.

By using these techniques one may be able to create mappings that can

be used for multicast in both directions, combining this scenario with

scenario (5).

3. Framework

Having considered some possible scenarios for where and how we may use

multicast translation, we will now consider some general issues and the

different components of such solutions.

3.1. Addressing

When doing stateless translation, one need to somehow encode IPv4

addresses inside IPv6 addresses so that there is a well defined way for

the translator to transform an IPv6 address into IPv4. This can be done

with techniques like IVI [I-D.xli-behave-ivi] and [I-D.venaas-behave-

mcast46].

There are two types of addressing schemes related to the IPv4/IPv6

multicast translation. The source addressing and the group addressing.

3.1.1. Source addressing

Source addressing issues is the same as in the unicast IPv4/IPv6

translation defined in [RFC6052]. The IPv4-mapped address is used for

representing IPv4 in IPv6 and the IPv4-translatable address is used for

representing IPv6 in IPv4 when the stateless translator is used. The

multicast RPF relies on the source address to build the distribution

tree. Therefore, depending on the operation mode of the IPv4/IPv6

translator and receiving directions, the IPv4-mapped or the IPv4-

translatable addresses will be used.

3.1.2. Group addressing

Group addressing issue is unique to the IPv4/IPv6 multicast

translation. The entire IPv4 group addresses can be uniquely

represented by the IPv6 group addresses, while the entire IPv6 group

addresses cannot be uniquely represented by the IPv6 group addresses.

Therefore, special group address mapping rule between IPv4 group

addresses and IPv6 group addresses should be defined for the IPv4/IPv6

multicast translation.

3.2. Routing

The actual translation of multicast packets may not be very

complicated, in particular if it can be stateless. For the multicast to

actually go through the translator we need to have routes for the

multicast source addresses involved, so that multicast packets both on

their way to and from the translator satisfy RPF checks. These routes

are also needed for protocols like PIM-SM to establish a multicast

tree, since RPF is used to determine where to send join messages. To go

into more detail we need to look at different scenarios like SSM

(Source-Specific Multicast) and ASM (Any-Source Multicast), and PIM

versus IGMP/MLD.

3.2.1. Translation with PIM and SSM

When doing SSM, a receiver specifies both source and group addresses.

If the receiver is to receive translated packets, it must do an IGMP/

MLD join for the source and group address that the data packets will

have after translation. We will later look at how it may learn those

addresses. For the source address it joins, the unicast routing (or it

may be an alternate topology specific to multicast), must point towards

the translator. With this in place, PIM should build a tree hop-by-hop

from the last-hop router to the translator. The translator then maps

the source and group addresses in the PIM join to the source and group

the data packets have before translation. The translator then does a

PIM join for that source and group. Provided the routing is correct,

this will then build a tree all the way to the source. Finally when

these joins reach the source, any data sent by the source will follow

this path to the translator, get translated, and then continue to the

receiver.

3.2.2. Translation with PIM and ASM

Let us first consider PIM Sparse Mode. In this case a receiver just

joins a group. If this group is to be received via the translator we

need to send joins towards the translator, but initially PIM will send

joins towards the RP (Rendezvous-Point) for the group. The most

efficient solution is probably to make sure that the translator is

configured as an RP for all groups that one may receive through it.

That is, for the groups it translates to. E.g. if IPv4 groups are

embedded into an IPv6 multicast prefix, then the translator could be an

RP for that specific prefix. The translator may then translate the

group and join towards the group address that is used before

translation. Note that if the translator also is an RP for the

addresses used before translation, it should know which sources exist

and join each of these. If it is not an RP, it needs to join towards

the RP. If the translator did not know the sources, it may join each of

the sources as soon as it receives from them (that is, switching to

Shortest Path Trees). When the translator receives data, it translates

it and then sends the translated data. This then follows the joins for

the translated groups to the receivers. When the last-hop routers start

receiving, they will probably (this is usually the default behavior)

switch to SPTs (Shortest Path Trees). These trees also need to go to

the translator and would probably follow the same path as the

previously built shared tree. One might argue here that switching to

the SPT has no benefit if it is the same path anyway. Also with shared

trees, RPF is not an issue, so the translated source addresses don't

need to be routed towards the translator.

At the end of the previous paragraph we pointed out that there is no

benefit in switching to shortest path trees if they have to go via the

translator anyway. A possibility here could be to use Bidirectional PIM

where there is no source specific state and data always go through the

RP. It is possible to use Bidir just for those groups that are

translated, and then make the translator the RP.

3.2.3. Translation with IGMP/MLD

For translation taking place close to the edge, e.g. a home gateway,

one may consider just using IGMP and MLD, and no PIM. In that case the

translator should for any received MLD reports for IPv6 groups that

correspond to translated IPv4 groups, map those into IGMP reports that

it sends out on the IPv4 side. And vice versa for data in the other

direction. Note that a translator implementation could also choose to

do this in just one direction. For SSM it would also need to translate

the source addresses.

3.3. Translation in operation

Currently, the proposed solutions for IPv6/IPv4 translation are

classified into stateless translation and stateful translation.

3.3.1. Stateless Translation

For stateless translation, the translation information is carried in

the address itself, permitting both IPv4->IPv6 and IPv6-<IPv4 sessions

establishment. The stateless translation supports end-to- end address

transparency and has better scalability compared with the stateful

translation. See [RFC6145] and [I-D.xli-behave-ivi].

Stateless translation can be used for Scenarios 1, 2, 5 and 6, i.e. it

supports "An IPv6 network receiving multicast from the IPv4 Internet",

"the IPv4 Internet receiving multicast from an IPv6 network", "An IPv6

network receiving multicast from an IPv4 network" and "An IPv4 network

receiving multicast from an IPv6 network".

In the stateless translation, an IPv6 network uses the IPv4-

translatable addresses, while the IPv4 Internet or an IPv4 network can

be represented by IPv4-mapped addresses.

 // \\ -----------

 / \ // \\

 / +----+ \

| |XLAT| |

| The IPv4 +----+ An IPv6 |

| Internet +----+ Network | XLAT: Stateless v4/v6

| |DNS | (address | Translator

 \ +----+ subset) / DNS: DNS64/DNS46

 \ / \\ //

 \\ // ----------

 sending ----> receiving

 receiving <---- sending

 -------- ---------

 // \\ // \\

 / +----+ \

| |XLAT| |

| An IPv4 +----+ An IPv6 |

| Network +----+ Network | XLAT: v4/v6

| |DNS | | Translator

 \ +----+ / DNS: DNS64/DNS46

 \\ // \\ //

 -------- ---------

 sending ----> receiving

 receiving <---- sending

3.3.2. Stateful Translation

For stateful translation, the translation state is maintained between

IPv4 address/port pairs and IPv6 address/port pairs, enabling IPv6

systems to open sessions with IPv4 systems. See [RFC6145] and

[RFC6146].

Stateful translator can be used for Scenarios 1, 3 and 5, i.e. it

supports "An IPv6 network receiving multicast from the IPv4 Internet",

"The IPv6 Internet receiving multicast from an IPv4 network" and "An

IPv6 network receiving multicast from an IPv4 network".

In the stateful translation, an IPv6 network or the IPv6 Internet use

any IPv6 addresses, while the IPv4 Internet or an IPv4 network can be

represented by IPv4-mapped addresses.

 // \\ -----------

 / \ // \\

 / +----+ \

| |XLAT| |

| The IPv4 +----+ An IPv6 |

| Internet +----+ Network | XLAT: Stateful v4/v6

| |DNS | | Translator

 \ +----+ / DNS: DNS64

 \ / \\ //

 \\ // -----------

 sending ----> receiving

 ---------- // \\

 // \\ / \

 / +----+ \

| |XLAT| |

| An IPv4 +----+ The IPv6 |

| Network +----+ Internet | XLAT: v4/v6

| |DNS | | Translator

 \ +----+ / DNS: DNS64

 \\ // \ /

 --------- \\ //

 sending ----> receiving

 -------- ---------

 // \\ // \\

 / +----+ \

| |XLAT| |

| An IPv4 +----+ An IPv6 |

| Network +----+ Network | XLAT: v4/v6

| |DNS | | Translator

 \ +----+ / DNS: DNS64

 \\ // \\ //

 -------- ---------

 sending ----> receiving

3.4. Application layer issues

The main application layer issue is perhaps how the applications learn

what groups (or sources and groups) to join. For unicast, applications

may often obtain addresses via DNS and a DNS-ALG. For multicast, DNS is

usually not used, and there are a wide range of different ways

applications learn addresses. It can be through configuration or user

input, it can be URLs on a web page, it can be SDP files (via SAP or

from web page or mail etc), or also via protocols like RTSP/SIP. It is

no easy task to handle all of these possible methods using ALGs.

SDP is maybe the most common way for applications to learn which

multicast addresses (and other parameters) to use in order to receive a

multicast session. Inside the SDP files it is common to use literal IP

addresses, but it is also possible to specify domain names.

Applications would then query the DNS for the addresses, and a DNS-ALG

could perform the necessary translation. There is however a problem

with this.

Here is a typical SDP taken from RFC 2327:

 v=0

 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4

 s=SDP Seminar

 i=A Seminar on the session description protocol

 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps

 e=mjh@isi.edu (Mark Handley)

 c=IN IP4 224.2.17.12/127

 t=2873397496 2873404696

 a=recvonly

 m=audio 49170 RTP/AVP 0

 m=video 51372 RTP/AVP 31

 m=application 32416 udp wb

 a=orient:portrait

The line of interest here is "c=IN IP4 224.2.17.12/127". It is legal to

use a domain name, this line would then become e.g. "c=IN IP4

mcast.example.com/127". The problem here is that the application is

told to use IPv4. It will expect the name to resolve to an IPv4

address, and may ignore any IPv6 replies. One could argue that it would

be incorrect to use IPv6, since IPv4 is specified. For DNS to solve our

problem, we would need a new IP neutral SDP syntax, and applications

would need to be updated to support it.

An alternative to rewriting addresses in the network is to make the

applications aware of the translation and mappings in use. One approach

could be for the source to create say SDP that includes both the

original and the translated addresses. This may require use of

techniques like CCAP [I-D.boucadair-mmusic-ccap] for specifying both

IPv4 and IPv6 multicast addresses, allowing the receiver to choose

which one to use. The other alternative would be for the receiving

application to be aware of the translation and the mapping in use. This

means that the receiving application can receive the original SDP, but

then apply the mapping to those addresses.

As we just discussed, it may be useful for applications to perform the

mappings. The next question is how they may learn those mappings. The

easiest would be if there was a standard way used for all mappings,

e.g. a well-known IPv6 prefix for embedding IPv4 addresses. But that

does not work in all scenarios. There could be a way for applications

to learn which prefix to use, see [I-D.wing-behave-learn-prefix]. But

note that there may be different multicast prefixes depending on

whether we are doing SSM or ASM and scope. In addition we need the

unicast prefix for the multicast source addresses. Alternatively one

could imagine applications requesting mappings for specific addresses

on demand from the translator. The translator could have static

mappings, or install mappings as requested by applications.

An alternative to making applications aware of the translation and

rewriting addresses as needed, could be to do translation in the API or

stack, so that e.g. an application joins an IPv4 group, the API or

stack rewrites that into IPv6 and sends the necessary MLD reports. When

IPv6 packets arrive, the API/stack can rewrite those packets back to

IPv4. This could allow legacy IPv4 applications to run on a dual-stack

node (or IPv6-only with translation in the API) to receive IPv4 packets

through an IPv6-only network. But in this case it might be better to

just use tunneling.

3.5. Further Work

There are some special cases and scenarios that should be added to this

document. One is addressing. Are there certain types of IPv6 multicast

addresses that could make translation easier? What happens if there are

multiple translators? And also more details on translation in the host,

e.g. bump-in-the-stack or bump-in-the-API.

The document layout of the IPv4/IPv6 multicast translation should be

presented in this document.

4. IANA Considerations

This document requires no IANA assignments.

5. Security Considerations

This requires more thought, but the author is not aware of any obvious

security issues specific to multicast translation.

6. Acknowledgements

Dan Wing provided early feedback that helped shape this document. Dave

Thaler also provided good feedback that unfortunately still has not

been addressed in this document. See Section 3.5.

7. References

7.1. Normative References

[RFC2119]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2766]

Tsirtsis, G. and P. Srisuresh, "Network Address

Translation - Protocol Translation (NAT-PT)", RFC 2766,

February 2000.

[RFC4966]

Aoun, C. and E. Davies, "Reasons to Move the Network

Address Translator - Protocol Translator (NAT-PT) to

Historic Status", RFC 4966, July 2007.

[RFC5245]

Rosenberg, J., "Interactive Connectivity Establishment

(ICE): A Protocol for Network Address Translator (NAT)

Traversal for Offer/Answer Protocols", RFC 5245, April

2010.

[RFC6052]

Bao, C., Huitema, C., Bagnulo, M., Boucadair, M. and X.

Li, "IPv6 Addressing of IPv4/IPv6 Translators", RFC

6052, October 2010.

[RFC6144]
Baker, F., Li, X., Bao, C. and K. Yin, "Framework for

IPv4/IPv6 Translation", RFC 6144, April 2011.

[RFC6145]
Li, X., Bao, C. and F. Baker, "IP/ICMP Translation

Algorithm", RFC 6145, April 2011.

[RFC6146]

Bagnulo, M., Matthews, P. and I. van Beijnum, "Stateful

NAT64: Network Address and Protocol Translation from

IPv6 Clients to IPv4 Servers", RFC 6146, April 2011.

7.2. Informative References

[I-D.xli-

behave-ivi]

Li, X, Bao, C, Chen, M, Zhang, H and J Wu, "The

CERNET IVI Translation Design and Deployment for

the IPv4/IPv6 Coexistence and Transition",

Internet-Draft draft-xli-behave-ivi-07, January

2010.

[I-D.venaas-

behave-mcast46]

Venaas, S, Asaeda, H, SUZUKI, S and T Fujisaki,

"An IPv4 - IPv6 multicast translator", Internet-

Draft draft-venaas-behave-mcast46-02, December

2010.

[I-D.wing-

behave-learn-

prefix]

Wing, D, "Learning the IPv6 Prefix of a

Network's IPv6/IPv4 Translator", Internet-Draft

draft-wing-behave-learn-prefix-04, October 2009.

[I-D.boucadair-

mmusic-ccap]

Boucadair, M and H Kaplan, "Session Description

Protocol (SDP) Connectivity Capability (CCAP)

Attribute", Internet-Draft draft-boucadair-

mmusic-ccap-00, July 2009.

Authors' Addresses

Stig Venaas Venaas cisco Systems

Tasman Drive San Jose, CA 95134 USA EMail: stig@cisco.com

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
mailto:george.tsirtsis@bt.com
mailto:srisuresh@yahoo.com
http://tools.ietf.org/html/rfc2766
http://tools.ietf.org/html/rfc2766
http://tools.ietf.org/html/rfc4966
http://tools.ietf.org/html/rfc4966
http://tools.ietf.org/html/rfc4966
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc5245
http://tools.ietf.org/html/rfc6052
http://tools.ietf.org/html/rfc6144
http://tools.ietf.org/html/rfc6144
http://tools.ietf.org/html/rfc6145
http://tools.ietf.org/html/rfc6145
http://tools.ietf.org/html/rfc6146
http://tools.ietf.org/html/rfc6146
http://tools.ietf.org/html/rfc6146
http://tools.ietf.org/html/draft-xli-behave-ivi-07
http://tools.ietf.org/html/draft-xli-behave-ivi-07
http://tools.ietf.org/html/draft-xli-behave-ivi-07
http://tools.ietf.org/html/draft-venaas-behave-mcast46-02
http://tools.ietf.org/html/draft-wing-behave-learn-prefix-04
http://tools.ietf.org/html/draft-wing-behave-learn-prefix-04
http://tools.ietf.org/html/draft-boucadair-mmusic-ccap-00
http://tools.ietf.org/html/draft-boucadair-mmusic-ccap-00
http://tools.ietf.org/html/draft-boucadair-mmusic-ccap-00
mailto:stig@cisco.com

Xing Li Li CERNET Center/Tsinghua University Room 225, Main

Building, Tsinghua University Beijing, 100084 CN Phone: +86

10-62785983 EMail: xing@cernet.edu.cn

Congxiao Bao Bao CERNET Center/Tsinghua University Room 225, Main

Building, Tsinghua University Beijing, 100084 CN Phone: +86

10-62785983 EMail: congxiao@cernet.edu.cn

mailto:xing@cernet.edu.cn
mailto:congxiao@cernet.edu.cn

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Translation scenarios
	2.1. Scenario 1: An IPv6 network receiving multicast from the IPv4 Internet
	2.2. Scenario 2: The IPv4 Internet receiving multicast from an IPv6 network
	2.3. Scenario 3: The IPv6 Internet receiving multicast from an IPv4 network
	2.4. Scenario 4: An IPv4 network receiving multicast from the IPv6 Internet
	2.5. Scenario 5: An IPv6 network receiving multicast from an IPv4 network
	2.6. Scenario 6: An IPv4 network receiving multicast from an IPv6 network
	3. Framework
	3.1. Addressing
	3.1.1. Source addressing
	3.1.2. Group addressing
	3.2. Routing
	3.2.1. Translation with PIM and SSM
	3.2.2. Translation with PIM and ASM
	3.2.3. Translation with IGMP/MLD
	3.3. Translation in operation
	3.3.1. Stateless Translation
	3.3.2. Stateful Translation
	3.4. Application layer issues
	3.5. Further Work
	4. IANA Considerations
	5. Security Considerations
	6. Acknowledgements
	7. References
	7.1. Normative References
	7.2. Informative References
	Authors' Addresses

