
Network Working Group B. Claise
Internet-Draft J. Clarke
Updates: 7950 (if approved) R. Rahman
Intended status: Standards Track R. Wilton, Ed.
Expires: September 12, 2019 Cisco Systems, Inc.
 B. Lengyel
 Ericsson
 J. Sterne
 Nokia
 K. D'Souza
 AT&T
 March 11, 2019

YANG Semantic Versioning for Modules
draft-verdt-netmod-yang-semver-00

Abstract

 This document specifies a new YANG module update procedure using
 semantic version numbers, to allow for limited non-backwards-
 compatible changes, as an alternative proposal to module update rules
 in the YANG 1.1 specifications. This document updates RFC 7950, RFC

8407 and RFC 8525.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 12, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Claise, et al. Expires September 12, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8407
https://datatracker.ietf.org/doc/html/rfc8407
https://datatracker.ietf.org/doc/html/rfc8525
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft YANG Module Versioning March 2019

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Updates to YANG RFCs 4
1.1.1. Updates to RFC7950 4
1.1.2. Updates to RFC8525 4
1.1.3. Updates to RFC8407 5

1.2. Complementary solutions for the other requirements . . . 5
2. YANG Semantic Versioning 6
2.1. Classification of changes between module revisions . . . 6
2.2. YANG Semantic Versioning Scheme for Modules 7
2.2.1. Examples for YANG semantic version numbers 8

2.3. YANG Semantic Version Update Rules 10
2.4. YANG Module Semver Extension 11

3. Import by Semantic Version 13
3.1. Module import examples 15

4. Classifying changes in YANG modules 16
4.1. Editorial changes . 16
4.2. Backwards-compatible changes 16
4.3. Non-backwards-compatible changes 17

5. Updates to ietf-yang-library 17
5.1. Advertising module version number 17
5.2. Resolving ambiguous module imports 17

 5.3. Reporting how deprecated and obsolete nodes are handled . 18
6. YANG status description extension 19
7. Semantic versioning of YANG instance data 19
8. Guidelines . 20
8.1. Guidelines to YANG model authors 20
8.1.1. Use of YANG semantic versioning 20

 8.1.2. Making non-backwards-compatible changes to a YANG
 module . 21

8.1.2.1. Removing a data node 22
8.1.2.2. Changing the type of a leaf node 23
8.1.2.3. Reducing the range of a leaf node 23
8.1.2.4. Changing the key of a list 23
8.1.2.5. Renaming a node 23
8.1.2.6. Changing a default value 23

8.2. Guidelines to YANG model clients 24

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc8525
https://datatracker.ietf.org/doc/html/rfc8407

Claise, et al. Expires September 12, 2019 [Page 2]

Internet-Draft YANG Module Versioning March 2019

9. Semantic Version Extension YANG Modules 24
10. Contributors . 30
11. Security Considerations 31
12. IANA Considerations . 31
12.1. YANG Module Registrations 31

13. References . 32
13.1. Normative References 32
13.2. Informative References 32

Appendix A. Appendix . 34
A.1. Open Issues . 34
A.2. Derived Semantic Version 35
A.2.1. The Derived Semantic Version 35
A.2.2. Implementation Experience 35

 Authors' Addresses . 36

1. Introduction

 This document defines a solution to the YANG module lifecycle
 problems described in [I-D.verdt-netmod-yang-versioning-reqs],
 covering all of the specified requirements except for requirements:
 2.2, 3.1, and 3.2.

 Specifically, this document recognises a need to sometimes allow YANG
 modules to evolve with non-backwards-compatible changes, which might
 end up breaking clients. The solution makes use of semantic version
 numbers to help manage the lifecycle of YANG modules.

 The solution is comprised of the following seven parts:

 A definition for the YANG semantic versioning scheme for modules,
 and an explanation of how the semver extension can be used to
 annotate modules with their semantic version number.

 A YANG extension to allow YANG module imports to be restricted to
 modules with particular semantic versions, allowing inter-module
 version dependencies to be captured within YANG module
 definitions.

 Updates to the YANG 1.1 module update rules to accommodate the
 semantic versioning scheme.

 Updates and augmentations to ietf-yang-library to include the YANG
 semantic version number in the module descriptions, to report how
 'deprecated' and 'obsolete' nodes are handled by a server, and to
 clarify how module imports are resolved when multiple versions
 could otherwise be chosen.

Claise, et al. Expires September 12, 2019 [Page 3]

Internet-Draft YANG Module Versioning March 2019

 A YANG extension to add a 'description' statement to the YANG
 'status' statement to allow additional documentation as to why a
 node is being deprecated, and what alternatives may be available.

 A description of how YANG semantic versioning applies to YANG
 instance data.

 Guidelines to YANG module authors on how the YANG semantic
 versioning rules should be used, along with examples.

 Open issues are listed at Appendix A.1, and tracked at
 <https://github.com/netmod-wg/yang-ver-dt/issues>.

1.1. Updates to YANG RFCs

1.1.1. Updates to RFC7950

 This document proposes updates to [RFC7950] to address some of the
 requirements. It should be noted that there is also active WG
 discussion on the next steps towards an updated version of YANG, and
 potentially some of the functionality described here could be folded
 into an updated revision of [RFC7950], although that might adversely
 impact when (parts of) a standards based YANG module versioning
 solution is available.

 The sections listed below provide updates to [RFC7950]. The design
 team does not believe any of the changes require a new version of the
 YANG language. It is believed that the extensions as they are
 defined can coexist with existing YANG 1.1 clients.

 o Section 4 describes modification to the [RFC7950] Section 11
 module update text to advise the use of semantic versioning as
 described in this document.

 o Section 3 describes an extension to do import by semantic version.

 o Section 6 defines an extension that adds a description child
 element to the YANG "status" statement.

1.1.2. Updates to RFC8525

 This document updates [RFC8525]. Section 5 defines how a reader of a
 YANG library datastore schema chooses which version of an import-only
 module is used to resolve a module import when the definition is
 otherwise ambiguous.

https://github.com/netmod-wg/yang-ver-dt/issues
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950
https://datatracker.ietf.org/doc/html/rfc7950#section-11
https://datatracker.ietf.org/doc/html/rfc8525
https://datatracker.ietf.org/doc/html/rfc8525

Claise, et al. Expires September 12, 2019 [Page 4]

Internet-Draft YANG Module Versioning March 2019

1.1.3. Updates to RFC8407

Section 8 updates [RFC8407] to provide guidelines on how the YANG
 module semantic versioning can be used to manage the lifecycle of
 YANG modules when using strict RFC 7950 chapter 11 backwards
 compatibility rules are not pragmatic.

1.2. Complementary solutions for the other requirements

 This section is to aid the WG understand how the full set of YANG
 versioning requirements are intended to be holistically addressed and
 is intended to be removed if this draft is adopted by the WG.

 As stated previously, this draft does not address requirements 2.2,
 3.1 and 3.2 of the requirements specified in
 [I-D.verdt-netmod-yang-versioning-reqs]. Instead, additional work is
 needed to address those requirements, which the design team believes
 would be best addressed in separate drafts. It is hoped that the WG
 agrees that viable solutions to the other requirements exist that
 complement the solution proposed in this draft, and thus this work
 can usefully progress in parallel. In particular, there is value to
 the industry to achieve standardization of a partial solution that
 addresses the majority, but not all, of the stated requirements, on
 the agreement that a full solution will follow.

 The two additional drafts are:

 A tooling based solution is proposed for requirement 2.2, that allows
 two YANG schema versions to be algorithmically compared, with the
 algorithm reporting the list of differences between the two YANG
 schema and whether each change is regarded as being editorial,
 backwards-compatible, or non-backwards-compatible. Annotations to
 the YANG modules, via the use of extension statements, may help
 improve the accuracy of the comparison algorithm, particularly for
 statements that are very hard for an algorithm to correctly classify
 the scope of any differences (e.g., a change in the semantic
 behaviour of a data node defined via modifications to the associated
 YANG description statement). Given that requirement 2.2 is a soft
 requirement (SHOULD rather than MUST), and practical experience with
 the tooling is required, it is proposed that this work is deferred at
 this time.

 A proposed solution for requirements 3.1 and 3.2 is via the use of
 YANG packages [I-D.rwilton-netmod-yang-packages] and a protocol based
 version selection scheme that can be used by clients to choose a
 particular YANG datastore schema from the set of datastore schema
 that are supported by the server.

https://datatracker.ietf.org/doc/html/rfc8407
https://datatracker.ietf.org/doc/html/rfc8407
https://datatracker.ietf.org/doc/html/rfc7950

Claise, et al. Expires September 12, 2019 [Page 5]

Internet-Draft YANG Module Versioning March 2019

2. YANG Semantic Versioning

 The chapter defines YANG Semantic Versioning, explains how it is used
 with YANG modules, and the rules associated with changing a module's
 semantic version number when the module definitions are updated.

 The YANG semantic versioning scheme applies only to YANG modules.
 YANG submodules are not independently versioned by the YANG semantic
 versioning scheme. Instead, if a versioned module includes one or
 more submodules then those submodules are implicitly versioned as
 part of the module's 'semver:version' statements, and all the
 module's 'include' statements MUST specify the revision-date for each
 of the included submodules.

2.1. Classification of changes between module revisions

 The principle aim of YANG semantic versioning is to allow a user of a
 YANG module to understand the overall significance of any changes
 between two module revisions solely based on the semantic version
 number.

 The semantic version change between any two arbitrary revisions of a
 YANG module can be classified into one of four categories:
 'unchanged', 'editorial, 'backwards-compatible' or 'non-backwards-
 compatible'. A summary of the classification is given below, with
 the specific rules as they apply to YANG statements provided in

Section 4.

 The semantic version change between two module revisions is
 defined as 'unchanged' if, after excluding 'revision' and
 'semver:version' statements and their substatements, the only
 remaining changes are insignificant white space changes.

 An 'editorial' module semantic version change is where there are
 changes in the module's statements, between the two module
 revisions, but those changes do not affect the syntax or semantic
 meaning of the module in any way. An example of an editorial
 change would be a fix to a spelling mistake in a description
 statement.

 A 'backwards-compatible' module semantic version change is where
 some syntax or semantic changes exists between the two module
 revisions, but all changes follow the rules specified in

Section 4.2.

 A 'non-backwards-compatible' module semantic version change is
 where some syntax or semantic changes exists between the two

Claise, et al. Expires September 12, 2019 [Page 6]

Internet-Draft YANG Module Versioning March 2019

 module revisions, and those changes do not follow the rules for a
 'backwards-compatible' version change.

2.2. YANG Semantic Versioning Scheme for Modules

 This document defines the YANG semantic versioning scheme that is
 used for YANG modules. The versioning scheme has the following
 properties:

 The YANG semantic versioning scheme is extended from version 2.0.0
 of the semantic versioning scheme defined at semver.org [semver]
 to cover the additional requirements for the management of YANG
 module lifecyles that cannot be addressed using the semver.org
 2.0.0 versioning scheme alone.

 Unlike the semver.org 2.0.0 versioning scheme, the YANG semantic
 versioning scheme supports limited updates to older versions of
 YANG modules, to allow for bug fixes and enhancements to module
 versions that are not the latest.

 Module definitions that follow the semver.org 2.0.0 versioning
 scheme are fully compatible with implementations that understand
 the YANG semantic versioning scheme.

 If module updates are always restricted to the latest version of
 the module only, then the version numbers used by the YANG
 semantic versioning scheme are exactly the same as those defined
 by the semver.org 2.0.0 versioning scheme.

 Every YANG module versioned using the YANG semantic versioning scheme
 specifies the module's semantic version number by including the
 'semver:module-version' statement according to the following rules:

 The module MUST include at least one revision statement.

 The most recent module revision statement MUST include a
 'semver:module-version' sub-statement, that defines the module's
 YANG semantic version.

 The preceding module revision statement SHOULD also include a
 'semver:module-version' sub-statement, to allow the module's
 semantic version history to be derived.

 All other revision statements MAY include a 'semver:module-
 version' sub-statement if they have an associated YANG semantic
 version.

Claise, et al. Expires September 12, 2019 [Page 7]

Internet-Draft YANG Module Versioning March 2019

 "The YANG semver version number is expressed as a string of the form:
 'X.Y.Zv'; where X, Y, and Z each represent non-negative integers
 smaller than 32768, and v represents an optional single character
 suffix: 'm' or 'M'.

 o 'X' is the MAJOR version. Changes in the major version number
 indicate changes that are non-backwards-compatible to versions
 with a lower major version number.

 o 'Y' is the MINOR version. Changes in the minor version number
 indicate changes that are backwards-compatible to versions with
 the same major version number, but a lower minor version number
 and no patch 'm' or 'M' modifier.

 o 'Zv' is the PATCH version and modifier. Changes in the patch
 version number can indicate editorial, backwards-compatible, or
 non-backwards-compatible changes relative to versions with the
 same major and minor version numbers, but lower patch version
 number, depending on what form modifier 'v' takes:

 * If the modifier letter is absent, the change represents an
 editorial change

 * 'm' - the change represents a backwards-compatible change

 * 'M' - the change represents a non-backwards-compatible change

 The YANG module name and YANG semantic version number uniquely
 identifies a revision of a module, with an associated revision date.
 There MUST NOT be multiple instances of a YANG module definition with
 the same module name and YANG semantic version number but different
 content or revision date.

 There MUST NOT be multiple versions of a YANG module that have the
 same MAJOR, MINOR and PATCH version numbers, but different patch
 modifier letter. E.g., module version "1.2.3M" MUST NOT be defined
 if module version "1.2.3" has already been defined.

2.2.1. Examples for YANG semantic version numbers

 The following diagram and explanation illustrates how YANG semantic
 version numbers work.

Claise, et al. Expires September 12, 2019 [Page 8]

Internet-Draft YANG Module Versioning March 2019

 Example YANG semantic version numbers for an example module:

 0.1.0
 |
 0.2.0
 |
 1.0.0
 | \
 | 1.1.0 -> 1.1.1m -> 1.1.2M
 | |
 | 1.2.0 -> 1.2.1M -> 1.2.2M
 | |
 | 1.3.0 -> 1.3.1
 |
 2.0.0
 |
 3.0.0
 \
 3.1.0

 The tree diagram above illustrates how an example modules version
 history might evolve. For example, the tree might represent the
 following changes, listed in chronological order from oldest revision
 to newest:

 0.1.0 - first beta module version

 0.2.0 - second beta module version (with NBC changes)

 1.0.0 - first release (may have NBC changes from 0.2.0)

 1.1.0 - added new functionality, leaf "foo" (BC)

 1.2.0 - added new functionality, leaf "baz" (BC)

 1.3.0 - improve existing functionality, added leaf "foo-64" (BC)

 1.3.1 - improve description wording for "foo-64" (Editorial)

 1.1.1m - backport "foo-64" leaf to 1.1.x to avoid implementing
 "baz" from 1.2.0 (BC)

 2.0.0 - change existing model for performance reasons, e.g. re-key
 list (NBC)

 1.1.2M - NBC point bug fix, not required in 2.0.0 due to model
 changes (NBC)

Claise, et al. Expires September 12, 2019 [Page 9]

Internet-Draft YANG Module Versioning March 2019

 3.0.0 - NBC bugfix, rename "baz" to "bar"; also add new BC leaf
 "wibble"; (NBC)

 1.2.1M - backport NBC fix, changing "baz" to "bar"

 1.2.2M - backport "wibble". This is a BC change but "M" modifier
 is sticky.

 3.1.0 - introduce new leaf "wobble" (BC)

 The partial ordering relationships based on the semantic versioning
 numbers can be defined as follows:

 1.0.0 < 1.1.0 < 1.2.0 < 1.3.0 < 2.0.0 < 3.0.0 < 3.1.0

 1.0.0 < 1.1.0 < 1.1.1m < 1.1.2M

 1.0.0 < 1.1.0 < 1.2.0 < 1.2.1M < 1.2.2M

 There is no ordering relationship between 1.1.1M and either 1.2.0 or
 1.2.1M, except that they share the common ancestor of 1.1.0.

 Looking at the version number alone, the module definition in 2.0.0
 does not necessarily contain the contents of 1.3.0. However, the
 module revision history in 2.0.0 would likely indicate that it was
 edited from module version 1.3.0.

2.3. YANG Semantic Version Update Rules

 When a new revision of a module is produced, then the following rules
 define how the YANG semantic version number for the new module
 revision is calculated, based on the changes between the two module
 revisions, and the YANG semantic version number of the base module
 revision that the changes are derived from. A two step process is
 used:

 The first step is to classify the module change as 'editorial',
 'backwards-compatible', or 'non-backwards-compatible version' using
 the rules defined in Section 2.1 and Section 4.

 The second step is to calculate the value of the 'semver:version'
 field for the new module revision, based on the value of the
 'semver:version' field in the base module, any how the module changes
 have been classified.

 The following rules define how the value for the 'semver:version'
 argument in the new module revision is calculated:

Claise, et al. Expires September 12, 2019 [Page 10]

Internet-Draft YANG Module Versioning March 2019

 1. If a module is being updated in a non-backwards-compatible way,
 then the module version "X.Y.Z[m|M]" MUST be updated to "X+1.0.0"
 unless that module version has already been defined with
 different content, in which case the module version "X.Y.Z+1M
 MUST be used instead.

 2. If a module is being updated in a backwards-compatible way, then
 the next version number depends on the format of the current
 version number:

 i "X.Y.Z" - the module version MUST be updated to "X.Y+1.0",
 unless that module version has already been defined with
 different content, when the module version MUST be updated
 to "X.Y.Z+1m instead".

 ii "X.Y.Zm" - the module version MUST be updated to
 "X.Y.Z+1m".

 iii "X.Y.ZM" - the module version MUST be updated to
 "X.Y.Z+1M".

 3. If a module is being updated in an editorial way, then the next
 version number depends on the format of the current version
 number:

 i "X.Y.Z" - the module version MUST be updated to "X.Y.Z+1"

 ii "X.Y.Zm" - the module version MUST be updated to
 "X.Y.Z+1m".

 iii "X.Y.ZM" - the module version MUST be updated to
 "X.Y.Z+1M".

 4. YANG module semantic version numbers beginning with 0, i.e
 "0.X.Y" are regarded as beta definitions and need not follow the
 rules above. Either the MINOR or PATCH version numbers may be
 updated, regardless of whether the changes are non-backwards-
 compatible, backwards-compatible, or editorial.

2.4. YANG Module Semver Extension

 This document defines a YANG extension to add the YANG module
 semantic version to a Module. The complete definition of this YANG
 module is in Section 9.

 extension module-version {
 argument semver;
 }

Claise, et al. Expires September 12, 2019 [Page 11]

Internet-Draft YANG Module Versioning March 2019

 The extension would typically be used this way:

 module yang-module-name {

 namespace "name-space";
 prefix "prefix-name";

 import ietf-semver { prefix "semver"; }

 description
 "to be completed";

 revision 2018-02-28 {
 description "Added leaf 'wobble'";
 semver:module-version "3.1.0";
 }

 revision 2017-12-31 {
 description "Rename 'baz' to 'bar', added leaf 'wibble'";
 semver:module-version "3.0.0";
 }

 revision 2017-10-30 {
 description "Change the module structure";
 semver:module-version "2.0.0";
 }

 revision 2017-08-30 {
 description "Clarified description of 'foo-64' leaf";
 semver:module-version "1.3.1";
 }

 revision 2017-07-30 {
 description "Added leaf foo-64";
 semver:module-version "1.3.0";
 }

 revision 2017-04-20 {
 description "Add new functionality, leaf 'baz'";
 semver:module-version "1.2.0";
 }

 revision 2017-04-03 {
 description "Add new functionality, leaf 'foo'";
 semver:module-version "1.1.0";
 }

 revision 2017-04-03 {

Claise, et al. Expires September 12, 2019 [Page 12]

Internet-Draft YANG Module Versioning March 2019

 description "First release version.";
 semver:module-version "1.0.0";
 }

 revision 2017-01-30 {
 description "NBC changes to initial revision";
 semver:module-version "0.2.0";
 }

 revision 2017-01-26 {
 description "Initial module version";
 semver:module-version "0.1.0";
 }

 //YANG module definition starts here

 See also "Semantic Versioning and Structure for IETF Specifications"
 [I-D.claise-semver] for a mechanism to combine the semantic
 versioning, the GitHub tools, and a potential change to the IETF
 process.

3. Import by Semantic Version

RFC 7950 allows YANG module 'import' statements to optionally require
 the imported module to have a particular revision date. In practice,
 importing a module with an exact revision date is overly burdensome
 because it requires the importing module to be updated whenever any
 change to the imported module occurs. The alternative choice of
 using an import statement without a revision date is also not ideal
 because the importing module may not work with all possible revisions
 of the imported module.

 With semantic versioning, it is desirable for a importing module to
 specify the set of module versions of the imported module that are
 anticipated to be compatible.

 This document specifies a YANG extension for selecting which versions
 of a module may be imported. It is designed around the assumption
 that most changes to a YANG module do not break importing modules,
 even if the changes themselves are not backwards compatible. E.g.,
 fixing an incorrect pattern statement or description for a leaf would
 not break an import, changing the name of a leaf could break an
 import but frequently would not, but removing a container would break
 imports if it is augmented by another module.

 The ietf-semver module defines the 'version' extension, a
 substatement to the YANG 'import' statement.

https://datatracker.ietf.org/doc/html/rfc7950

Claise, et al. Expires September 12, 2019 [Page 13]

Internet-Draft YANG Module Versioning March 2019

 An 'import' statement MAY contain 'version' statements or a
 'revision-date' statement, but not both.

 The 'version' statement MAY be specified multiple times, requiring
 that the imported module version conforms to at least one of the
 'version' statements.

 The argument to the 'version' statement takes one of three valid
 forms:

 1. "A.B.C" - import the exact module version that matches "A.B.C".

 2. "A.B.C+" - import any module version that matches, or is greater
 than, "A.B.C".

 3. "A.B.C-X.Y.Z" - import any module version that matches, or is
 greater than, "A.B.C"; and also matches, or is less than,
 "X.Y.Z". The word "MAX" can be used for 'Y' or 'Z' to represent
 the numerical value 32,767.

 The rules for comparing module version numbers are as follows:

 1. Version "R.S.T" matches version "A.B.C", only if

 R = A, S = B, and T = C

 2. Version "R.S.T" is greater than version "A.B.C", only if

 R = A, S = B, and T > C; or

 R = A and S > B; or

 R > A

 3. Version "R.S.T" is less than version "X.Y.Z", only if

 R = X, S = Y, and T < Z; or

 R = X and S < Y; or

 R < X

 The patch modifier letter is not included as part of the
 'semver:version' argument, and is entirely ignored for import
 statement module version number comparisons.

Claise, et al. Expires September 12, 2019 [Page 14]

Internet-Draft YANG Module Versioning March 2019

3.1. Module import examples

 Consider an example module "example-module" that is hypothetically
 available in the following versions: 0.1.0, 0.2.0, 1.0.0, 1.1.0,
 1.1.1m, 1.1.2M, 1.2.0, 1.2.1M, 1.2.2M, 1.3.0, 1.3.1, 2.0.0, 3.0.0,
 and 3.1.0. E.g. matching the versions illustrated in Section 2.2.1.

 The first example selects the specific version 1.1.2M. A specific
 version import might be used if 1.1.2M contained changes that are
 incompatible with other versions.

 import example-module {
 semver:version 1.1.2;
 }

 The next example selects module versions that match, or are greater
 than, version 1.2.0. This form may be used if there is a dependency
 on a data node introduced in version 1.2.0. This is expected to be
 the most commonly used form of 'import by version'.

 Includes versions: 1.2.0, 1.2.1M, 1.2.2M, 1.3.0, 1.3.1, 2.0.0, 3.0.0
 and 3.1.0.

 import example-module {
 semver:version 1.2.0+;
 }

 The next example selects module versions that match, or are greater
 than 1.1.0, but excluding all 1.1.x and 1.2.x 'M' versions. This
 form may be needed if structural non backwards compatible changes are
 introduced in a patch 'M' version. Generally, it is advisable to
 avoid making such changes.

 Includes versions: 1.1.0, 1.1.1m, 1.2.0, 1.3.0, 1.3.1, 2.0.0, 3.0.0,
 and 3.1.0.

 import example-module {
 semver:version 1.1.0-1.1.1;
 semver:version 1.2.0;
 semver:version 1.3.0+;
 }

 The last example selects all module versions with a major version
 number of 1. This form may be useful if significant non backwards
 compatible changes have been introduced in version 2.0.0 that break
 import backwards compatibility.

Claise, et al. Expires September 12, 2019 [Page 15]

Internet-Draft YANG Module Versioning March 2019

 Includes versions: 1.0.0, 1.1.0, 1.1.1m, 1.1.2M, 1.2.0, 1.2.1M,
 1.2.2M, 1.3.0 and 1.3.1.

 import example-module {
 semver:version 1.0.0-1.MAX.MAX;
 }

4. Classifying changes in YANG modules

 [RFC7950] chapter 11 defines the rules for what constitutes a
 backwards compatible change in YANG 1.1. However, the YANG semantic
 versioning scheme defined in this document uses a slightly modified
 version of this scheme, and also provides rules to classify changes
 as editorial, backwards-compatible, or non-backwards-compatible.

4.1. Editorial changes

 Any changes that do not change the ordering or meaning of the YANG
 module in any way are classified as 'editorial'. The following rules
 define 'editorial':

 o Changing any 'description' statement if it does not change the
 semantic meaning of the statement is relates to. E.g., fixing
 spelling or grammar, or changing layout, are all allowed.

 o Adding or updating 'reference' statements.

 o Adding or updating the 'organization' statement.

 o Adding a new 'revision' or 'semver:module-version' statement, or
 correcting a previous 'revision' or 'semver:module-version'
 statement.

 o A module may be split into a set of submodules or a submodule may
 be removed, provided the definitions in the module do not change
 except in the ways described above.

4.2. Backwards-compatible changes

 [RFC7950] chapter 11 defines the rules for what constitutes a
 backwards-compatible change in YANG 1.1. The document update these
 rules in the following ways:

 o Adding or changing a 'status' node to 'obsolete' is not a
 backwards-compatible change. Other changes/additions of status
 elements are backwards-compatible, as per [RFC7950].

https://datatracker.ietf.org/doc/html/rfc7950

Claise, et al. Expires September 12, 2019 [Page 16]

Internet-Draft YANG Module Versioning March 2019

 o Changing the ordering of statements is allowed if it does not
 chanage the ordering of an rpc's 'input' substatements.

4.3. Non-backwards-compatible changes

 All other changes to YANG modules that are not classified as
 'editorial' or 'backwards-compatible' are defined as being non-
 backwards-compatible.

 Examples of non-backwards-compatible changes include:

 o Deleting a data node, or changing it to status obsolete.

 o Changing the name, type, or units of a data node.

 o Modifying the description in a way that changes the semantic
 meaning of the data node.

 o Any changes that change or reduce the allowed value set of the
 data node, either through changes in the type definition, or the
 addition or changes to 'must' statements, or changes in the
 description.

 o Adding or modifying 'when' statements that reduce when the data
 node is available in the schema.

 o Making the statement conditional on if-feature.

5. Updates to ietf-yang-library

 YANG library [RFC7895] [RFC8525] is modified to support semantic
 versioning in three ways.

5.1. Advertising module version number

 The ietf-semver YANG module augments the 'module' list in ietf-yang-
 library with a 'version' leaf to optionally declare the YANG semantic
 version of each module.

5.2. Resolving ambiguous module imports

 A YANG datastore schema, defined in [RFC8525], can specify multiple
 revisions of a YANG module in the schema using the 'import-only'
 list, with the requirement from [RFC7950] that only a single revision
 of a YANG module may be implemented.

 If a YANG module import statement does not specify a specific version
 or revision within the datastore schema then it could be ambiguous as

https://datatracker.ietf.org/doc/html/rfc7895
https://datatracker.ietf.org/doc/html/rfc8525
https://datatracker.ietf.org/doc/html/rfc8525
https://datatracker.ietf.org/doc/html/rfc7950

Claise, et al. Expires September 12, 2019 [Page 17]

Internet-Draft YANG Module Versioning March 2019

 to which module revision the import statement should resolve to.
 Hence, a datastore schema constructed by a client using the
 information contained in YANG library may not exactly match the
 datastore schema actually used by the server.

 The following rules remove the ambiguity:

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and one of those revisions
 is implemented (i.e., not an 'import-only' module), then the import
 statement MUST resolve to the revision of the module that is defined
 as being implemented by the datastore schema.

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, and none of those revisions
 are implemented, but one of more modules revisions specify a YANG
 semantic version, then the import MUST resolve to the module with the
 greatest version number, according to the version comparison rules in

Section 3.

 If a module import statement could resolve to more than one module
 revision defined in the datastore schema, none of those revisions are
 implemented, and none of the modules revisions have a YANG semantic
 version number, then the import MUST resolve to the module that has
 the most recent revision date.

5.3. Reporting how deprecated and obsolete nodes are handled

 The ietf-semver YANG module augments YANG library with two leaves to
 allow a server to report how it handles status 'deprecated' and
 status 'obsolete' nodes. The leaves are:

 deprecated-nodes-implemented: If present, this leaf indicates that
 all schema nodes with a status 'deprecated' child statement are
 implemented equivalently as if they had status 'current', or
 otherwise deviations MUST be used to explicitly remove
 'deprecated' nodes from the schema. If this leaf is absent then
 the behavior is unspecified.

 obsolete-nodes-absent: If present, this leaf indicates that the
 server does not implement any status 'obsolete' nodes. If this
 leaf is absent then the behaviour is unspecified.

 Implementations that implement the YANG semantic versioning scheme
 defined in this document MUST set the 'deprecated-nodes-implemented'
 leaf because the refined module update rules in Section 4 require
 that this is how servers handle 'deprecated' and 'obsolete' nodes to
 comply with YANG module semantic versioning.

Claise, et al. Expires September 12, 2019 [Page 18]

Internet-Draft YANG Module Versioning March 2019

 If a server does not set the 'deprecated-nodes-implemented' leaf,
 then clients MUST NOT rely solely on the YANG module semantic version
 number to determine whether two module versions are backwards
 compatible, and MUST also consider whether the status of any nodes
 has changed to 'deprecated' and whether those nodes are implemented
 by the server.

6. YANG status description extension

 The ietf-semver module specifies the YANG extension 'status-
 description' that can be used as a substatement of the status
 statement. The argument to this extension can contain freeform text
 to help readers of the module understand why the node was deprecated
 or made obsolete, when it is anticipated that the node will no longer
 be available for use, and potentially reference other schema elements
 that can be used instead. An example is shown below.

 leaf imperial-temperature {
 type int64;
 units "degrees Fahrenheit";
 status deprecated {
 semver:status-description
 "Imperial measurements are being phased out in favor
 of their metric equivalents. Use metric-temperature
 instead.";
 }
 description
 "Temperature in degrees Fahrenheit.";
 }

7. Semantic versioning of YANG instance data

 Instance data sets [I-D.ietf-netmod-yang-instance-file-format] do not
 have an associated YANG semantic version, as compatibility for
 instance data is undefined.

 However, instance data may reference an associated YANG schema, and
 that schema could make use of semantic version numbers, both for the
 individual YANG modules that comprise the schema, and potentially for
 the entire schema itself (e.g., [I-D.rwilton-netmod-yang-packages]).

 In this way, the versioning of a schema associated with an instance
 data set, may allow a client to determine whether the instance data
 could also be used in conjunction with other versions of the YANG
 schema, or other versions of the modules that define the schema.

 One common scenario, where instance data may have to cope with
 changes to the schema is for the <startup> datastore when a server is

Claise, et al. Expires September 12, 2019 [Page 19]

Internet-Draft YANG Module Versioning March 2019

 restarted with a different YANG schema (e.g. due to a software
 upgrade or downgrade). How a server restores the configuration from
 <startup> during such upgrades or downgrades is outside the scope of
 this specification.

8. Guidelines

8.1. Guidelines to YANG model authors

 NBC changes to YANG models may cause problems to clients, who are
 consumers of YANG models, and SHOULD be avoided. However, there are
 cases where NBC changes are required, e.g. to fix an incorrect YANG
 model.

 YANG model authors are recommended to minimize NBC changes and keep
 changes BC whenever possible.

 The use of status "deprecated" with the status-description statement
 allows clients to plan a migration to alternative data nodes.

 When NBC changes are introduced, consideration should be given to the
 impact on clients and YANG model authors SHOULD try to mitigate that
 impact.

8.1.1. Use of YANG semantic versioning

 Module authors should use the following guidance when applying the
 module version update rules specified in Section 2.3.

 Updates to modules SHOULD be applied to the latest version of YANG
 modules, avoiding the use the 'm|M' patch modifier. When used in
 this way, the YANG semantic version numbers are compatible with the
 versioning scheme defined by the semver.org 2.0.0 rules.

 Changes to older versions of published YANG modules SHOULD be
 minimized, since there may be a greater impact on clients, and
 comparing between version numbers becomes more limited if the 'm|M'
 modifiers are used. However, if it is necessary to make such changes
 then the following guidelines apply:

 Any changes SHOULD also be made to a new latest version of the
 YANG module, if appropriate.

 Where possible, changes SHOULD be restricted to backwards-
 compatible changes only.

Claise, et al. Expires September 12, 2019 [Page 20]

Internet-Draft YANG Module Versioning March 2019

 NBC changes MAY be made, subject to the constraints defined in
Section 2.3. The impact to clients SHOULD be carefully considered

 and minimized if possible.

 The version numbers associated with a module MUST never be reused.
 E.g., when updating module version 3.4.0 in a NBC manner the module
 author must verify whether version 4.0.0 is available for use and if
 that version was already used, the updated module must use version
 3.4.1M instead.

 Patch modifier letters (i.e. 'm' or 'M') are sticky. For example if
 version 3.4.1M is modified in a BC way, the next version is 3.4.2M.
 This is to indicate that 3.4.2M is not BC with 3.4.0, however it
 comes at the cost of not being able to indicate the type of change
 between 3.4.1M and 3.4.2M.

 As explained in Appendix A.2.2, while programatically determining a
 semantic version is possible using tools (e.g. the pyang utility),
 human oversight is highly recommended because of some special cases
 which can not be detected by tools. Therefore, a model author SHOULD
 use both means to determine a model's semantic version.

8.1.2. Making non-backwards-compatible changes to a YANG module

 There are various valid situations where a YANG module has to be
 modified in a non-backwards-compatible way. Here are the different
 ways in which this can be done:

 o If the server can support NBC versions of the YANG module
 simultaneously using version selection, then the NBC changes MAY
 be done immediately. Clients would be required to select the
 version which they support and the NBC change would have no impact
 on them.

 o When possible, NBC changes are done incrementally to provide
 clients time to adapt to NBC changes.

 Here are some guidelines on how non-backwards compatible changes can
 be made incrementally:

 1. The changes should be made incrementally, e.g. a data node's
 status SHOULD NOT be changed directly from "current" to
 "obsolete" (see Section 4.7 of [RFC8407]), instead the status
 SHOULD first be marked "deprecated" and then when support is
 removed its status MUST be changed to "obsolete". Instead of
 using the "obsolete" status, the data node MAY be removed from
 the model but this has the risk of breaking modules which import
 the modified module.

https://datatracker.ietf.org/doc/html/rfc8407#section-4.7

Claise, et al. Expires September 12, 2019 [Page 21]

Internet-Draft YANG Module Versioning March 2019

 2. A node with status "deprecated" MUST be supported for the
 solution described here to function properly.

 3. A node with status "deprecated" SHOULD be available for at least
 one year before its status is changed to "obsolete", see

Section 4.7 of [RFC8407].

 4. Support for a node which is "obsolete" is indicated by the node
 "obsolete-nodes-present, see Section 5.

 5. The new extension "status-description" SHOULD be used for nodes
 which are "obsolete" or "deprecated".

 6. For status "deprecated", the "status-description" SHOULD also
 indicate until when support for the node is guaranteed. If there
 is a replacement data node, rpc, action or notification for the
 deprecated node, this SHOULD be stated in the "status-
 description".

 7. When obsoleting or deprecating data nodes, the "deprecated" or
 "obsolete" status SHOULD be applied at the highest possible level
 in the data tree. For example, when deprecating all data nodes
 in a container, the "deprecated" status SHOULD be applied to the
 container. For clarity, the status MAY be added in all the
 affected nodes but the status-description SHOULD be added only at
 the highest level in the tree.

 The following sections have examples on how non-backwards-compatible
 changes can be made.

8.1.2.1. Removing a data node

 Removing a leaf or container from the data tree, e.g. because support
 for the corresponding feature is being removed:

 1. The node's status SHOULD be changed to "deprecated" and it MUST
 be supported for at least one year. This is a backwards-
 compatible change.

 2. When the node is not available anymore, its status MUST be
 changed to "obsolete" and the "status-description" updated, this
 is a non-backwards-compatible change. The "status-description"
 SHOULD be used to explain why the node is not available anymore.

https://datatracker.ietf.org/doc/html/rfc8407#section-4.7

Claise, et al. Expires September 12, 2019 [Page 22]

Internet-Draft YANG Module Versioning March 2019

8.1.2.2. Changing the type of a leaf node

 Changing the type of a leaf-node. e.g. consider a "vpn-id" node of
 type integer being changed to a string:

 1. The status of node "vpn-id" SHOULD be changed to "deprecated" and
 the node SHOULD be available for at least one year. This is a
 backwards-compatible change.

 2. A new node, e.g. "vpn-name", of type string is added to the same
 location as the existing node "vpn-id". This new node has status
 "current" and its description SHOULD explain that it is replacing
 node "vpn-id".

 3. During the period of time where both nodes are available, how the
 server behaves when either node is set is outside the scope of
 this document and will vary on a case by case basis. Here are
 some options:

 1. A server MAY prevent the new node from being set if the old
 node is already set (and vice-versa). The new node MAY have
 a when statement to achieve this. The old node MUST NOT have
 a when statement since this would be a non-backwards-
 compatible change, but the server MAY reject the old node
 from being set if the new node is already set.

 2. If the new node is set and a client does a get or get-config
 operation on the old node, the server MAY map the value. For
 example, if the new node "vpn-name" has value "123" then the
 server MAY return integer value 123 for the old node "vpn-
 id". However, if the value can not be mapped, we need a way
 of returning "unsupported" TBD.

 4. When node "vpn-id" is not available anymore, its status MUST be
 changed to "obsolete" and the "status-description" is updated.
 This is a non-backwards-compatible change.

8.1.2.3. Reducing the range of a leaf node

8.1.2.4. Changing the key of a list

8.1.2.5. Renaming a node

8.1.2.6. Changing a default value

Claise, et al. Expires September 12, 2019 [Page 23]

Internet-Draft YANG Module Versioning March 2019

8.2. Guidelines to YANG model clients

 Guidelines for clients of modules using YANG semantic versioning:

 o Clients SHOULD be liberal when processing data received from a
 server. For example, the server may have increased the range of
 an operational node causing the client to receive a value which is
 outside the range of the YANG model revision it was coded against

 o Clients SHOULD monitor changes to published YANG modules through
 their version numbers, and use appropriate tooling to understand
 the specific changes between module versions. In particular,
 clients SHOULD NOT migrate to NBC versions of a module without
 first understanding the specifics of the NBC changes.

 o Clients SHOULD plan to make changes to match published status
 changes. When a node's status changes from "current" to
 "deprecated", clients SHOULD plan to stop using that node in a
 timely fashion. When a node's status changes to "obsolete",
 clients MUST stop using that node.

9. Semantic Version Extension YANG Modules

 YANG module with extensions for defining a module's YANG semantic
 version number, and importing by version.

 <CODE BEGINS> file "ietf-semver@2019-02-07.yang"
 module ietf-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-semver";
 prefix semver;

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>
 WG List: <mailto:netmod@ietf.org>

 Author: Benoit Claise
 <mailto:bclaise@cisco.com>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:rrahman@cisco.com>

 Author: Robert Wilton

https://datatracker.ietf.org/wg/netmod/

Claise, et al. Expires September 12, 2019 [Page 24]

Internet-Draft YANG Module Versioning March 2019

 <mailto:rwilton@cisco.com>

 Author: Kevin D'Souza
 <mailto:kd6913@att.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains a definition for a YANG 1.1 extension to
 express the semantic version of YANG modules.";

 revision 2019-02-27 {
 description
 "* Move YANG library augmentations into a separate module.
 * Update references.";
 reference
 "draft-verdt-netmod-yang-semver:
 YANG Semantic Versioning for Modules";
 semver:module-version "0.3.0";
 }

 revision 2018-04-05 {
 description
 "* Properly import ietf-yang-library.
 * Fix the name of module-semver => module-version.
 * Fix regular expression syntax.
 * Augment yang-library with booleans as to whether or not
 deprecated and obsolete nodes are present.
 * Add an extension to enable import by semantic version.
 * Add an extension status-description to track deprecated
 and obsolete reasons.
 * Fix yang-library augments to use 7895bis.";
 reference
 "draft-clacla-netmod-yang-model-update:
 New YANG Module Update Procedure";
 semver:module-version "0.2.1";
 }
 revision 2017-12-15 {
 description
 "Initial revision.";
 reference
 "draft-clacla-netmod-yang-model-update:
 New YANG Module Update Procedure";
 semver:module-version "0.1.1";
 }

https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-semver
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update

Claise, et al. Expires September 12, 2019 [Page 25]

Internet-Draft YANG Module Versioning March 2019

 typedef version {
 type string {
 pattern '[0-9]{1,5}\.[0-9]{1,5}\.[0-9]{1,5}(m|M)?';
 }
 description
 "The type used to represent a YANG semantic version number.

 The YANG semver version number is expressed as a string of the
 form: 'X.Y.Zv'; where X, Y, and Z each represent non-negative
 integers smaller than 32768, and v represents an optional
 single character suffix: 'm' or 'M'.

 o 'X' is the MAJOR version. Changes in the major version
 number indicate changes that are non-backwards-compatible to
 versions with a lower major version number.

 o 'Y' is the MINOR version. Changes in the minor version
 number indicate changes that are backwards-compatible to
 versions with the same major version number, but a lower
 minor version number.

 o 'Zv' is the PATCH version and modifier. Changes in the patch
 version number can indicate editorial, backwards-compatible,
 or non-backwards-compatible changes relative to versions with
 the same major and minor version numbers, but lower patch
 version number, depending on what form modifier 'v' takes:

 * 'M' - the change represents a non-backwards-compatible
 change

 * 'm' - the change represents a backwards-compatible change

 * If the modifier letter is absent, the change represents an
 editorial change";

 reference
 "draft-verdt-netmod-yang-semver: YANG Semantic Versioning";
 }

 extension module-version {
 argument semver;
 description
 "The version number for the module revision it is used in.

 This format of the argument matches the type version.

 The rules for updating the module-version number are described
 in section XXX of 'YANG Semantic Versioning for Modules';

https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-semver

Claise, et al. Expires September 12, 2019 [Page 26]

Internet-Draft YANG Module Versioning March 2019

 By comparing the module-version between two revisions of a
 given module, one can determine if different revisions are
 backwards compatible or not, as well as whether or not new
 features have been added to a newer revision.

 If a module contains this extension it indicates that for this
 module the updated status and update rules as this described
 in RFC XXXX are used.

 The statement MUST only be a substatement of the 'revision'
 statements. Zero or one module-version statement is allowed
 per parent statement. No substatements are allowed.

 'revision' statements in submodules MAY contain a
 'module-version' statement for documentation purposes, but
 its meaning is undefined, and has no effect on the including
 module's semantic version.";
 reference
 "draft-verdt-netmod-yang-semver:
 YANG Semantic Versioning for Modules";
 }

 extension import-versions {
 argument version-clause;
 description
 "This extension specifies an acceptable set of semantic
 versions of a given module that may be imported.

 The statement MUST only be a substatement of the import
 statement.

 The statement MUST NOT be present if the import has a
 revision-date substatement.

 The statement MUST NOT be present if the imported module does
 not support semantic versioning.

 Zero or more versions statements are allowed per parent
 statement. No substatements are allowed.

 The version-clause argument MUST follow one of the below
 patterns:
 (i) "+' \d+\.\d+\.\d+ '+"
 Matches exact version, e.g. 3.6.1

 (ii) "+ '\d+\.\d+\.\d+\+ '+"
 Matches exact version or greater, e.g. 3.6.1+

https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-semver

Claise, et al. Expires September 12, 2019 [Page 27]

Internet-Draft YANG Module Versioning March 2019

 (iii) "+' \d+\.\d+.\d+-\d+\.(\d+|MAX).(\d|MAX)+ '+"
 Matches inclusive range,
 e.g. 3.6.1-7.8.4, or 3.2.1-3.MAX.MAX";

 reference
 "draft-verdt-netmod-yang-semver: Import by Semantic Version";
 }

 extension status-description {
 argument description;
 description
 "Freeform text that describes why a given node has been
 deprecated or made obsolete. This may point to other schema
 elements that can be used in lieu of the given node.

 This statement MUST only be used as a substatement of the
 status statement

 Zero or more status-description statements are allowed per
 parent statement. No substatements are allowed.";
 reference
 "draft-verdt-netmod-yang-semver: YANG status description
 extension";
 }
 }
 <CODE ENDS>

 YANG module with augmentations to YANG Library to support semantic
 version numbers.

 <CODE BEGINS> file "ietf-yl-semver@2019-02-07.yang"
 module ietf-yl-semver {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-yl-semver";
 prefix yl-semver;

 import ietf-semver {
 prefix semver;
 }

 import ietf-yang-library {
 prefix yanglib;
 }

 organization
 "IETF NETMOD (Network Modeling) Working Group";
 contact
 "WG Web: <https://datatracker.ietf.org/wg/netmod/>

https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-semver
https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-semver
https://datatracker.ietf.org/wg/netmod/

Claise, et al. Expires September 12, 2019 [Page 28]

Internet-Draft YANG Module Versioning March 2019

 WG List: <mailto:netmod@ietf.org>

 Author: Benoit Claise
 <mailto:bclaise@cisco.com>

 Author: Joe Clarke
 <mailto:jclarke@cisco.com>

 Author: Reshad Rahman
 <mailto:rrahman@cisco.com>

 Author: Robert Wilton
 <mailto:rwilton@cisco.com>

 Author: Kevin D'Souza
 <mailto:kd6913@att.com>

 Author: Balazs Lengyel
 <mailto:balazs.lengyel@ericsson.com>

 Author: Jason Sterne
 <mailto:jason.sterne@nokia.com>";
 description
 "This module contains augmentations to YANG Library to add module
 level semantic version numbers and to provide an indication of
 how deprecated and obsolete nodes are handled by the server.";

 semver:module-version "0.1.0";

 revision 2019-02-27 {
 description
 "Moved YANG library augmentations into a separate module.";
 reference
 "draft-verdt-netmod-yang-semver:
 YANG Semantic Versioning for Modules";
 semver:module-version "0.1.0";
 }

 augment "/yanglib:yang-library/yanglib:module-set/yanglib:module" {
 description
 "Augmentation modules with a semantic version.";
 leaf version {
 type semver:version;
 description
 "The semantic version for this module. The version MUST
 match the semver:version value in specific revision of the
 module loaded in this module-set.";
 reference

https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-semver

Claise, et al. Expires September 12, 2019 [Page 29]

Internet-Draft YANG Module Versioning March 2019

 "draft-verdt-netmod-yang-semver: YANG Semantic Versioning";
 }
 }

 augment "/yanglib:yang-library/yanglib:schema" {
 description
 "Augmentations to the ietf-yang-library module to indicate how
 deprecated and obsoleted nodes are handled for each datastore
 schema supported by the server.";

 leaf deprecated-nodes-implemented {
 type empty;
 description
 "If present, this leaf indicates that all schema nodes with a
 status 'deprecated' child statement are implemented
 equivalently as if they had status 'current', or otherwise
 deviations MUST be used to explicitly remove 'deprecated'
 nodes from the schema. If this leaf is absent then the
 behavior is unspecified.";
 reference
 "draft-verdt-netmod-yang-semver: Reporting how deprecated and
 obsolete nodes are handled";
 }
 leaf obsolete-nodes-absent {
 type empty;
 description
 "If present, this leaf indicates that the server does not
 implement any status 'obsolete' nodes. If this leaf is
 absent then the behaviour is unspecified.";
 reference
 "draft-verdt-netmod-yang-semver: Reporting how deprecated and
 obsolete nodes are handled";
 }
 }
 }
 <CODE ENDS>

10. Contributors

 This document grew out of the YANG module versioning design team that
 started after IETF 101. The design team consists of the following
 members whom have worked on the YANG versioning project:

 o Balazs Lengyel

 o Benoit Claise

 o Ebben Aries

https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-semver
https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-semver
https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-semver

Claise, et al. Expires September 12, 2019 [Page 30]

Internet-Draft YANG Module Versioning March 2019

 o Jason Sterne

 o Joe Clarke

 o Juergen Schoenwaelder

 o Mahesh Jethanandani

 o Michael (Wangzitao)

 o Qin Wu

 o Reshad Rahman

 o Rob Wilton

 The initial revision of this document was refactored and built upon
 [I-D.clacla-netmod-yang-model-update].

 Discussons on the use of Semver for YANG versioning has been held
 with authors of the OpenConfig YANG models. We would like thank both
 Anees Shaikh and Rob Shakir for their input into this problem space.

11. Security Considerations

 The document does not define any new protocol or data model. There
 are no security impacts.

12. IANA Considerations

12.1. YANG Module Registrations

 The following YANG module is requested to be registred in the "IANA
 Module Names" registry:

 The ietf-semver module:

 Name: ietf-semver

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-semver

 Prefix: semver

 Reference: [RFCXXXX]

 The ietf-yl-semver module:

 Name: ietf-yl-semver

Claise, et al. Expires September 12, 2019 [Page 31]

Internet-Draft YANG Module Versioning March 2019

 XML Namespace: urn:ietf:params:xml:ns:yang:ietf-yl-semver

 Prefix: yl-semver

 Reference: [RFCXXXX]

13. References

13.1. Normative References

 [I-D.verdt-netmod-yang-versioning-reqs]
 Clarke, J., "YANG Module Versioning Requirements", draft-

verdt-netmod-yang-versioning-reqs-02 (work in progress),
 November 2018.

 [RFC7895] Bierman, A., Bjorklund, M., and K. Watsen, "YANG Module
 Library", RFC 7895, DOI 10.17487/RFC7895, June 2016,
 <https://www.rfc-editor.org/info/rfc7895>.

 [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,

 <https://www.rfc-editor.org/info/rfc7950>.

 [RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
 Documents Containing YANG Data Models", BCP 216, RFC 8407,
 DOI 10.17487/RFC8407, October 2018,
 <https://www.rfc-editor.org/info/rfc8407>.

 [RFC8525] Bierman, A., Bjorklund, M., Schoenwaelder, J., Watsen, K.,
 and R. Wilton, "YANG Library", RFC 8525,
 DOI 10.17487/RFC8525, March 2019,
 <https://www.rfc-editor.org/info/rfc8525>.

13.2. Informative References

 [I-D.clacla-netmod-model-catalog]
 Clarke, J. and B. Claise, "YANG module for
 yangcatalog.org", draft-clacla-netmod-model-catalog-03
 (work in progress), April 2018.

 [I-D.clacla-netmod-yang-model-update]
 Claise, B., Clarke, J., Lengyel, B., and K. D'Souza, "New
 YANG Module Update Procedure", draft-clacla-netmod-yang-

model-update-06 (work in progress), July 2018.

https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-versioning-reqs-02
https://datatracker.ietf.org/doc/html/draft-verdt-netmod-yang-versioning-reqs-02
https://datatracker.ietf.org/doc/html/rfc7895
https://www.rfc-editor.org/info/rfc7895
https://datatracker.ietf.org/doc/html/rfc7950
https://www.rfc-editor.org/info/rfc7950
https://datatracker.ietf.org/doc/html/bcp216
https://datatracker.ietf.org/doc/html/rfc8407
https://www.rfc-editor.org/info/rfc8407
https://datatracker.ietf.org/doc/html/rfc8525
https://www.rfc-editor.org/info/rfc8525
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-model-catalog-03
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update-06
https://datatracker.ietf.org/doc/html/draft-clacla-netmod-yang-model-update-06

Claise, et al. Expires September 12, 2019 [Page 32]

Internet-Draft YANG Module Versioning March 2019

 [I-D.claise-semver]
 Claise, B., Barnes, R., and J. Clarke, "Semantic
 Versioning and Structure for IETF Specifications", draft-

claise-semver-02 (work in progress), January 2018.

 [I-D.ietf-netmod-yang-instance-file-format]
 Lengyel, B. and B. Claise, "YANG Instance Data File
 Format", draft-ietf-netmod-yang-instance-file-format-02
 (work in progress), February 2019.

 [I-D.openconfig-netmod-model-catalog]
 Shaikh, A., Shakir, R., and K. D'Souza, "Catalog and
 registry for YANG models", draft-openconfig-netmod-model-

catalog-02 (work in progress), March 2017.

 [I-D.rwilton-netmod-yang-packages]
 Wilton, R., "YANG Packages", draft-rwilton-netmod-yang-

packages-00 (work in progress), December 2018.

 [openconfigsemver]
 "Semantic Versioning for Openconfig Models",
 <http://www.openconfig.net/docs/semver/>.

 [semver] "Semantic Versioning 2.0.0", <https://www.semver.org>.

 [yangcatalog]
 "YANG Catalog", <https://yangcatalog.org>.

13.3. URIs

 [1] https://github.com/netmod-wg/yang-ver-dt/issues/14

 [2] https://github.com/netmod-wg/yang-ver-dt/issues/11

 [3] https://github.com/netmod-wg/yang-ver-dt/issues/13

 [4] https://github.com/netmod-wg/yang-ver-dt/issues/12

 [5] https://github.com/netmod-wg/yang-ver-dt/issues/10

 [6] https://github.com/netmod-wg/yang-ver-dt/issues/9

 [7] https://github.com/netmod-wg/yang-ver-dt/issues/8

 [8] https://github.com/netmod-wg/yang-ver-dt/issues/7

 [9] https://github.com/netmod-wg/yang-ver-dt/issues/6

https://datatracker.ietf.org/doc/html/draft-claise-semver-02
https://datatracker.ietf.org/doc/html/draft-claise-semver-02
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-yang-instance-file-format-02
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-model-catalog-02
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-model-catalog-02
https://datatracker.ietf.org/doc/html/draft-rwilton-netmod-yang-packages-00
https://datatracker.ietf.org/doc/html/draft-rwilton-netmod-yang-packages-00
http://www.openconfig.net/docs/semver/
https://www.semver.org
https://yangcatalog.org
https://github.com/netmod-wg/yang-ver-dt/issues/14
https://github.com/netmod-wg/yang-ver-dt/issues/11
https://github.com/netmod-wg/yang-ver-dt/issues/13
https://github.com/netmod-wg/yang-ver-dt/issues/12
https://github.com/netmod-wg/yang-ver-dt/issues/10
https://github.com/netmod-wg/yang-ver-dt/issues/9
https://github.com/netmod-wg/yang-ver-dt/issues/8
https://github.com/netmod-wg/yang-ver-dt/issues/7
https://github.com/netmod-wg/yang-ver-dt/issues/6

Claise, et al. Expires September 12, 2019 [Page 33]

Internet-Draft YANG Module Versioning March 2019

 [10] https://github.com/netmod-wg/yang-ver-dt/issues/5

 [11] https://github.com/netmod-wg/yang-ver-dt/issues/4

 [12] https://github.com/netmod-wg/yang-ver-dt/issues/15

 [13] https://github.com/netmod-wg/yang-ver-dt/issues/2

Appendix A. Appendix

A.1. Open Issues

 Open issues are being tracked at <https://github.com/netmod-wg/yang-
ver-dt/issues>. Currently open issues are:

 o Do we need a new version of YANG? #14 [1]

 o Add guidance text about warning NBC changes might break imports
 #11 [2]

 o Add a naming convention for versioned YANG file#13 [3]

 o Define editorial, bc, nbc impact of adding, changing, removing
 extension stmts#12 [4]

 o How to version modules in IETF drafts (after they have been
 published at 1.0.0 or later#10 [5]

 o The solution does not strictly support semver 2.0.0#9 [6]

 o Are whitespace changes allow between two module instances with the
 same version (or revision)?#8 [7]

 o Do we assume that a module has an implicit semver if none as been
 specified?#7 [8]

 o Is changing the ordering of nodes an NBC change?#6 [9]

 o Should version statement be at top level or under revision
 statement?#5 [10]

 o Figure out whether changing the imports constitute a BC or NBC
 change#4 [11]

 o Does BC or NBC depend on whether the node is config true/false?#15
 [12]

 o Status obsolete nodes#2 [13]

https://github.com/netmod-wg/yang-ver-dt/issues/5
https://github.com/netmod-wg/yang-ver-dt/issues/4
https://github.com/netmod-wg/yang-ver-dt/issues/15
https://github.com/netmod-wg/yang-ver-dt/issues/2
https://github.com/netmod-wg/yang-ver-dt/issues
https://github.com/netmod-wg/yang-ver-dt/issues

Claise, et al. Expires September 12, 2019 [Page 34]

Internet-Draft YANG Module Versioning March 2019

A.2. Derived Semantic Version

 This temporary text is intended to be moved to a separate draft the
 describes the tool based approach for versioning YANG modules
 mentioned in Section 1.2.

A.2.1. The Derived Semantic Version

 If an explicitly defined semantic version is not available in the
 YANG module, it is possible to algoritmically calculate a derived
 semantic version. This can be used for modules not containing a
 definitive semantic-version as defined in this document or as a
 starting value when specifying the definitive semantic-version. Be
 aware that this algorithm may sometimes incorrectly classify changes
 between the categories non-compatible, compatible or error-
 correction.

A.2.2. Implementation Experience

 [yangcatalog] uses the pyang utility to calculate the derived-
 semantic-version for all of the modules contained within the catalog.
 [yangcatalog] contains many revisions of the same module in order to
 provide its derived-semantic-version for module consumers to know
 what has changed between revisions of the same module.

 Two distinct leafs in the YANG module
 [I-D.clacla-netmod-model-catalog] contain this semver notation:

 o the semantic-version leaf contains the value embedded within a
 YANG module (if it is available).

 o the derived-semantic-version leaf is established by examining the
 the YANG module themselves. As such derived-semantic-version only
 takes syntax into account as opposed to the meaning of various
 elements when it computes the semantic version.

 o The algorithm used to produce the derived-semantic-version is as
 follows:

 1. Order all modules of the same name by revision from oldest to
 newest. Include module revisions that are not available, but
 which are defined in the revision statements in one of the
 available module versions.

 2. If module A, revision N+1 has failed compilation, bump its
 derived semantic MAJOR version. For unavailable module
 versions assume non-backward compatible changes were done.,
 thus bump its derived semantic MAJOR version.

Claise, et al. Expires September 12, 2019 [Page 35]

Internet-Draft YANG Module Versioning March 2019

 3. Else, run "pyang --check-update-from" on module A, revision N
 and revision N+1 to see if backward-incompatible changes
 exist.

 4. If backward-incompatible changes exist, bump module A,
 revision N+1's derived MAJOR semantic version.

 5. If no backward-incompatible changes exist, compare the pyang
 trees of module A, revision N and revision N+1.

 6. If there are structural differences (e.g., new nodes), bump
 module A, revision N+1's derived MINOR semantic version.

 7. If no structural differences exist, bump module A, revision
 N+1's derived PATCH semantic version.

 The pyang utility checks many of the points listed in section 11 of
 [RFC7950] for known module incompatibilities. While this approach is
 a good way to programmatically obtain a semantic version number, it
 does not address all cases whereby a major version number might need
 to be increased. For example, a node may have the same name and same
 type, but its meaning may change from one revision of a module to
 another. This represents a semantic change that breaks backward
 compatibility, but the above algorithm would not find it. Therefore,
 additional, sometimes manual, rigor must be done to ensure a proper
 version is chosen for a given module revision.

Authors' Addresses

 Benoit Claise
 Cisco Systems, Inc.
 De Kleetlaan 6a b1
 1831 Diegem
 Belgium

 Phone: +32 2 704 5622
 Email: bclaise@cisco.com

 Joe Clarke
 Cisco Systems, Inc.
 7200-12 Kit Creek Rd
 Research Triangle Park, North Carolina
 United States of America

 Phone: +1-919-392-2867
 Email: jclarke@cisco.com

https://datatracker.ietf.org/doc/html/rfc7950#section-11
https://datatracker.ietf.org/doc/html/rfc7950#section-11

Claise, et al. Expires September 12, 2019 [Page 36]

Internet-Draft YANG Module Versioning March 2019

 Reshad Rahman
 Cisco Systems, Inc.

 Email: rrahman@cisco.com

 Robert Wilton (editor)
 Cisco Systems, Inc.

 Email: rwilton@cisco.com

 Balazs Lengyel
 Ericsson
 Magyar Tudosok Korutja
 1117 Budapest
 Hungary

 Phone: +36-70-330-7909
 Email: balazs.lengyel@ericsson.com

 Jason Sterne
 Nokia

 Email: jason.sterne@nokia.com

 Kevin D'Souza
 AT&T
 200 S. Laurel Ave
 Middletown, NJ
 United States of America

 Email: kd6913@att.com

Claise, et al. Expires September 12, 2019 [Page 37]

