
Constrained RESTful Environments M.V. Vial

Internet-Draft Schneider-Electric

Intended status: Informational Z. Shelby

Sensinode

Sept 2011

Interface description with WADL in CoRE

draft-vial-core-link-format-wadl-01

Abstract

This document provides guidelines to use the Web Application

Description Language (WADL) in Constrained RESTful environments. The

document mainly focuses on how to combine WADL with the CoRE Link

Format to describe a REST interface.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Requirements Language

3. WADL in a CoRE environment

*

*

*

3.1. CoAP adaptations

3.1.1. Methods

3.1.2. Status code

3.1.3. HTTP header parameters

3.2. CoRE resources

3.3. Semantic description

3.4. Binary XML format

4. Use cases

4.1. WADL resource type identifiers

4.2. Description of query parameters

4.3. Interface description and associated semantic

4.4. Collection of resources

5. Acknowledgements

6. IANA Considerations

7. Security Considerations

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

1. Introduction

The Constrained RESTful Environments (CoRE) working group aims at

providing a comprehensive suite of standards that will make it possible

to build a REST architecture for M2M applications with highly

constrained nodes and networks.

The CoRE Link Format [I-D.ietf-core-link-format] which is part of this

suite defines a format to be used by CoAP servers to list hosted

resources using the Web linking technique defined in RFC 5988

[RFC5988]. More specically the 'if' attribute of Link Format allows an

interface designer indicate a description of the behavior, the

parameters, the representation and eventually the set of sub-resources

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

associated to a given CoRE resource. One way to describe the interface

to a resource is using the Web Application Description Language (WADL).

The first part of this document will explain how to benefit from WADL

to describe the REST interface of CoRE resources. Then the second part

of the document will show how the previous guidelines are applied in

different use cases.

The reader should keep in mind that this document does not suggest in

any way constrained nodes would be able to retrieve and parse a WADL

description. The interface description is rather considered as

documentation with a standard and machine-processable language that

will help implementors to understand an interface and eventually

generate stub code.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

3. WADL in a CoRE environment

3.1. CoAP adaptations

The WADL language is primilarily designed to describe HTTP-based web

applications. WADL is not strongly tied to the HTTP protocol [RFC2616]

and any HTTP-like web protocol can be described with WADL. In a CoRE

environment the CoAP protocol [I-D.ietf-core-coap] is deployed in place

of the HTTP protocol as an optimized web transfer protocol. An

interface designer must take into consideration the specifity of CoAP

while writing the WADL definition.

3.1.1. Methods

CoAP only supports a subset of HTTP methods. So a WADL description

deployed in a CoRE environment MUST only make use of methods available

in CoAP namely GET, PUT, POST and DELETE.

3.1.2. Status code

CoAP decorrelates the response code representation from the actual

value of the code. Hence the response code 2.00 has the value 64. When

a CoAP response code is associated to the description of a response in

WADL, it is RECOMMENDED to use the response code labels.

3.1.3. HTTP header parameters

CoAP does not support user-defined options in the base specification.

So as a rule of thumb, header parameters are discouraged with CoAP.

3.2. CoRE resources

The WADL language describes a REST resource with a resource element

which associates a REST behavior to a URI. WADL offers language

elements to describe the following aspects of a REST behavior: allowed

methods, query string parameters, media type of the request and

response content, URI of the resource and the subordinate resources.

The description of the behavior can either be a reference to a

resource_type element or child elements if the description is inline.

When WADL is combined with the CoRE Link Format it is RECOMMENDED to

write definitions with resource_type elements. Then a Web link can

reference a resource_type with the Interface Description 'if'

attribute. So a Web link plays the same role as the resource element of

WADL in the sense that the Web link instantiates a resource_type by

linking it to an URI.

Because the resource_type element is referenced outside of the WADL

description, the rules of section 2.5.1 in WADL [wadl] are not

applicable. Instead the target URI of the Web link where the

resource_type element is referenced MUST be used as the base URI to

construct each child resource identifiers.

The 'if' attribute of a Web link SHOULD reference a resource_type AND a

WADL document to avoid potential ambiguities. resource_type elements

are identified by their XML id. The 'if' attribute MAY take the form of

an URI. The path of the URI specify the WADL document while the

fragment part of the URI points to a resource_type. The full URI

notation may add significant overhead in a link format description thus

several formats are acceptable depending on the risk of identifier

conflicts. Here are few examples of 'if' attributes.

http://www.example.org/interface.wadl#resourceType

interface.wadl#resourceType

resourceType

3.3. Semantic description

The main goal of the WADL description in a CoRE environment is to

describe the actions that can be performed on a REST resource. The WADL

document may include a grammar element with a schema to offer a

detailed description of data representations hence semantically

refining the description. But this mechanism is not applicable to all

data representations especially if the data is not XML-based. Moreover

the interface description is not meant to be directly interpreted by

CoRE nodes. Thus it is RECOMMENDED to associate the semantic

description of a resource with a resource type 'rt' attribute without

relying only on the 'if' attribute. This separation of concerns allows

an interface designer to reuse the same interface description for

resources that grasp different concepts.

*

*

*

3.4. Binary XML format

Because CoRE deals with constrained networks, traditional XML data

representations may be superseded with a more compact format for the

XML information set. Efficient XML Interchange [exi] is an example of

such binary XML format which heavily relies on a XML schema to achieve

the best compression performances. The schema identifier can be carried

inline with the binary stream or specified out-of-band. If there is no

schema identifier present in the data stream but the WADL definition of

the representation has a reference to grammar element, one MUST assume

that the data stream is schema-informed.

4. Use cases

4.1. WADL resource type identifiers

Let's consider an organization which has defined two application

profiles in two separate WADL documents. The first profile targets Home

Automation applications while the second deals with Energy Management.

One CoRE device may implement REST services from both profiles.

The WADL descriptions are versioned to support future evolutions of the

interface. The profiles have a class/type structure with a dot notation

for REST resource types. They also share some concepts but with

different implementations. Figure 1 and Figure 2 are short extracts of

possible WADL descriptions for such profiles.

<application xmlns="http://wadl.dev.java.net/2009/02"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://wadl.dev.java.net/2009/02 wadl.xsd">

 <resource_type id="sensor.temperature">

 <method name="GET">

 <doc>GetTemperature</doc>

 <response>

 <representation mediaType="text/plain" />

 </response>

 </method>

 </resource_type>

 <resource_type id="parameter.threshold">

 <method name="PUT">

 <doc>SetThreshold</doc>

 <request>

 <representation mediaType="text/plain" />

 </request>

 </method>

 </resource_type>

</application>

Home Automation WADL sample (ha1.wadl)

<application xmlns="http://wadl.dev.java.net/2009/02"

xmlns:em2="http://www.example.org/EnergyManagement/2"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://wadl.dev.java.net/2009/02 wadl.xsd">

 <grammars>

 <include href="http://www.example.org/EnergyManagement/2/em2.xsd"/>

 </grammars>

 <resource_type id="meter.power">

 <method name="GET">

 <doc>GetPower</doc>

 <response>

 <representation mediaType="application/xml" element="em2:Power"/>

 </response>

 </method>

 </resource_type>

 <resource_type id="parameter.threshold">

 <method name="PUT">

 <doc>SetThreshold</doc>

 <request>

 <representation mediaType="application/xml" element="em2:Threshold"/>

 </request>

 </method>

 </resource_type>

</application>

Energy Management WADL sample (em2.wadl)

In a home network, the devices share the same infrastructure but

usually come from different vendors and may implement many application

profiles. In this context it is useful to reference a WADL interface

with an absolute URI.

REQ: GET /.well-known/core

RES: 2.00 OK

</tmp>;rt="AirTemperature";

if="http://www.example.org/ha1.wadl#sensor.temperature",

</tmp/thr>;rt="TemperatureAlarm";

if="http://www.example.org/ha1.wadl#parameter.threshold"

</pwr>;rt="PowerConsumption";

if="http://www.example.org/em2.wadl#meter.power",

</pwr/thr>;rt="PowerAlarm";

if="http://www.example.org/em2.wadl#parameter.threshold"

If a deployment of devices is known to implement only REST services

from one organization the resource_type identifiers may be shortened.

It is however indispensable to clearly indicate a WADL document because

the resource_type identifiers are only unique within a single WADL

document. The example below reflects how these assumptions are actually

applied.

REQ: GET /.well-known/core

RES: 2.00 OK

</tmp>;rt="AirTemperature";if="ha1.wadl#sensor.temperature",

</tmp/thr>;rt="TemperatureAlarm";if="ha1.wadl#parameter.threshold"

</pwr>;rt="PowerConsumption";if="em2.wadl#meter.power",

</pwr/thr>;rt="PowerAlarm";if="em2.wadl#parameter.threshold"

If the network is dedicated to a specific application profile it is

acceptable to omit the reference to the WADL description which is

supposed to be known out-of-band. Web links may have the following

format:

REQ: GET /.well-known/core

RES: 2.00 OK

</tmp>;rt="AirTemperature";if="sensor.temperature",

</thr>;rt="TemperatureAlarm";if="parameter.threshold"

4.2. Description of query parameters

A typical usage of WADL is to provide a detailed description of how a

client can build the query string component of a URI to access a

parametrized resource. Below is an example that describes how a client

can select the unit for a temperature sensor.

<application xmlns="http://wadl.dev.java.net/2009/02"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://wadl.dev.java.net/2009/02 wadl.xsd">

 <resource_type id="sensor.temperature">

 <method name="GET">

 <doc>GetTemperature</doc>

 <request>

 <param name="unit" style="query" default="C" required="no">

 <option value="C"><doc>Celsius</doc></option>

 <option value="K"><doc>Kelvin</doc></option>

 <option value="F"><doc>Farenheit</doc></option>

 </param>

 </request>

 <response>

 <representation mediaType="text/plain" />

 <response>

 </method>

 </resource_type>

</application>

Definition of an optional query string

This description give information about four valid URIs that are

exposed in the following CoAP exchange.

REQ: GET /.well-known/core

RES: 2.00 OK

</tmp>;if="sensor.temperature"

REQ: GET /tmp

RES: 2.00 OK

20

REQ: GET /tmp?unit=C

RES: 2.00 OK

20

REQ: GET /tmp?unit=K

RES: 2.00 OK

293.15

REQ: GET /tmp?unit=F

RES: 2.00 OK

68

4.3. Interface description and associated semantic

The same interface description can often be reused for similar but

distinct concepts. For example a temperature sensor may be able to

produce the traditional air temperature but also the effective

temperature which is a combination of air temperature and wind speed.

Then the definition in Figure 6 is valid for both concepts and the

device description could look like depicted below.

REQ: GET /.well-known/core

RES: 2.00 OK

</tmp>;rt="DryBulbTemperature";if="sensor.temperature",

</eff>;rt="EffectiveTemperature";if="sensor.temperature"

4.4. Collection of resources

Repeating an interface definition attribute with the same identifier

for a collection of resources is especially inefficient and laborious

with link format. Hopefully WADL supports templated path definitions to

describe sub-resources. The template style of parameters allows an

interface designer to specify the dynamic path elements of a URI thanks

to a curly brace notation. It is also possible to precisely determine

the data type associated to a variable path element. Below is an

example of how a list of pending alarms can be described with this

feature.

<application xmlns="http://wadl.dev.java.net/2009/02"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:app="http://www.example.org/2011/app"

xsi:schemaLocation="http://wadl.dev.java.net/2009/02 wadl.xsd">

 <grammars>

 <include href="http://www.example.org/2011/app/app.xsd"/>

 </grammars>

 <resource_type id="list.alarms">

 <method name="GET">

 <doc>GetAlarmList</doc>

 <response>

 <representation mediaType="application/link-format"/>

 </response>

 </method>

 <method name="POST">

 <doc>AddAlarm</doc>

 <request>

 <representation mediaType="application/xml"

 element="Alarm"/>

 </request>

 </method>

 <resource path="{alarmId}">

 <param name="alarmId" style="template" type="xsd:int"/>

 <method name="GET">

 <doc>GetAlarm</doc>

 <response>

 <representation mediaType="application/xml"

 element="app:Alarm"/>

 </response>

 </method>

 <method name="DELETE">

 <doc>RemoveAlarm</doc>

 <request>

 </request>

 </method>

 </resource>

 </resource_type>

</application>

Definition of a collection of resources

Then the resource_type is referenced only once but provides an

interface description for the whole collection of resources.

REQ: GET /.well-known/core

RES: 2.00 OK

</tmp>;rt="DryBulbTemperature";if="sensor.temperature",

</alrm>;rt="TemperatureAlarms";if="list.alarms",

REQ: GET /alrm

RES: 2.00 OK

</alrm/1>,

</alrm/2>

REQ: GET /alrm/1

RES: 2.00 OK

<Alarm time="" type="GreaterThan" threshold="28" />

5. Acknowledgements

Thanks to Linyi Tian for its feedback on the document.

6. IANA Considerations

This document requests no actions from IANA.

7. Security Considerations

This document has no known security implications.

8. References

8.1. Normative References

[wadl]
Hadley, M.J.H, "Web Application Description

Language (WADL)", 2009.

[I-D.ietf-

core-link-

format]

Shelby, Z, "CoRE Link Format", Internet-Draft

draft-ietf-core-link-format-09, November 2011.

[I-D.ietf-

core-coap]

Shelby, Z, Hartke, K, Bormann, C and B Frank,

"Constrained Application Protocol (CoAP)",

Internet-Draft draft-ietf-core-coap-08, October

2011.

[RFC5988]
Nottingham, M., "Web Linking", RFC 5988, October

2010.

[RFC2119]

Bradner, S., "Key words for use in RFCs to

Indicate Requirement Levels", BCP 14, RFC 2119,

March 1997.

[exi]
W3C, "Efficient XML Interchange (EXI) Format 1.0",

2011.

http://tools.ietf.org/html/draft-ietf-core-link-format-09
http://tools.ietf.org/html/draft-ietf-core-coap-08
http://tools.ietf.org/html/rfc5988
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119

8.2. Informative References

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

Authors' Addresses

Matthieu Vial Vial Schneider-Electric Grenoble, FRANCE Phone: +33

(0)47657 6522 EMail: matthieu.vial@schneider-electric.com

Zach Shelby Shelby Sensinode Kidekuja 2 Vuokatti, 88600 FINLAND

Phone: +358407796297 EMail: zach@sensinode.com

mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
mailto:matthieu.vial@schneider-electric.com
mailto:zach@sensinode.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Requirements Language
	3. WADL in a CoRE environment
	3.1. CoAP adaptations
	3.1.1. Methods
	3.1.2. Status code
	3.1.3. HTTP header parameters
	3.2. CoRE resources
	3.3. Semantic description
	3.4. Binary XML format
	4. Use cases
	4.1. WADL resource type identifiers
	4.2. Description of query parameters
	4.3. Interface description and associated semantic
	4.4. Collection of resources
	5. Acknowledgements
	6. IANA Considerations
	7. Security Considerations
	8. References
	8.1. Normative References
	8.2. Informative References
	Authors' Addresses

