
CoRE M. Vial
Internet-Draft Schneider-Electric
Intended status: Standards Track July 13, 2012
Expires: January 14, 2013

CoRE Mirror Server
draft-vial-core-mirror-proxy-01

Abstract

 The Constrained RESTful Environments (CoRE) working group aims at
 realizing the REpresentational State Transfer (REST) architecture in
 a suitable form for the most constrained nodes. Thanks to the
 Constrained Application Protocol (CoAP), REST is now applicable to
 constrained networks. However the most energy-constrained devices
 may enter sleep mode and disconnect their network link during several
 minutes to save energy, hence preventing them from acting as
 traditional web servers. This document describes how a sleeping
 device can store resource representations in an entity called Mirror
 Server and participate in a constrained RESTful environment.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 14, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Vial Expires January 14, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft CoRE Mirror Server July 2012

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Motivation . 3
1.2. Uses cases . 3
1.3. Assumptions and objectives 4

2. Requirements Language . 5
3. Architecture . 5
4. Mirror Server Function Set 6
4.1. Discovery . 7
4.2. Registration . 8
4.3. Update . 11
4.4. Validation . 12
4.5. Removal . 12
4.6. SEP Operation . 12
4.7. Client Operation . 14
4.8. Modification check . 15

5. Acknowledgements . 17
6. IANA Considerations . 17
7. Security Considerations 17
8. References . 18
8.1. Normative References 18
8.2. Informative References 19

 Author's Address . 19

Vial Expires January 14, 2013 [Page 2]

Internet-Draft CoRE Mirror Server July 2012

1. Introduction

1.1. Motivation

 The Constrained RESTful Environments (CoRE) working group aims at
 realizing the REST architecture in a suitable form for the most
 constrained nodes (e.g. 8-bit microcontrollers with limited RAM and
 ROM, energy harvesting) and networks (e.g. 6LoWPAN). The CoRE
 charter says that the CoAP protocol [I-D.ietf-core-coap] will support
 various form of "caching" to support sleeping devices. And the CoAP
 requirement REQ3 in [I-D.shelby-core-coap-req] clearly states that
 support of sleeping devices is required:

 The ability to deal with sleeping nodes. Devices may be powered
 off at any point in time but periodically "wake up" for brief
 periods of time.

 As pointed out by [I-D.arkko-core-sleepy-sensors], the server model
 is not appropriate for the most energy-constrained devices. CoAP
 also supports the Publish/Subscribe pattern through CoAP observe
 [I-D.ietf-core-observe]. Notifications with CoAP observe prove to be
 efficient however as it is currently specified, it still requires the
 server model to create and maintain the observation relationship.
 Although CoAP observe may be enhanced to support subscriptions
 initiated by the observed server, this method is not currently
 specified. Also in general, a SEP would support only a limited
 number of observers at a time. The client model is a viable approach
 but the interactions and interfaces between endpoints are currently
 undefined. In conclusion, the current working group documents do not
 propose a complete solution for sleeping devices that are not always
 reachable.

1.2. Uses cases

 With the emergence of the Internet of Things we expect a major
 breaktrough in the number of smart objects in our environment. Yet
 providing these objects with sufficient energy for continued
 operation and long battery lifetime is still a big challenge. That
 is the reason why this specification strives to provide a solution to
 dramatically reduce the power consumption of constrained RESTful
 sensors. For battery-operated devices the need to improve battery
 lifetime is persistent either to reduce the size of smart objects and
 fit new applications, to increase the product lifetime when it is
 directly coupled to its battery lifetime or to reduce the annoyance,
 costs and wastes incurred by changing batteries too frequently.
 There is also a new trend to avoid batteries and create sensors that
 can harvest energy from their environment. For those devices it is
 of prime importance to maintain a high ratio between harvested energy

Vial Expires January 14, 2013 [Page 3]

Internet-Draft CoRE Mirror Server July 2012

 and power consumption. This ratio has a direct impact on service
 availability and the user experience especially because the
 harvesting efficiency is typically not constant in time (e.g day/
 night for a photovoltaic cell).

1.3. Assumptions and objectives

 In this specification we assume that the energy-constrained devices
 can store a sufficient amount of energy to enable bi-directional
 communication and to perform periodic tasks like maintaining soft
 state. However the most constrained devices may not be able to store
 energy and may have unpredictable availability due to sporadic energy
 production (e.g. self-powered push button). This specification may
 be applicable to these devices as long as they have enough energy to
 perform the initial registration. This may require an additional
 source of power during the commissioning phase.

 Throughout this document we will only consider sleeping devices that
 are totally unreachable during long periods of time. In other word,
 network connectivity is turned off at least several seconds hence
 generating unacceptable interruptions if the device runs as a server.
 Some link-layer technologies offer advanced low power modes such as
 duty-cycle link activity or receiver initiated transmissions hence
 allowing the devices to sleep while still offering network
 connectivity with an always-on illusion. Devices for which the
 available energy is sufficient to afford always-on illusion are out
 of scope of this specification since the server model is applicable
 to these endpoints.

 Efficient support of sleeping devices has implications on many
 aspects of the IP stack: Media Access Control (MAC), neighbor
 discovery, routing, REST intermediaries... This specification does
 not aim to find a solution for all of those. The objective is to
 provide an interaction model at the application level where data
 exchanges are always initiated by the sleeping endpoint. This way
 the application can finely control when the network link needs to be
 on. In no way the mechanisms defined here precludes usage of a low
 power mode at link-layer.

 This specification does not pretend to provide full REST support to
 sleeping devices. These devices will be provided with the minimum
 set of REST features to publish resources. Particular attention is
 paid to facilitate configuration and to associate meta-data to
 resources from sleeping devices.

Vial Expires January 14, 2013 [Page 4]

Internet-Draft CoRE Mirror Server July 2012

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 This specification requires readers to be familiar with all the terms
 and concepts that are discussed in [RFC5988],
 [I-D.shelby-core-resource-directory] and
 [I-D.shelby-core-interfaces]. Readers should also be familiar with
 the terms and concepts discussed in [I-D.ietf-core-coap] and
 [I-D.ietf-core-link-format]. This specification makes use of the
 following additional terminology:

 Sleeping device: A smart object that can enter a long period of time
 with its network link in disconnected state in order to save
 energy.

 Sleeping endpoint (SEP): A sleeping endpoint is an IP sleeping
 device which can participate in a constrained RESTful environment
 as a client-only endpoint.

 Mirror Server (MS): A server endpoint that implements the Mirror
 Server Function Set.

3. Architecture

 The Mirror Server architecture is shown in Figure 1. A Mirror Server
 (MS) is a web server implementing a special Function Set that allows
 a sleeping endpoint (SEP) to create resources in the MS resource
 tree. For energy efficiency a SEP is a client-only CoAP endpoint and
 hence is not able to serve content by itself. The MS implements REST
 interfaces allowing a SEP to maintain a set of mirrored resources
 that will be served in turn by the MS. So a Mirror Server acts as a
 mailbox between the sleeping endpoint and the client. A CoAP client
 discovers resources owned by the SEP but hosted on the MS using
 typical mechanisms such as "/.well-known/core"
 [I-D.ietf-core-link-format] or Resource Directory
 [I-D.shelby-core-resource-directory].

 A SEP must register and maintain a mirror entry on the MS, which is
 soft state and need to be periodically refreshed. A MS provides
 interfaces to register, update and remove a mirror entry and an
 associated set of mirrored resources. Furthermore, a MS provides
 interfaces to read and update the mirrored resources from both the
 SEP and client sides. Finally, a mechanism to discover a MS using
 the CoRE Link Format is defined.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5988

Vial Expires January 14, 2013 [Page 5]

Internet-Draft CoRE Mirror Server July 2012

 Registration Discovery
 | |
 | |
 +-----+ | +------+ | +--------+
 | | --- push --> | | --- pull --> | | | |
 | SEP | | | MS | | | Client |
 | | <-- pull --- | | <-- push --- | |
 +-----+ | +------+ | +--------+
 | |
 | |

 Figure 1: Mirror Server architecture

 The Mirror Server functionality can be distributed over multiple
 server endpoints in the network or centralized on a single server
 endpoint. A shorter round-trip time gives better energy efficiency
 for request/response exchanges, so it is important to choose a path
 between the Mirror Server and the sleeping endpoint with minimum
 latency. Moreover a sleeping endpoint with a Mirror Server in its
 direct neighborhood may even avoid having to configure global IP
 connectivity. However in a wireless network relying on local
 connectivity may result in fragility due to device mobility or radio
 fluctuations. This could lead a sleeping endpoint to frequently try
 to move from one Mirror Server to another. Consequently, clients
 would need to restart resource discovery frequenlty. In that regard,
 a centralized Mirror Server gives more stability. A centralized
 Mirror Server also concentrates network traffic on a central point
 and may cause network congestion in a mesh network. However data
 flow of a sleeping endpoint is expected to be low hence mitigating
 the risk of network congestion.

 A sleeping endpoint MAY register with more than one Mirror Server but
 in that case the resources of a sleeping endpoint appear duplicated
 during resource discovery. Section 4.1 describes how to detect
 duplicate resources.

4. Mirror Server Function Set

 The interface is mostly identical to that of the Resource Directory
 Function Set defined in [I-D.shelby-core-resource-directory] so this
 specification only points out the differences. Contrary to the
 Resource Directory there is no lookup Function Set in a Mirror
 Server. Indeed, from a client point of view, the mirrored resources
 look like any other resources hosted the MS endpoint. So resource
 discovery of mirrored resources is directly available through
 "/.well-known/core" instead of a separate Function Set.

Vial Expires January 14, 2013 [Page 6]

Internet-Draft CoRE Mirror Server July 2012

 The examples presented in this section make use of a smart
 temperature sensor the resources of which are defined below using
 Link Format. Three resources are dedicated to the Device Description
 (manufacturer, model, name) and one contains the current temperature
 in degree Celsius.

 </dev/mfg >;rt="ipso.dev.mfg";if="core.rp",
 </dev/mdl>;rt="ipso.dev.mdl";if="core.rp",
 </dev/n>;rt="ipso.dev.n";if="core.p",
 </sen/temp>;rt="ucum.Cel";if="core.s";obs

4.1. Discovery

 The interaction between a SEP and a MS is based on the same discovery
 interface as the Resource Directory except that the Resource Type in
 the URI template is replaced with "core.ms".

 The following example shows a sleeping endpoint discovering a MS
 using this interface, thus learning that the base MS resource is at
 /ms.

 SEP MS
 | |
 | ----- GET /.well-known/core?rt=core.ms ------> |
 | |
 | |
 | <---- 2.05 Content "</ms>; rt="core.ms" ------ |
 | |

 Req: GET coap://[ff02::1]/.well-known/core?rt=core.ms
 Res: 2.05 Content
 </ms>;rt="core.ms"

 Resource discovery between a client and a MS or a client and a RD
 needs special care to take into account the fact that resources from
 a sleeping endpoint might appear duplicated. Clients SHOULD employ
 2-step resource discovery by looking up sleeping endpoints AND
 resource types to detect duplicate resources. Clients MAY use
 single-step resource discovery only if the SEP can register with no
 more than one Mirror Server. A client can use the "ep" link
 attribute as a filter on the "/.well-known/core" resource to retrieve
 a list of endpoints and detect duplicate sleeping endpoints
 registered on multiple MSs. A client can use the "ep" type of lookup
 to do the same on a RD. The result of endpoint discovery is then
 used to filter out duplicate resources returned from simple resource
 discovery.

 The following example shows a client discovering the sleeping

Vial Expires January 14, 2013 [Page 7]

Internet-Draft CoRE Mirror Server July 2012

 endpoints and learning that the SEP 0224e8fffe925dcf is registered on
 two Mirror Servers.

 Client MS1 MS2
 | | |
 | ----- GET /.well-known/core?ep=* ------->|----->|
 | | |
 | | |
 | <---- 2.05 Content "</ms/0>..." --------| |
 | | |
 | <---- 2.05 Content "</ms/0>..." --------|------|

 Req: GET coap://[ff02::1]/.well-known/core?ep=*
 Res: 2.05 Content
 </ms/0>;ep="0224e8fffe925dcf"
 Res: 2.05 Content
 </ms/0>;ep="02004cfffe4f4f50"
 </ms/1>;ep="0224e8fffe925dcf"

 From the previous exchange and the next resource discovery request,
 the client can infer that the resources coap://ms1/ms/0/sen/temp and
 coap://ms2/ms/1/sen/temp actually come from the same sleeping
 endpoint.

 Client MS1 MS2
 | | |
 | - GET /.well-known/core?rt=ipso:ucum.Cel ->|----->|
 | | |
 | | |
 | <---- 2.05 Content "</ms/0>..." ----------| |
 | | |
 | <---- 2.05 Content "</ms/1>..." ----------|------|

 Req: GET coap://[ff02::1]/.well-known/core?rt=ucum.Cel
 Res: 2.05 Content
 </ms/0/sen/temp;rt="ucum.Cel"
 Res: 2.05 Content
 </ms/1/sen/temp>;rt="ucum.Cel"

4.2. Registration

 The registration interface is identical to the registration interface
 of the Resource Directory Function Set except that the preferred path
 for the Mirror Server Function Set is "/ms".

 After discovering the location of a MS Function Set, a sleeping
 endpoint MAY register its resources that need to be mirrored using
 the registration interface. This interface accepts a POST from an

Vial Expires January 14, 2013 [Page 8]

Internet-Draft CoRE Mirror Server July 2012

 endpoint containing a description of the resources to be created on
 the Mirror Server as the message payload in the CoRE Link Format
 along with query string parameters indicating the endpoint
 identifier, its domain and the lifetime of the registration. The
 Link Format description is identical to the "/.well-known/core"
 resource found on a typical server endpoint meaning that the
 Interface Description attributes are actually intended for the Mirror
 Server. A Mirror Server MUST reject a registration if at least one
 of the Interface Descriptions is not supported. Upon successful
 registration a MS creates a new resource or updates an existing
 resource for the mirror entry and returns its location. The
 resources specified by the SEP during registration are created as
 sub-resources of the mirror entry on the MS endpoint. The
 registration interface MUST be implemented to be idempotent, so that
 registering twice with the same endpoint parameter does not create
 multiple MS entries. The resource associated to a mirror entry
 SHOULD implement the Interface Type CoRE Link List defined in
 [I-D.shelby-core-interfaces]. A GET request on this resource MUST
 return the list of mirrored resources for the corresponding SEP.

 After successul registration, a MS SHOULD enable resource discovery
 for the new mirrored resources by updating its "/.well-known/core"
 resource. A MS MUST wait for the initial representation of a
 mirrored resource before it can be visible in resource discovery.
 The top level resource corresponding to a mirror entry MUST be
 published in "/.well-known/core" to enable 2-step resource discovery
 described in Section 4.1. Sub-resources of a mirror entry SHOULD be
 discoverable either directly in "/.well-known/core" or indirectly
 through gradual reveal from the mirror entry resource. The Web Link
 of a mirror entry MUST contain an "ep" attribute with the value of
 the End-Point parameter received at registration. If present, the
 End-Point Type parameter SHOULD also be mapped as a "rt" attribute.

 A Mirror Server MAY be configured to register the SEP's resources in
 a Resource Directory (RD). A SEP MUST NOT register the mirrored
 resources in a RD by itself. It is always the responsibility of the
 Mirror Server. Since each SEP may register resources with different
 lifetimes, a MS MUST register the resources of a SEP in a separate
 resource directory entry. A SEP may register with multiple MS hence
 the RD entries from the different MS for the same SEP would overlap
 if special care is not taken. Therefore if a SEP is likely to
 register with more than one MS, a Mirror Server MUST create its own
 domain to register the resources of a SEP. This precaution ensures
 that the ep identifier of a SEP is unique for each domain in the RD.
 The new domain is typically formed by concatenating the MS's endpoint
 identifier with the domain in use.

 SEP resources in the MS are kept active for the period indicated by

Vial Expires January 14, 2013 [Page 9]

Internet-Draft CoRE Mirror Server July 2012

 the lifetime parameter. The SEP is responsible for refreshing the
 entry within this period using either the registration or update
 interface. Once a mirror entry has expired, the MS deletes all
 resources associated to that entry and updates its "/.well-known/
 core" resource. When the mirrored resources are also registered in a
 RD, the RD and MS entries are supposed to have the same lifetime.
 Consequently, when the mirror entry expires, a MS MAY let the RD
 entry expire too instead of explicitly deleting it. Nevertheless if
 the MS entry is deleted using the Removal interface then the RD entry
 MUST be explicitly removed.

 A Mirror Server could lose or delete the mirror entry associated to a
 SEP without sending an explicit notification (e.g. after reboot). A
 SEP SHOULD be able to detect this situation by processing the
 response code while using the SEP Operation or Update interface.
 Especially an error code "4.04 Not Found" SHOULD cause the SEP to
 register again. A SEP MAY also register with multiple MSs to
 alleviate the risk of interruption of service.

 Implementation note: It is not recommended to reuse the value of the
 ep parameter in the URI of the Mirror Server entry. This parameter
 may be a relatively long identifier to guarantee global uniqueness
 (e.g. EUI64) and would generate inefficient URIs on the Mirror
 Server where only a local handler is necessary.

 The following example shows a sleeping endpoint registering with a
 MS.

 SEP MS
 | |
 | --- POST /ms "</dev..." --------------------> |
 | |
 | |
 | <-- 2.01 Created Location: /ms/0 ------------- |
 | |

 Req: POST coap://ms.example.org/ms?ep=0224e8fffe925dcf&rt=sensor
 Etag: 0x3f
 Payload:
 </dev/mfg >;rt="ipso.dev.mfg";if="core.rp",
 </dev/mdl>;rt="ipso.dev.mdl";if="core.rp",
 </dev/n>;rt="ipso.dev.n";if="core.p",
 </sen/temp>;rt="ucum.Cel";if="core.s";obs

 Res: 2.01 Created
 Location: /ms/0

 The mirror entry resource below has been created on the MS.

Vial Expires January 14, 2013 [Page 10]

Internet-Draft CoRE Mirror Server July 2012

 Req: GET coap://ms.example.org/.well-known/core
 Res: 2.05 Content
 </ms>;rt="core.ms",
 </ms/0>;ep="0224e8fffe925dcf";rt="sensor";if="core.ll"

 The SEP sets the initial value for its mirrored resources and the
 following resources are now created.

 Req: GET coap://ms.example.org/ms/0
 Res: 2.05 Content
 Payload:
 </ms/0/dev/mfg >;rt="ipso.dev.mfg";if="core.rp",
 </ms/0/dev/mdl>;rt="ipso.dev.mdl";if="core.rp",
 </ms/0/dev/n>;rt="ipso.dev.n";if="core.p",
 </ms/0/sen/temp>;rt="ucum.Cel";if="core.s";obs

 Then the MS registers the mirrored resources in the RD.

 MS RD
 | |
 | --- POST /rd "</ms/0..." -------------------> |
 | |
 | |
 | <-- 2.01 Created Location: /rd/6534 ---------- |
 | |

 Req: POST coap://rd.example.org/rd?ep=0224e8fffe925dcf&
 rt=sensor&d=ms1.example.org
 Etag: 0x6a
 Payload:
 </ms/0/dev/mfg >;rt="ipso.dev.mfg";if="core.rp",
 </ms/0/dev/mdl>;rt="ipso.dev.mdl";if="core.rp",
 </ms/0/dev/n>;rt="ipso.dev.n";if="core.p",
 </ms/0/sen/temp>;rt="ucum.Cel";if="core.s";obs

 Res: 2.01 Created
 Location: /rd/6534

4.3. Update

 The update interface is not necessary on a Mirror Server. A SEP can
 use the registration interface to modify a mirror entry. The
 Lifetime query parameter of the SEP operation interface defined in

Section 4.6 allows a SEP to extend the lifetime of its mirror entry.

Vial Expires January 14, 2013 [Page 11]

Internet-Draft CoRE Mirror Server July 2012

4.4. Validation

 The validation interface is not supported on a Mirror Server since
 the sleeping endpoint is unreachable.

4.5. Removal

 The removal interface is identical.

 Upon successful removal, "/.well-known/core" and the Resource
 Directory (if applicable) MUST be updated accordingly. All resources
 associated to the mirror entry are deleted.

4.6. SEP Operation

 The SEP Operation interface is not defined for a Resource Directory
 and is specific to the Mirror Server Function Set.

 Once the resources have been created on the MS, the SEP can access
 its mirrored resources at its own pace. The SEP MAY update its
 mirrored resources on the MS using PUT requests. The SEP MAY
 retrieve the current representation of any of its mirrored resources
 using GET requests. The SEP can reactivate its mirror entry by
 including a Lifetime (lt) parameter in the query string. While
 updating dynamic resources, a SEP SHOULD include a Lifetime parameter
 with the smallest value that matches its technical constraints. It
 allows a client to fastly detect a stale mirror entry. A SEP MAY
 omit processing some responses for non confirmable requests in order
 to avoid spending energy waiting for a response when it is frequently
 accessing a mirrored resource. Nevertheless a SEP SHOULD
 periodically check the responses to ensure that its mirror entry is
 still active on the MS.

 Other specifications may override or extend this interface to provide
 more advanced features, support other REST methods and queuing
 patterns. This is however out of scope of this specification which
 provides only a basic behavior.

 The basic SEP operation interface is specified as follows:

 Interaction: SEP -> MS

 Method: GET, PUT

 URI Template: /{+location}{+resource}{?lt}

Vial Expires January 14, 2013 [Page 12]

Internet-Draft CoRE Mirror Server July 2012

 URI Template Variables:

 location := This is the Location path returned by the MS as a
 result of a successful registration.

 resource := This is the relative path to a mirrored resource
 managed by the registered SEP.

 lt := Lifetime (optional). The number of seconds by which the
 lifetime of the whole mirror entry is extended. Range of
 1-4294967295. If no lifetime is included, the current
 remaining lifetime stays unchanged.

 Content-Type: Defined at registration

 Etag: The Etag option MAY be included to allow clients to validate a
 resource on multiple Mirror Servers.

 Success: 2.01 "Created", the request MUST include the initial
 representation of the mirrored resource.

 Success: 2.04 "Changed", the request MUST include the new
 representation of the mirrored resource.

 Success: 2.05 "Content", the response MUST include the current
 representation of the mirrored resource.

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 5.03 "Service Unavailable". Service could not perform the
 operation.

 The following example describes how a sleeping endpoint can
 initialize the resource containing its manufacturer name just after
 registration.

 SEP MS
 | |
 | --- PUT /ms/0/dev/mfg "acme" ---------------> |
 | |
 | |
 | <-- 2.01 Created ----------------------------- |
 | |

 Req: PUT /ms/0/dev/mfg
 Payload: acme
 Res: 2.01 Created

Vial Expires January 14, 2013 [Page 13]

Internet-Draft CoRE Mirror Server July 2012

 The example below shows how a SEP can indicate that it is supposed to
 send a temperature value at least every hour to keep its mirror entry
 active.

 SEP MS
 | |
 | --- PUT /ms/0/sen/temp?lt=3600 "22" --------> |
 | |
 | |
 | <-- 2.04 Changed ----------------------------- |
 | |

 Req: PUT /ms/0/sen/temp?lt=3600
 Payload: 22
 Res: 2.04 Changed

4.7. Client Operation

 The Client Operation interface is not defined for a Resource
 Directory and is specific to the Mirror Server Function Set.

 While the SEP operation interface describes only the interaction
 between the SEP and the MS on mirrored resources, the interface
 between a client and the MS for mirrored resources is actually
 defined by the Link Format payload at registration. This
 specification does not define the list of Interface Description
 attribute values that a Mirror Server must support. This is left to
 a companion specification such as a CoRE profile specification. A
 Mirror Server MAY support complex interfaces that require special
 logic and interactions between multiple mirrored resources. The CoRE
 Batch interface defined in [I-D.shelby-core-interfaces] is an example
 of complex interface that defines relations between a parent resource
 and sub-resources using SenML [I-D.jennings-senml].

 A SEP may register resources with the "obs" attribute. In that case
 a MS using the CoAP protocol [I-D.ietf-core-coap] SHOULD accept to
 establish a CoAP observation relationship between the observable
 mirrored resource and a client as defined in [I-D.ietf-core-observe].

 A SEP may stop updating its mirrored resources without explictly
 removing its mirror entry (e.g. transition to another MS after
 network unreachability detection). A client can detect this
 situation when the corresponding mirror entry has expired. Upon
 receipt of a response with error code 4.04 "Not Found", a client
 SHOULD restart resource discovery to determine if the resources are
 now mirrored on another MS.

 The Client operation interface is specified as follows:

Vial Expires January 14, 2013 [Page 14]

Internet-Draft CoRE Mirror Server July 2012

 Interaction: Client -> MS

 Method: Defined at registration

 URI Template: /{+location}{+resource}

 URI Template Variables:

 location := This is the Location path returned by the MS as a
 result of a successful registration.

 resource := This is the relative path to a mirrored resource
 managed by a SEP.

 Content-Type: Defined at registration

 In the example below a client observes the changes of temperature
 through the Mirror Server.

 SEP MS Client
 | | |
 | | <- GET /ms/0/sen/temp - |
 | | (observe) |
 | | |
 | | -- 2.05 Content "22" -> |
 | | |
 | - PUT /ms/0/sen/temp "23" -> | |
 | | |
 | <- 2.04 Changed ------------ | |
 | | |
 | | -- 2.05 Content "23" -> |

4.8. Modification check

 This interface is not defined for a Resource Directory and is
 specific to the Mirror Server Function Set.

 A sleeping endpoint may register resources supporting POST or PUT
 methods and therefore that could be modified by clients. In that
 case the SEP needs to poll these resources to detect updates.
 Polling each modifiable resource is inefficient when they are
 numerous. The modification check interface allows a SEP to retrieve
 a list of resources that have been modified. The SEP can then send
 GET requests on each resource of the list to get the updated
 representation. A POST request on the check interface automatically
 clears the list of modified resources.

 The check interface is specified as follows:

Vial Expires January 14, 2013 [Page 15]

Internet-Draft CoRE Mirror Server July 2012

 Interaction: SEP -> MS

 Method: POST

 URI Template: /{+location}?chk

 URI Template Variables:

 location := This is the Location path returned by the MS as a
 result of a successful registration.

 Request Content-Type: None

 Response Content-Type: application/link-format

 Success: 2.04 "Changed", the response MUST include a list of web
 links to resources that have been modified by clients.

 Failure: 4.00 "Bad Request". Malformed request.

 Failure: 5.03 "Service Unavailable". Service could not perform the
 operation.

 The following example shows a commissioning tool changing the name of
 a sleeping device through a Mirror Server. A commissioning button on
 the SEP triggers the reading of the new configuration.

Vial Expires January 14, 2013 [Page 16]

Internet-Draft CoRE Mirror Server July 2012

 SEP MS Client
 | | |
 | | <-- PUT /ms/0/dev/n --- |
 | | |
 | | -- 2.04 Changed ------> |
 | | |
 | [press button on SEP] | |
 | | |
 | - POST /ms/0?chk -------> | |
 | | |
 | <- 2.04 Changed --------- | |
 | | |
 | - GET /ms/0/dev/n ------> | |
 | | |
 | <- 2.05 Content --------- | |
 | | |

 Req: PUT /ms/0/dev/n
 Payload: "sensor-1"
 Res: 2.04 Changed

 Req: POST /ms/0?chk
 Res: 2.04 Changed
 Payload: "</ms/0/dev/n>"

 Req: GET /ms/0/dev/n
 Res: 2.05 Content
 Payload: "sensor-1"

5. Acknowledgements

 Thanks to Zach Shelby who is the author of the Resource Directory
 interface. Thanks to Nicolas Riou, Jari Arkko, Esko Dijk who have
 provided fruitful comments.

6. IANA Considerations

 "core.ms" resource type needs to be registered.

 The "ep" attribute needs to be registered.

7. Security Considerations

 This document needs the same security considerations as described in
Section 7 of [RFC5988] and Section 6 of [I-D.ietf-core-link-format].

https://datatracker.ietf.org/doc/html/rfc5988#section-7

Vial Expires January 14, 2013 [Page 17]

Internet-Draft CoRE Mirror Server July 2012

 The Mirror Server architecture defines the SEP and Client roles in
 the Mirror Function Set interfaces. Since the roles are based on the
 requester identity, a MS SHOULD perform appropriate authentication in
 order to prevent a malicious client endpoint from impersonating the
 SEP or an authorized client. Otherwise the malicious client could
 gain access to interfaces allowing corruption or deletion of a
 mirrored resource.

 A malicious client could start a denial of service attack by trying
 to mirror a large resource on a MS. Memory exhaustion would prevent
 other sleeping endpoints from mirroring their resources. A MS SHOULD
 use quotas to limit the size and the number of mirrored resources per
 SEP.

 A Mirror Server is actually an intermediary running at application
 level. As a consequence the Mirror Server architecture can only
 provide implicit end-to-end security that relies on a trusted network
 if security is not available at application layer. When explicit
 end-to-end security is required between a SEP and a Client, data
 object security SHOULD be employed.

8. References

8.1. Normative References

 [I-D.ietf-core-coap]
 Shelby, Z., Hartke, K., Bormann, C., and B. Frank,
 "Constrained Application Protocol (CoAP)",

draft-ietf-core-coap-10 (work in progress), June 2012.

 [I-D.ietf-core-link-format]
 Shelby, Z., "CoRE Link Format",

draft-ietf-core-link-format-14 (work in progress),
 June 2012.

 [I-D.ietf-core-observe]
 Hartke, K., "Observing Resources in CoAP",

draft-ietf-core-observe-05 (work in progress), March 2012.

 [I-D.shelby-core-interfaces]
 Shelby, Z. and M. Vial, "CoRE Interfaces",

draft-shelby-core-interfaces-03 (work in progress),
 July 2012.

 [I-D.shelby-core-resource-directory]
 Shelby, Z. and S. Krco, "CoRE Resource Directory",

draft-shelby-core-resource-directory-03 (work in

https://datatracker.ietf.org/doc/html/draft-ietf-core-coap-10
https://datatracker.ietf.org/doc/html/draft-ietf-core-link-format-14
https://datatracker.ietf.org/doc/html/draft-ietf-core-observe-05
https://datatracker.ietf.org/doc/html/draft-shelby-core-interfaces-03
https://datatracker.ietf.org/doc/html/draft-shelby-core-resource-directory-03

Vial Expires January 14, 2013 [Page 18]

Internet-Draft CoRE Mirror Server July 2012

 progress), May 2012.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

8.2. Informative References

 [I-D.arkko-core-sleepy-sensors]
 Arkko, J., Rissanen, H., Loreto, S., Turanyi, Z., and O.
 Novo, "Implementing Tiny COAP Sensors",

draft-arkko-core-sleepy-sensors-01 (work in progress),
 July 2011.

 [I-D.jennings-senml]
 Jennings, C., Shelby, Z., and J. Arkko, "Media Types for
 Sensor Markup Language (SENML)", draft-jennings-senml-08
 (work in progress), January 2012.

 [I-D.shelby-core-coap-req]
 Shelby, Z., Stuber, M., Sturek, D., Frank, B., and R.
 Kelsey, "CoAP Requirements and Features",

draft-shelby-core-coap-req-02 (work in progress),
 October 2010.

Author's Address

 Matthieu Vial
 Schneider-Electric
 Grenoble,
 FRANCE

 Phone: +33 (0)47657 6522
 Email: matthieu.vial@schneider-electric.com

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/draft-arkko-core-sleepy-sensors-01
https://datatracker.ietf.org/doc/html/draft-jennings-senml-08
https://datatracker.ietf.org/doc/html/draft-shelby-core-coap-req-02

Vial Expires January 14, 2013 [Page 19]

