
NETCONF E. Voit
Internet-Draft A. Clemm
Intended status: Informational A. Tripathy
Expires: September 18, 2016 E. Nilsen-Nygaard
 A. Gonzalez Prieto
 Cisco Systems
 March 17, 2016

Restconf, HTTP, and HTTP2 Transport for YANG Push
draft-voit-netconf-restconf-yang-push-02

Abstract

 This document defines YANG Subscription and Push mechanisms for
 Restconf, HTTP, and HTTP2 transports.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 18, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Voit, et al. Expires September 18, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Restconf Push March 2016

Table of Contents

1. Introduction . 2
2. Terminology . 2
3. Solution . 3
3.1. Subscription Model 3

 3.2. Mechanisms for Subscription Establishment and Maintenance 3
3.3. Subscription Multiplexing 6
3.4. Push Data Stream and Transport Mapping 7

4. Security Considerations 12
5. References . 13
5.1. Normative References 13
5.2. Informative References 13

Appendix A. Dynamic YANG Subscription when the Subscriber and
 Receiver are different 14

Appendix B. End-to-End Deployment Guidance 15
B.1. Call Home . 16
B.2. TLS Heartbeat . 16
B.3. Putting it together 16

 Authors' Addresses . 16

1. Introduction

 Requirements for subscriptions to YANG datastores are defined in
 [pub-sub-reqs]. Mechanisms to support YANG subscriptions and
 datastore object push over a NETCONF are defined in [yang-push].
 Restconf support is also needed by the market. This document
 provides such a specification for Restconf by reusing the YANG data
 model, and expanding the transport requirements of [yang-push].

 These extensions are not limited to just Restconf. There are
 benefits which can be realized when transporting push updates
 directly over HTTP such as simplified support for static
 subscriptions. Additionally if HTTP/2 [RFC7540] transport is used,
 HTTP/2 capabilities which can be applied include:

 o Subscription multiplexing over independent HTTP/2 streams

 o Stream prioritization and stream dependencies

 o Flow control on independent streams

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Voit, et al. Expires September 18, 2016 [Page 2]

Internet-Draft Restconf Push March 2016

 Datastore: a conceptual store of instantiated management information,
 with individual data items represented by data nodes which are
 arranged in hierarchical manner.

 Dynamic Subscription: a Subscription negotiated between Subscriber
 and Publisher via create, establish, modify, and delete RPC control
 plane signaling messages.

 Publisher: an entity responsible for distributing subscribed YANG
 object data per the terms of a Subscription. In general, a Publisher
 is the owner of the YANG datastore that is subjected to the
 Subscription.

 Receiver: a target to which Publisher pushes updates. In many
 deployments, the Receiver and Subscriber will be the same entity.

 Static Subscription: A Subscription installed via a configuration
 interface.

 Subscriber: an entity able to request and negotiate a contract for
 push updates from a Publisher.

 Subscription: a contract between a Subscriber and a Publisher,
 stipulating which information the Receiver wishes to have pushed from
 the Publisher without the need for further solicitation.

 Subscription Update: a set of data nodes and object values pushed
 together as a unit and intended to meet the obligations of a single
 subscription at a snapshot in time.

3. Solution

 This document specifies transport mechanisms that allow subscribed
 information updates to be pushed from a YANG datastore.

3.1. Subscription Model

 Subscriptions use the base data model and subscription state machine
 from [yang-push].

3.2. Mechanisms for Subscription Establishment and Maintenance

 On a Publisher, it must be possible to instantiate a Subscription via
 dynamic Subscriber signaling, as well as via Static configuration.

 Dynamic Subscriptions are signaled Subscriptions aimed at the running
 datastore and are unable to impact the startup configuration. They

Voit, et al. Expires September 18, 2016 [Page 3]

Internet-Draft Restconf Push March 2016

 should always terminate when there is loss of transport session
 connectivity between the Publisher and Receiver.

 Static Subscriptions are applied via an operations interface to the
 startup and running configurations. Loss or non-availability of
 transport session connectivity will place the Subscription into the
 suspended state. Logic beyond the scope of this specification will
 dictate when any particular Subscription should be reactivated.
 There are three models for Subscription establishment and
 maintenance:

 1. Dynamic Subscription: Subscriber and Receiver are the same

 2. Static Subscription

 3. Dynamic Subscription: Subscriber and Receiver are different

 The first two are described in this section. The third is described
 in Appendix A. This third option can be moved into the body of this
 specification should the IETF community desire. In theory, all three
 models may be intermixed in a single deployment.

 .---------------.
 | Publisher |
 '---------------'
 ^ ^ | ^
 | | | |
 .-----Restconf----' | | '-----Restconf----.
 | .-----' '-HTTP-. |
 V | V |
 .-------------. .------------. .----------. .------------.
 | Subscriber+ | | Operations | | Receiver | | Subscriber |
 | Receiver | | /Config | '----------' '------------'
 '-------------' '------------' ^ ^ ^
 ^ (out of scope) : : :
 : ^ : :....Model 3....:
 Model 1 :...Model 2...: (out of scope)

3.2.1. Dynamic YANG Subscription: Subscriber and Receiver are the same

 With all Dynamic Subscriptions, as with [yang-push] it must be
 possible to configure and manage Subscriptions via signaling. This
 signaling is transported over [restconf]. Once established,
 streaming Subscription Updates are then delivered via Restconf SSE.

Voit, et al. Expires September 18, 2016 [Page 4]

Internet-Draft Restconf Push March 2016

3.2.2. Static Subscription

 With a Static Subscription, all information needed to establish a
 secure object push relationship with that Receiver must be configured
 via a configuration interface on the Publisher. This information
 includes all the signaled information identified in section 3.2.1.
 This information also include the Receiver address, egress interface
 instructions, and security credentials required to establish TLS
 between the Publisher and Receiver. Mechanisms for locally
 configuring these parameters are outside the scope of this document.

 With this information, the Publisher will establish a secure
 transport connection with the Receiver and then begin pushing the
 streaming updates to the Receiver. Since Restconf might not exist on
 the Receiver, it is not desirable to require that updates be pushed
 via Restconf. In place of Restconf, a TLS secured HTTP Client
 connection must be established with an HTTP Server located on the
 Receiver. Subscription Updates will then be sent via HTTP Post
 messages to the Receiver.

 Post messages will be addressed to HTTP augmentation code on the
 Receiver capable accepting and responding to Subscription Updates.
 At least the initial Post message must include the URI for the
 subscribed resource. This URI can be retained for future use by the
 Receiver.

 After successful receipt of an initial Subscription Update for a
 particular Subscription, this augmentation should reply back with an
 HTTP status code of 201 (Created). Further successful receipts
 should result in the return of code of 202 (Accepted). At any point,
 receipt of any status codes from 300-510 with the exception of 408
 (Request Timeout) should result in the movement of the Subscription
 to the suspended state. A sequential series of multiple 408
 exceptions should also drive the Subscription to a suspended state.

 Security on an HTTP client/Publisher can be strengthened by only
 accepting Response code feedback for recently initiated HTTP POSTs.

 Figure 3 depicts this message flow.

Voit, et al. Expires September 18, 2016 [Page 5]

Internet-Draft Restconf Push March 2016

 +-----------+ +----------+
 | Publisher | | Receiver |
 +-----------+ +----------+
 |<--------------TLS------------>|
 | |
 |HTTP POST (Sub ID, URI, data1) |
 |------------------------------>|
 | HTTP 201 (Created)|
 |<------------------------------|
 |HTTP POST (Sub ID, data2) |
 |------------------------------>|
 | HTTP 200 or 202 (Accepted)|
 |<------------------------------|
 | data3 |
 |<----------------------------->|

 If HTTP/2 transport is available to a Receiver, the Publisher should
 also:

 o point individual Subscription Updates to a unique HTTP/2 stream
 for that Subscription,

 o take any subscription-priority and provision it into the HTTP/2
 stream priority, and

 o take any subscription-dependency and provision it into the HTTP/2
 stream dependency.

3.3. Subscription Multiplexing

 When pushed directly over HTTP/2, it is expected that each
 Subscription Update will be allocated a separate Stream. The will
 enable multiplexing, and address issues of Head-of-line blocking with
 different priority Subscriptions.

 When pushed via Restconf over HTTP/2, different Subscriptions will
 not be mapped to independent HTTP/2 streams. When Restconf specifies
 this mapping, it should be integrated into this specification.

 Even without HTTP/2 multiplexing, it is possible that updates might
 be delivered in a different sequence than generated. Reasons for
 this might include (but are not limited to):

 o different durations needed to create various Subscription Updates,

 o marshalling and bundling of multiple Subscription Updates for
 transport, and

Voit, et al. Expires September 18, 2016 [Page 6]

Internet-Draft Restconf Push March 2016

 o parallel HTTP1.1 sessions

 Therefore each Subscription Update will include a microsecond level
 timestamp to ensure that a receiver understands the time when a that
 update was generated. Use of this timestamp can give an indication
 of the state of objects at a Publisher when state-entangled
 information is received across different subscriptions. The use of
 the latest Subscription Update timestamp for a particular object
 update can introduce errors. So when state-entangled updates have
 inconsistent object values and temporally close timestamps, a
 Receiver might consider performing a 'get' to validate the current
 state of objects.

3.4. Push Data Stream and Transport Mapping

 Transported updates will contain data for one or more Subscription
 Updates. Each transported Subscription Update notification contains
 several parameters:

 o A global subscription ID correlator, referencing the name of the
 Subscription on whose behalf the notification is sent.

 o Data nodes containing a representation of the datastore subtree
 containing the updates. The set of data nodes must be filtered
 per access control rules to contain only data that the subscriber
 is authorized to see.

 o An event time which contains the time stamp at publisher when the
 event is generated.

3.4.1. Pushing Subscription Updates via Restconf

 Subscribers can dynamically learn whether a RESTCONF server supports
 yang-push. This is done by issuing an HTTP request OPTIONS, HEAD, or
 GET on the stream push-update. E.g.:

 GET /restconf/data/ietf-restconf-monitoring:restconf-state/
 streams/stream=yang-push HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 If the server supports it, it may respond

Voit, et al. Expires September 18, 2016 [Page 7]

Internet-Draft Restconf Push March 2016

 HTTP/1.1 200 OK
 Content-Type: application/yang.api+xml
 <stream xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring">
 <name>yang-push</name>
 <description>Yang push stream</description>
 <access>
 <encoding>xml</encoding>
 <location>https://example.com/streams/yang-push-xml
 </location>
 </access>
 <access>
 <encoding>json</encoding>
 <location>https://example.com/streams/yang-push-json
 </location>
 </access>
 </stream>

 If the server does not support yang push, it may respond

 HTTP/1.1 404 Not Found
 Date: Mon, 25 Apr 2012 11:10:30 GMT
 Server: example-server

 Subscribers can determine the URL to receive updates by sending an
 HTTP GET request for the "location" leaf with the stream list entry.
 The stream to use for yang push is the push-update stream. The
 location returned by the publisher can be used for the actual
 notification subscription. Note that different encodings are
 supporting using different locations. For example, he subscriber
 might send the following request:

 GET /restconf/data/ietf-restconf-monitoring:restconf-state/
 streams/stream=yang-push/access=xml/location HTTP/1.1
 Host: example.com
 Accept: application/yang.data+xml

 The publisher might send the following response:

 HTTP/1.1 200 OK
 Content-Type: application/yang.api+xml
 <location
 xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf-monitoring">
 https://example.com/streams/yang-push-xml
 </location>

 To subscribe and start receiving updates, the subscriber can then
 send an HTTP GET request for the URL returned by the publisher in the
 request above. The accept header must be "text/event -stream". The

Voit, et al. Expires September 18, 2016 [Page 8]

Internet-Draft Restconf Push March 2016

 publisher handles the connection as an event stream, using the Server
 Sent Events[W3C-20121211] transport strategy.

 The publisher MUST support as query parameters for a GET method on
 this resource all the parameters of a subscription. The only
 exception is the encoding, which is embedded in the URI. An example
 of this is:

 // subtree filter = /foo
 // periodic updates, every 5 seconds
 GET /mystreams/yang-push?subscription-id=my-sub&period=5&
 xpath-filter=%2Fex:foo[starts-with("bar"."some"]

 Should the publisher not support the requested subscription, it may
 reply:

Voit, et al. Expires September 18, 2016 [Page 9]

Internet-Draft Restconf Push March 2016

 HTTP/1.1 501 Not Implemented
 Date: Mon, 23 Apr 2012 17:11:00 GMT
 Server: example-server
 Content-Type: application/yang.errors+xml
 <errors xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <error>
 <error-type>application</error-type>
 <error-tag>operation-not-supported</error-tag>
 <error-severity>error</error-severity>
 <error-message>Xpath filters not supported</error-message>
 <error-info>
 <supported-subscription xmlns="urn:ietf:params:xml:ns:
 netconf:datastore-push:1.0">
 <subtree-filter/>
 </supported-subscription>
 </error-info>
 </error>
 </errors>

 with an equivalent JSON encoding representation of:

 HTTP/1.1 501 Not Implemented
 Date: Mon, 23 Apr 2012 17:11:00 GMT
 Server: example-server
 Content-Type: application/yang.errors+json
 {
 "ietf-restconf:errors": {
 "error": {
 "error-type": "protocol",
 "error-tag": "operation-not-supported",
 "error-message": "Xpath filters not supported."
 "error-info": {
 "datastore-push:supported-subscription": {
 "subtree-filter": [null]
 }
 }
 }
 }
 }

 The following is an example of a push Subscription Update data for
 the subscription above. It contains a subtree with root foo that
 contains a leaf called bar:

Voit, et al. Expires September 18, 2016 [Page 10]

Internet-Draft Restconf Push March 2016

 XML encoding representation:
 <?xml version="1.0" encoding="UTF-8"?>
 <notification xmlns="urn:ietf:params:xml:ns:yang:ietf-restconf">
 <subscription-id xmlns="urn:ietf:params:xml:ns:restconf:
 datastore-push:1.0">
 my-sub
 </subscription-id>
 <eventTime>2015-03-09T19:14:56Z</eventTime>
 <datastore-contents xmlns="urn:ietf:params:xml:ns:restconf:
 datastore-push:1.0">
 <foo xmlns="http://example.com/yang-push/1.0">
 <bar>some_string</bar>
 </foo>
 </datastore-contents>
 </notification>

 Or with the equivalent YANG over JSON encoding representation as
 defined in[yang-json] :

 {
 "ietf-restconf:notification": {
 "datastore-push:subscription-id": "my-sub",
 "eventTime": "2015-03-09T19:14:56Z",
 "datastore-push:datastore-contents": {
 "example-mod:foo": { "bar": "some_string" }
 }
 }
 }

 To modify a subscription, the subscriber issues another GET request
 on the provided URI using the same subscription-id as in the original
 request. For example, to modify the update period to 10 seconds, the
 subscriber may send:

 GET /mystreams/yang-push?subscription-id=my-sub&period=10&
 subtree-filter=%2Ffoo'

 To delete a subscription, the subscriber issues a DELETE request on
 the provided URI using the same subscription-id as in the original
 request

 DELETE /mystreams/yang-push?subscription-id=my-sub

3.4.2. Pushing Subscription Updates directly via HTTP

 For any version of HTTP, the basic encoding will look as below is the
 above JSON representation wrapped in an HTTP header. Mechanism will
 be

Voit, et al. Expires September 18, 2016 [Page 11]

Internet-Draft Restconf Push March 2016

 POST (IP+Port) HTTP/1.1
 From: (Identifier for Network Element)
 User-Agent: (CiscoYANGPubSub/1.0)
 Content-Type: multipart/form-data
 Content-Length: (determined runtime)
 {
 "ietf-yangpush:notification": {
 "datastore-push:subscription-id": "my-sub",
 "eventTime": "2015-03-09T19:14:56Z",
 "datastore-push:datastore-contents": {
 "foo": { "bar": "some_string" }
 }
 }
 }

4. Security Considerations

 Subscriptions could be used to intentionally or accidentally overload
 resources of a Publisher. For this reason, it is important that the
 Publisher has the ability to prioritize the establishment and push of
 updates where there might be resource exhaust potential. In
 addition, a server needs to be able to suspend existing subscriptions
 when needed. When this occurs, the subscription status must be
 updated accordingly and the clients are notified.

 A Subscription could be used to retrieve data in subtrees that a
 client has not authorized access to. Therefore it is important that
 data pushed via a Subscription is authorized equivalently with
 regular data retrieval operations. Data being pushed to a client
 needs therefore to be filtered accordingly, just like if the data
 were being retrieved on-demand. The Netconf Authorization Control
 Model [RFC6536] applies even though the transport is not NETCONF.

 One or more Publishers could be used to overwhelm a Receiver which
 doesn't even support subscriptions. Therefore Updates MUST only be
 transmittable over Encrypted transports. Clients which do not want
 pushed data need only terminate or refuse any transport sessions from
 the Publisher.

 One or more Publishers could overwhelm a Receiver which is unable to
 control or handle the volume of Updates received. In deployments
 where this might be a concern, transports supporting per-subscription
 Flow Control and Prioritization (such as HTTP/2) should be selected.

 Another benefit is that a well-behaved Publisher implementation is
 that it is difficult to a Publisher to perform a DoS attack on a
 Receiver. DoS attack protection comes from:

https://datatracker.ietf.org/doc/html/rfc6536

Voit, et al. Expires September 18, 2016 [Page 12]

Internet-Draft Restconf Push March 2016

 o the requirement for trust of a TLS session before publication,

 o the need for an HTTP transport augmentation on the Receiver, and

 o that the Publication process is suspended when the Receiver
 doesn't respond.

5. References

5.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6520] Seggelmann, R., Tuexen, M., and M. Williams, "Transport
 Layer Security (TLS) and Datagram Transport Layer Security
 (DTLS) Heartbeat Extension", RFC 6520,
 DOI 10.17487/RFC6520, February 2012,
 <http://www.rfc-editor.org/info/rfc6520>.

 [RFC6536] Bierman, A. and M. Bjorklund, "Network Configuration
 Protocol (NETCONF) Access Control Model", RFC 6536,
 DOI 10.17487/RFC6536, March 2012,
 <http://www.rfc-editor.org/info/rfc6536>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

5.2. Informative References

 [call-home]
 Watsen, K., "NETCONF Call Home and RESTCONF Call Home",
 December 2015, <https://tools.ietf.org/html/draft-ietf-

netconf-call-home-17>.

 [pub-sub-reqs]
 Voit, Eric., Clemm, Alexander., and Alberto. Gonzalez
 Prieto, "Subscribing to datastore push updates", February
 2016, <https://datatracker.ietf.org/doc/draft-ietf-i2rs-

pub-sub-requirements/>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6520
http://www.rfc-editor.org/info/rfc6520
https://datatracker.ietf.org/doc/html/rfc6536
http://www.rfc-editor.org/info/rfc6536
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540
https://tools.ietf.org/html/draft-ietf-netconf-call-home-17
https://tools.ietf.org/html/draft-ietf-netconf-call-home-17
https://datatracker.ietf.org/doc/draft-ietf-i2rs-pub-sub-requirements/
https://datatracker.ietf.org/doc/draft-ietf-i2rs-pub-sub-requirements/

Voit, et al. Expires September 18, 2016 [Page 13]

Internet-Draft Restconf Push March 2016

 [restconf]
 Bierman, Andy., Bjorklund, Martin., and Kent. Watsen,
 "RESTCONF Protocol", March 2016,
 <https://datatracker.ietf.org/doc/draft-ietf-netconf-

restconf/>.

 [W3C-20121211]
 "Server-Sent Events, World Wide Web Consortium CR CR-
 eventsource-20121211", December 2012,
 <http://www.w3.org/TR/2012/CR-eventsource-20121211>.

 [yang-json]
 Lhotka, Ladislav., "JSON Encoding of Data Modeled with
 YANG", March 2016, <https://datatracker.ietf.org/doc/

draft-ietf-netmod-yang-json/>.

 [yang-push]
 Clemm, Alexander., Gonzalez Prieto, Alberto., Voit, Eric.,
 Prasad Tripathy, Ambika., and Einar. Nilsen-Nygaard,
 "Subscribing to YANG datastore push updates", February
 2016, <https://datatracker.ietf.org/doc/draft-ietf-

netconf-yang-push/>.

Appendix A. Dynamic YANG Subscription when the Subscriber and Receiver
 are different

 The methods of Sections 3.2.1 and 3.2.2 can be combined to enable
 deployment models where the Subscriber and Receiver are different.
 Such separation can be useful with some combination of:

 o An operator wants any Subscriptions immediately deleted should TLS
 connectivity be lost. (I.e., Subscriptions don't default into a
 'Suspended' state on the Publisher.)

 o An operator wants the Publisher to include highly restrictive
 capacity management and security mechanisms outside of domain of
 existing operational or programmatic interfaces.

 o Restconf is not desired on the Receiver.

 o The Publisher doesn't want to maintain Restconf subscriptions with
 many Receivers.

 To do this, first the necessary information must be signaled as part
 of the <create-subscription>. This includes all the information
 described in section 3.3.2, with the exception of the security
 credentials. (It is assumed that any security credentials required

https://datatracker.ietf.org/doc/draft-ietf-netconf-restconf/
https://datatracker.ietf.org/doc/draft-ietf-netconf-restconf/
http://www.w3.org/TR/2012/CR-eventsource-20121211
https://datatracker.ietf.org/doc/draft-ietf-netmod-yang-json/
https://datatracker.ietf.org/doc/draft-ietf-netmod-yang-json/
https://datatracker.ietf.org/doc/draft-ietf-netconf-yang-push/
https://datatracker.ietf.org/doc/draft-ietf-netconf-yang-push/

Voit, et al. Expires September 18, 2016 [Page 14]

Internet-Draft Restconf Push March 2016

 for establishing any transport connections are pre-provisioned on all
 devices.)

 Using this set of Subscriber provided information, the same process
 described within section 3.3.2 will be followed. There is one
 exception. When an HTTP status code is 201 is received by the
 Publisher, it will inform the Subscriber of Subscription
 establishment success via its Restconf connection.

 After successful establishment, if the Subscriber wishes to maintain
 the state of Receiver subscriptions, it can simply place a separate
 on-change Subscription into the "Subscriptions" subtree of the YANG
 Datastore on the Publisher.

 Putting it all together, the message flow is:

 +------------+ +-----------+ +----------+
 | Subscriber | | Publisher | | Receiver |
 +------------+ +-----------+ +----------+
 | Restconf PUT: | |
 | <create-subscription>| |
 |--------------------->| |
 | | |
 | |<-----------TLS------------>|
 | | |
 | |HTTP POST (Sub ID, data1, |
 | |(stream ID, URI?)) |
 | |--------------------------->|
 | | HTTP 201 (Created)|
 | |<---------------------------|
 | Success: HTTP 204| |
 |<---------------------| |
 | |HTTP POST (Sub ID, data2) |
 | |--------------------------->|
 | | HTTP 200 or 202 (Accepted)|
 | |<---------------------------|
 | | data3 |
 | |<-------------------------->|
 | | |

Appendix B. End-to-End Deployment Guidance

 Several technologies are expected to be seen within a deployment to
 achieve security and ease-of-use requirements. These are not
 necessary for an implementation of this specification, but will be
 useful to consider when considering the operational context.

Voit, et al. Expires September 18, 2016 [Page 15]

Internet-Draft Restconf Push March 2016

B.1. Call Home

 Pub/Sub implementations should have the ability to transparently
 incorporate lower layer technologies such as Call Home so that secure
 TLS connections are always originated from the Publisher. There is a
 Restconf Call home function in [call-home]. For security reasons,
 this should be implemented when applicable.

B.2. TLS Heartbeat

 Unlike NETCONF, HTTP sessions might not quickly allow a Subscriber to
 recognize when the communication path has been lost from the
 Publisher. To recognize this, it is possible for a Receiver (usually
 the subscriber) to establish a TLS heartbeat [RFC6520]. In the case
 where a TLS heartbeat is included, it should be sent just from
 Receiver to Publisher. Loss of the heartbeat should result in the
 Subscription being terminated with the Subscriber (even when the
 Subscriber and Receiver are different). The Subscriber can then
 attempt to re-establish the subscription if desired. If the
 Subscription remains active on the Publisher, future receipt of
 objects associated with that (or any other unknown) subscription ID
 should result in a <delete-subscription> being returned to the
 Publisher from the Receiver.

B.3. Putting it together

 If Subscriber and receiver are same entity then subscriber can direct
 send create_subscription message to publisher. Once the subscription
 moved to accepted state, the receiver can use Server Sent Events
 [W3C-20121211] transport strategy to subscriber event notifications
 for the data as defined in [restconf].

Authors' Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alexander Clemm
 Cisco Systems

 Email: alex@cisco.com

https://datatracker.ietf.org/doc/html/rfc6520

Voit, et al. Expires September 18, 2016 [Page 16]

Internet-Draft Restconf Push March 2016

 Ambika Prasad Tripathy
 Cisco Systems

 Email: ambtripa@cisco.com

 Einar Nilsen-Nygaard
 Cisco Systems

 Email: einarnn@cisco.com

 Alberto Gonzalez Prieto
 Cisco Systems

 Email: albertgo@cisco.com

Voit, et al. Expires September 18, 2016 [Page 17]

