
NETCONF Data Modeling Language Working Group (netmod) E. Voit
Internet-Draft A. Clemm
Intended status: Informational Cisco Systems
Expires: September 19, 2016 S. Mertens
 Prismtech
 March 18, 2016

Requirements for mounting of local and remote YANG subtrees
draft-voit-netmod-yang-mount-requirements-00

Abstract

 Applications want simple ways to reference and access YANG objects
 and subtrees. These simplifications might include aliasing of local
 YANG information. These simplifications might include remote
 referencing of YANG information distributed across network.

 For such applications, development complexity is a barrier to YANG
 usage and therefore must be minimized. Specific aspects of
 complexity developers want to ignore include:

 o whether context specific aliases and paths to the same information
 can be exposed on a single device,

 o whether authoritative information is actually sourced from local
 or remote datastores,

 o whether the application needs to manage the overhead of session
 establishment and maintenance in order to access information on
 remote datastores,

 o whether objects have been locally cached or not, and

 o whether there is a mix of controllers, NMSs, and/or CLI which have
 access permission to update the primary copy of a particular
 object.

 The solution requirements described in this document detail what is
 needed to support application access to authoritative network YANG
 objects locally (via aliasing), or remotely from controllers or
 peering network devices in such a way to meet these goals.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

Voit, et al. Expires September 19, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79

Internet-Draft YANG Mount Rqts March 2016

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 19, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Business Problem . 3
2. Terminology . 4
3. Solution Context . 5
3.1. YANG Mount . 6
3.2. Eventual Consistency and YANG 8

4. Example Use Cases . 9
4.1. Cloud Policer . 9
4.2. DDoS Thresholding . 10

 4.3. Service Chain Classification, Load Balancing and Capacity
 Management . 11

5. Requirements . 12
5.1. Application Simplification 12
5.2. Caching . 13
5.3. Subscribing to Remote Object Updates 14
5.4. Lifecycle of the Mount Topology 14
5.5. Mount Filter . 15
5.6. Auto-Negotiation of Peer Mount Client QoS 15
5.7. Datastore Qualification 16
5.8. Mount Cascades . 16

http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Voit, et al. Expires September 19, 2016 [Page 2]

Internet-Draft YANG Mount Rqts March 2016

5.9. Transport . 16
5.10. Security Considerations 17
5.11. High Availability . 17
5.12. Configuration . 19
5.13. Assurance and Monitoring 19

6. IANA Considerations . 19
7. Acknowledgements . 20
8. References . 20
8.1. Normative References 20
8.2. Informative References 20
8.3. URIs . 21

 Authors' Addresses . 21

1. Business Problem

 Users, applications, and operators are asking for the ability to
 interact with local and remote information exposed as simply as
 possible from a familiar local datastore. Achieving an easy, local
 abstract representation of any information can be difficult since
 local YANG datastores might have been designed for alternative
 deploument contexts. Additionally for remote YANG objects, a running
 network is comprised of a distributed mesh of object ownership which
 can complicate effective YANG object addressing and retrieval.
 Solutions require the transparent assembly of local and remote
 objects in order to provide context specific, time synchronized, and
 consistent views required for a simple local abstraction.

 Ultimately local and network based application programming must be
 simplified to address these issues. To do this:

 o we must allow local and remote aliasing of network objects so that
 programmers can work against models which have been tuned for
 their development environment, structured in ways that best make
 sense to them

 o we must provide APIs to both controller and network element based
 applications in a way which allows access to these objects,

 o we must hide the mesh of interdependencies and consistency
 enforcement mechanisms between devices which will underpin a
 particular abstraction,

 o we must enable flexible deployment models, in which applications
 are able to run not only on controller and OSS frameworks but also
 on network devices without requiring heavy middleware with large
 footprints, and

Voit, et al. Expires September 19, 2016 [Page 3]

Internet-Draft YANG Mount Rqts March 2016

 o we need to maintain clear authoritative ownership of individual
 data items while not burdening applications with the need to
 reconcile and synchronize information replicated in different
 systems, nor needing to maintain redundant data models that
 operate on the same underlying data.

 These steps will eliminate much unnecessary overhead currently
 required of today's network programmer.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Alias Mount - A type of YANG Mount which provides an alternative path
 to local objects of YANG data.

 Authoritative Datastore - A datastore containing the authoritative
 copy of an object, i.e. the source and the "owner" of the object.

 Client Datastore - a datastore containing an object whose source and
 "owner" is a remote datastore.

 Data Node - An instance of management information in a YANG
 datastore.

 Datastore - A conceptual store of instantiated information, with
 individual data items represented by data nodes which are arranged in
 hierarchical manner.

 Data Subtree - An instantiated data node and the data nodes that are
 hierarchically contained within it.

 Mount Client - The system at which the mount point resides, into
 which one or more subtrees may be mounted.

 Mount Binding - An instance of YANG mount from a specific Mount Point
 to a datastore. Types include:

 o On-demand: Mount Client only pulls information when application
 requests

 o Periodic: Mount Server pushes current state at a pre-defined
 interval

 o Unsolicited: Mount Server maintains active bindings and sends to
 client cache upon change

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Voit, et al. Expires September 19, 2016 [Page 4]

Internet-Draft YANG Mount Rqts March 2016

 Mount Point - Point in the local data store which may reference a
 single remote subtree

 Mount Server - The server with which the Mount Client communicates
 and which provides the Mount Client with access to the mounted
 information. Can be used synonymously with Mount Target.

 Peer Mount - A type of YANG Mount which enables access to remote
 objects as if they were contained within a local datastore
 dynamically.

 Schema Mount: A type of YANG Mount where a new YANG Schema is
 constructed by inserting any existing YANG schema under a parent
 model within a local datastore. Objects populated into the mounted
 schema are only instantiated as part of the parent's hierarchy.

 Target Data Node - Data Node on Mount Server against which a Mount
 Binding is established

 YANG Mount - The abstract concept of incorporating a YANG-defined
 data tree or schema tree (the mounted data or schema tree) into a
 existing YANG-defined data tree or schema tree (the parent data
 tree).

3. Solution Context

 YANG modeling has emerged as a preferred way to offer network
 abstractions. The requirements in this document can be enabled by
 expanding of the syntax of YANG capabilities embodied within RFC 6020
 [RFC6020] and YANG 1.1 [rfc6020bis]. A companion draft to this one
 which details a potential set of YANG technology extensions which can
 support key requirements within this document are contained in .
 [draft-clemm-mount].

 To date systems built with full compliance to IETF YANG RFCs have
 been missing two capabilities:

 1. YANG Mount: Datastores have not been able to proxy objects
 located elsewhere on the same device, or upon a different device.
 This puts additional burden upon applications which then need to
 find and access multiple locations and which may be on remote
 systems.

 2. Eventual Consistency: YANG Datastore implementations have
 typically assumed ACID [1] transaction models. There is nothing
 inherent in YANG itself which demands ACID transactional
 guarantees. YANG models can also expose information which might
 be in the process of undergoing convergence. Since IP networking

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/draft-clemm-mount

Voit, et al. Expires September 19, 2016 [Page 5]

Internet-Draft YANG Mount Rqts March 2016

 has been designed with convergence in mind, this is a useful
 capability since some types of applications must participate
 where there is dynamically changing state.

3.1. YANG Mount

 First this document will dive deeper into YANG Datastore Mount
 (a.k.a., "YANG Mount"). There are three subtypes of YANG Mount:
 "Alias Mount", "Peer Mount", and "Schema Mount".

 Alias Mount allows access to the same YANG data node along different
 paths within the same YANG datastore, allowing a given subtree to
 subtend from different YANG models within the same system. This
 provides a means to:

 o Provide application developers with custom and consolidated YANG
 objects that expose only the needed objects.

 o Expose the objects organized into alternative structures,
 referenced via alternative application-intuitive paths. (This may
 include aliasing additional hierarchy layers to get to existing
 objects, including objects that had hitherto been right under
 root.)

 o Accomplishing this without requiring mirroring or replication of
 the underlying data across various datastores.

 Considering there are YANG models incorporating intersected and
 replicated information today, adding an Alias Mount capability should
 reduce YANG model development and model mapping requirements.

 For Peer Mount, we need the capability to refer to managed resources
 that reside on different systems. This allows applications on the
 same system as the YANG datastore server, as well as remote clients
 that access the datastore through a management protocol such as
 NETCONF, to access all data from a familiar local YANG model.

 o This is done in a manner that is transparent to users and
 applications.

 o This is done in a way which does not require a user or application
 to be aware of the fact that some data resides in a different
 location and have them directly access that other system

 In this way, an application developer is projected an image of one
 virtual consolidated datastore. Peer Mount builds on Alias Mount by
 allowing to incorporate redirection to remote systems into the
 structure.

Voit, et al. Expires September 19, 2016 [Page 6]

Internet-Draft YANG Mount Rqts March 2016

 Schema Mount allows reuse of existing model definitions to facilitate
 implementation of alternative model structures in multiple contexts.
 In effect, it allows the definition of models which reuse other model
 definitions as if they had been defined as a special kind of
 grouping. As Schema Mount is being defined in drafts like [draft-

bjorklund], and as Schema Mount details the Mounting of Schemas and
 not existing object data additional details will not be provided in
 this document.

 So looking at the combination of Alias Mount and Peer Mount, the
 value to developers comes from its under-the-covers federation. A
 datastore using these capabilities transparently exposes information
 about objects that can be reached along multiple paths, allowing to
 make the same data nodes part of multiple concurrent hierarchies.
 The user does not need to be aware of the precise distribution and
 ownership of data themselves, nor is there a need for the application
 to discover those data sources, maintain separate associations with
 them, and partition its operations to fit along remote system
 boundaries. The effect is that a network device can broaden and
 customize the information available for local access. Life for the
 application is easier.

 At the same time, the authoritative ownership of a data node is never
 in question. The original hierarchy and path that was defined when
 the data node was first defined in a YANG module remain in effect,
 and any validation involved in creating, modifying, or deleting the
 data node always occurs in the same context in which it was
 originally introduced. What such mounting allows is the definition
 of alternative, additional paths and hierarchies to which the object
 could also be accessed.

 Any Object or subtree type can be exposed via such a Peer or Alias
 Mount reference. This can include configuration data that is either
 persistent or ephemeral, and which is valid within only a single
 device or across a domain of devices. This can include operational
 data that represents state across a single device or across a
 multiple devices.

 A useful aspect of all types of YANG Mount is its ability to embed
 information from existing into newly defined models without requiring
 additional normalization effort. Normalization is a good thing, but
 the massive human efforts invested in uber-data-models have never
 gained industry traction due to the resulting models' brittle nature
 and complexity. By mounting subtrees/objects/schemas into local
 datastores it is possible to expose objects under a locally optimized
 hierarchy without having to worry about things such as transposing
 remote objects into a separate local model.

https://datatracker.ietf.org/doc/html/draft-bjorklund
https://datatracker.ietf.org/doc/html/draft-bjorklund

Voit, et al. Expires September 19, 2016 [Page 7]

Internet-Draft YANG Mount Rqts March 2016

 It should be noted that no variants of YANG Mount require knowledge
 of the entire subtree being mounted. For example, there might be
 augmentations of that subtree, or even mounted information in the
 subtree itself. Likewise, mounted objects might dynamically change,
 or even come into being. These dynamic changes can be reflected as
 needed under the "attachment points" within the namespace hierarchy
 where the data subtrees from remote systems have been mounted. In
 this case, the precise details of what these subtrees exactly contain
 does not need to be understood by the system implementing the
 attachment point, it simply acts as a single point of entry and
 "proxy" for the attached data.

3.2. Eventual Consistency and YANG

 The CAP theorem [2] states that it is impossible for a distributed
 computer system to simultaneously provide Consistency, Availability,
 and Partition tolerance. (I.e., distributed network state management
 is hard.) Mostly for this reason YANG implementations have shied
 away from distributed datastore implementations where ACID
 transactional guarantees cannot be given. This of course limits the
 universe of applicability for YANG technology.

 Leveraging YANG concepts, syntax, and models for objects which might
 be happening to undergo network convergence is valuable. Such reuse
 greatly expands the universe of information visible to networking
 applications. The good news is that there is nothing in YANG syntax
 that prohibits its reapplication for distributed datastores.
 Extensions are needed however.

 Requirements described within this document can be used to define
 technology extensions to YANG 1.1 for remote datastore mounting.
 Because of the CAP theorem, it must be recognized that systems built
 upon these extensions MAY choose to support eventual consistency
 rather than ACID guarantees. Some applications do not demand ACID
 guarantees (examples are contained in this document's Use Case
 section). Therefore for certain classes of applications, eventual
 consistency [3] should be viewed as a cornerstone feature capability
 rather than a bug.

 Other industries have been able to identify and realize the value in
 such model. The Object Management Group Data-Distribution Service
 for Real-Time Systems has even standardized these capabilities for
 non-YANG deployments [OMG-DDS]. Commercial deployments exist.

Voit, et al. Expires September 19, 2016 [Page 8]

Internet-Draft YANG Mount Rqts March 2016

4. Example Use Cases

 Example Use Cases for Alias Mount can easily be seen from the
 description within Section 3.1. Therefore these are not detailed
 within this document. In general, those use cases involve imposing
 an alternative structure over YANG data models. YANG allows to
 extend and augment data models, allowing to add new data nodes as
 child nodes or as siblings to existing data nodes. However, YANG
 does not allow to superimpose a new data node on top of an existing
 one, or move an existing node under a newly defined node. Peer Mount
 closes that gap and allows to define models with alternative
 hierarchies and insert existing data nodes into that hierarchy.

 For Peer Mount, many types of applications can benefit from the
 simple and quick availability of objects from peer network devices.
 Because network management and orchestration systems have been
 fulfilling a subset of the requirements for decades, it is important
 to focus on what has changed. Changes include:

 o SDN applications wish to interact with local datastore(s) as if
 they represent the real-time state of the distributed network.

 o Independent sets of applications and SDN controllers might care
 about the same authoritative data node or subtree.

 o Changes in the real-time state of objects can announce themselves
 to subscribing applications.

 o The union of an ever increasing number of abstractions provided
 from different layers of the network are assumed to be consistent
 with each other (at least once a reasonable convergence time has
 been factored in).

 o CPU and VM improvements makes running Linux based applications on
 network elements viable.

 Such changes can enable a new class of applications. These
 applications are built upon fast-feedback-loops which dynamically
 tune the network based on iterative interactions upon a distributed
 datastore.

4.1. Cloud Policer

 A Cloud Policer enables a single aggregated data rate to tenants/
 users of a data center cloud that applies across their VMs; a rate
 independent of where specific VMs are physically hosted. This works
 by having edge router based traffic counters available to a
 centralized application, which can then maintain an aggregate across

Voit, et al. Expires September 19, 2016 [Page 9]

Internet-Draft YANG Mount Rqts March 2016

 those counters. Based on the sum of the counters across the set of
 edge routers, new values for each device based Policer can be
 recalculated and installed. Effectively policing rates are
 continuously rebalanced based on the most recent traffic offered to
 the aggregate set of edge devices.

 The cloud policer provides a very simple cloud QoS model. Many other
 QoS models could also be implemented. Example extensions include:

 o CIR/PIR guarantees for a tenant,

 o hierarchical QoS treatment,

 o providing traffic delivery guarantees for specific enterprise
 branch offices, and

 o adjusting the prioritization of one application based on the
 activity of another application which perhaps is in a completely
 different location.

 It is possible to implement such a cloud policer application with
 maximum application developer simplicity using peer mount. To do
 this the application accesses a local datastore which in turn does a
 peer mount from edge routers the objects which house current traffic
 counter statistics. These counters are accessed as if they were part
 of the local datastore structures, without concern for the fact that
 the actual authoritative copies reside on remote systems.

 Beyond this centralized counter collection peer mount, it is also
 possible to have distributed edge routers mount information in the
 reverse direction. In this case local edge routers can peer mount
 centrally calculated policer rates for the device, and access these
 objects as if they were locally configured.

 For both directions of mounting, the authoritative copy resides in a
 single system and is mounted by peers. Therefore issues with regards
 to inconsistent configuration of the same redundant data across the
 network are avoided. Also as can be seen in this use case, the same
 system can act as a mount client of some objects while acting as
 server for other objects.

4.2. DDoS Thresholding

 Another extension of the "Cloud Policer" application is the creation
 of additional action thresholds at bandwidth rates far greater than
 might be expected. If these higher thresholds are hit, it is
 possible to connect in DDoS scrubbers to ingress traffic. This can
 be done in seconds after a bandwidth spike. This can also be done if

Voit, et al. Expires September 19, 2016 [Page 10]

Internet-Draft YANG Mount Rqts March 2016

 non-bandwidth counters are available. For example, if TCP flag
 counts are available it is possible to look for changes in SYN/ACK
 ratios which might signal a different type of attack. In all cases,
 when network counters indicate a return to normal traffic profiles
 the DDoS Scrubbers can be automatically disconnected.

 Benefits of only connecting a DDoS scrubber in the rare event an
 attack might be underway include:

 o marking down traffic for an out-of-profile tenant so that an
 potential attack doesn't adversely impact others,

 o applying DDoS Scrubbing across many devices when an attack is
 detected in one,

 o reducing DDoS scrubber CPU, power, and licensing requirements
 (during the vast majority of time, spikes are not occurring), and

 o dynamic management and allocation of scarce platform resources
 (such as optimizing span port usage, or limiting IP-FIX reporting
 to levels where devices can do full flow detail exporting).

4.3. Service Chain Classification, Load Balancing and Capacity
 Management

 Service Chains will dynamically change ingress classification
 filters, allocate paths from many ingress devices across shared
 resources. This information needs to be updated in real time as
 available capacity is allocated or failures are discovered. It is
 possible to simplify service chain configuration and dynamic topology
 maintenance by transparently updating remote cached topologies when
 an authoritative object is changed within a central repository. For
 example if the CPU in one VM spikes, you might want to recalculate
 and adjust many chained paths to relieve the pressure. Or perhaps
 after the recalculation you want to spin up a new VM, and then adjust
 chains when that capacity is on-line.

 A key value here is central calculation and transparent auto-
 distribution. In other words, a change only need be updated by an
 application in a single location, and the infrastructure will
 automatically synchronize changes across any number of subscribing
 devices without application involvement. In fact, the application
 need not even know many devices are monitoring the object which has
 been changed.

 Beyond 1:n policy distribution, applications can step back from
 aspects of failure recovery. What happens if a device is rebooting
 or simply misses a distribution of new information? With peer mount

Voit, et al. Expires September 19, 2016 [Page 11]

Internet-Draft YANG Mount Rqts March 2016

 there is no doubt as to where the authoritative information resides
 if things get out of synch.

 While this ability is certainly useful for dynamic service chain
 filtering classification and next hop mapping, this use case has more
 general applicability. With a distributed datastore, diverse
 applications and hosts can locally access a single device's current
 VM CPU and Bandwidth values. They can do it without needing to
 explicitly query that remote machine. Updates from a device would
 come from a periodic push of stats to a transparent cache to
 subscribed, or via an unsolicited update which is only sent when
 these value exceed established norms.

5. Requirements

 To achieve the objectives described above for Alias Mount and Peer
 Mount, the network needs to support a number of requirements:

5.1. Application Simplification

 A major obstacle to network programmability are any requirements
 which force applications to use abstractions more complicated than
 the developer cares to touch. To simplify applications development
 and reduce unnecessary code, the following needs must be met.

 Applications MUST be able to access a local datastore which includes
 objects whose authoritative source perhaps is located in a elsewhere
 in some datastore.

 Local datastores MUST be able to provide a hierarchical view of
 objects assembled from objects whose authoritative source may
 potentially originate from different and overlapping namespaces.

 Applications MUST be able to access all objects of a datastore
 without concern where the actual object is located, i.e. whether the
 authoritative copy of the object is hosted on the same system as the
 local datastore or whether it is hosted in a remote datastore.

 A datastore's application facing interfaces MUST make no
 differentiation whether individual objects exposed are
 authoritatively owned by the datastore or mounted from elsewhere

 When a change is made to an object, that change will be reflected in
 any datastore in which the object is included.

 A datastore supporting Alias or Peer Mount MUST allow the same object
 to be mounted from multiple places.

Voit, et al. Expires September 19, 2016 [Page 12]

Internet-Draft YANG Mount Rqts March 2016

 Applications SHOULD be able to extract a time synchronized set of
 operational data from the datastore. (In other words, the
 application asks for a subset of network state at time-stamp or time-
 range "X". The datastore would then deliver time synchronized
 snapshots of the network state per the request. The datastore may
 work with NTP and operational counter to optimize the synchronization
 results of such a query. It is understood that some types of data
 might be undergoing convergence conditions.)

 Authoritative datastore retain full ownership of "their" objects.
 This means that while remote datastores may access the data, any
 modifications to objects that are initiated at those remote
 datastores need to be authorized by the authoritative owner of the
 data. Likewise, the authoritative owner of the data may make changes
 to objects, including modifications, additions, and deletions,
 without needing to first ask for permission from remote clients.

 Applications MUST be designed to deal with incomplete data if remote
 objects are not accessible, e.g. due to temporal connectivity issues
 preventing access to the authoritative source. (This will be true
 for many protocols and programming languages. Mount is unlikely to
 add anything new here unless applications have extra error handling
 routines to deal with when there is no response from a remote
 system.).

5.2. Caching

 Remote objects in a datastore can be accessed "on demand", when the
 application interacting with the datastore demands it. In that case,
 a request made to the local datastore is forwarded to the remote
 system. The response from the remote system, e.g. the retrieved
 data, is subsequently merged and collated with the other data to
 return a consolidated response to the invoking application.

 A downside of a datastore which is distributed across devices can be
 the latency induced when remote object acquisition is necessary.
 There are plenty of applications which have requirements which simply
 cannot be served when latency is introduced. The good news is that
 the concept of caching lends itself well to distributed datastores.
 It is possible to transparently store some types of objects locally
 even when the authoritative copy is remote. Instead of fetching data
 on demand when an application demands it, the application is simply
 provided with the local copy. It is then up to the datastore
 infrastructure to keep selected replicated info in synch, e.g. by
 prefetching information, or by having the remote system publish
 updates which are then locally stored. At this point, it is expected
 that a preferred method of subscribing to and publishing updates will

Voit, et al. Expires September 19, 2016 [Page 13]

Internet-Draft YANG Mount Rqts March 2016

 be accomplished via [i2rs-pub-sub-reqts] and [yang-push]. Other
 methods could work equally well .

 This is not a new idea. Caching and Content Delivery Networks (CDN)
 have sped read access for objects within the Internet for years.
 This has enabled greater performance and scale for certain content.
 Just as important, these technologies have been employed without end
 user applications being explicitly aware of their involvement. Such
 concepts are applicable for scaling the performance of a distributed
 datastore.

 Where caching occurs, it MUST be possible for the Mount Client to
 store object copies of a remote data node or subtree in such a way
 that applications are unaware that any caching is occurring.
 However, the interface to a datastore MAY provide applications with a
 special mode/flag to allow them to force a read-through.

 Where caching occurs, system administration facilities SHOULD allow
 facilities to flush either the entire cache, or information
 associated with select Mount Points.

5.3. Subscribing to Remote Object Updates

 When caching occurs, data can go stale. [yang-push] provides a
 mechanism where changes in an authoritative data node or subtree can
 be monitored. If changes occur, these changes can be delivered to
 any subscribing datastores. In this way remote caches can be kept
 up-to-date. In this way, directly monitoring remote applications can
 quickly receive notifications without continuous polling.

 A Mount Server SHOULD support [yang-push] Periodic and/or On-Change
 pub/sub capabilities in which one or more remote clients subscribe to
 updates of a target data node / subtree, which are then automatically
 published by the Mount Server.

 It MUST be possible for Applications to bind to subscribed Data Node
 / Subtrees so that upon Mount Client receipt of subscribed
 information, it is immediately passed to the application.

 It MUST be possible for a Target Data Node to support 1:n Mount
 Bindings to many subscribed Mount Points.

5.4. Lifecycle of the Mount Topology

 Mount can drive a dynamic and richly interconnected mesh of peer-to-
 peer of object relationships. Each of these Mounts will be
 independently established by a Mount Client.

Voit, et al. Expires September 19, 2016 [Page 14]

Internet-Draft YANG Mount Rqts March 2016

 It MUST be possible to bootstrap the Mount Client by providing the
 YANG paths to resources on the Mount Server.

 There SHOULD be the ability to add Mount Client bindings during run-
 time.

 A Mount Client MUST be able to be able to create, delete, and timeout
 Mount Bindings.

 Any Subscription MUST be able to inform the Mount Client of an
 intentional/graceful disconnect.

 A Mount Client MUST be able to verify the status of Subscriptions,
 and drive re-establishment if it has disappeared.

5.4.1. Discovery and Creation of Mount Topology

 Application visibility into an ever-changing set of network objects
 is not trivial. While some applications can be easily configured to
 know the Devices and available Mount Points of interest, other
 applications will have to balance many aspects of dynamic device
 availability, capabilities, and interconnectedness. Maintenance of
 these dynamic elements can be done on the YANG objects themselves
 without anything needed new for any type of YANG Mount.

5.4.2. Restrictions on the Mount Topology

 Mount Clients MUST NOT create recursive Mount bindings (i.e., the
 Mount Client should not load any object or subtree which it has
 already delivered to another in the role of a Mount Server.) Note:
 Objects mounted from a controller as part of orchestration are *not*
 considered the same objects as those which might be mounted back from
 a network device showing the actual running config.

5.5. Mount Filter

 The Mount Server default MUST be to deliver the same Data Node /
 Subtree that would have been delivered via direct YANG access.

 It SHOULD be possible for a Mount Client to request something less
 than the full subtree or a target node as defined in
 [i2rs-pub-sub-reqts].

5.6. Auto-Negotiation of Peer Mount Client QoS

 The interest that a Mount Client expresses in a particular subtree
 SHOULD include the non-functional data delivery requirements (QoS) on
 the data that is being mounted. Additionally, Mount Servers SHOULD

Voit, et al. Expires September 19, 2016 [Page 15]

Internet-Draft YANG Mount Rqts March 2016

 advertise their data delivery capabilities. With this information
 the Mount Client can decide whether the quality of the delivered data
 is sufficient to serve applications residing above the Mount Client.

 An example here is reliability. A reliable protocol might be
 overkill for a state that is republished with high frequency.
 Therefore a Mount Server may sometimes choose to not provide a
 reliable method of communication for certain objects. It is up to
 the Mount Client to determine whether what is offered is sufficiently
 reliable for its application. Only when the Mount Server is offering
 data delivery QoS better or equal to what is requested, shall a mount
 binding be established.

 Another example is where subscribed objects must be pushed from the
 Mount Server within a certain interval from when an object change is
 identified. In such a scenario the interval period of the Mount
 Server must be equal or smaller than what is requested by a Mount
 Client. If this "deadline" is not met by the Mount Server the
 infrastructure MAY take action to notify clients.

5.7. Datastore Qualification

 It is conceivable to differentiate between different datastores on
 the remote server, that is, to designate the name of the actual
 datastore to mount, e.g. "running" or "startup". If on the target
 node there are multiple datastores available, but there has no
 specific datastore identified by the Mount Client, then the running
 or "effective" datastore is the assumed target.

 It is conceivable to use such Datastore Qualification in conjunction
 with ephemeral datastores, to address requirements being worked in
 the I2RS WG [draft-i2rs-ephemeral].

5.8. Mount Cascades

 It is possible for the mounted subtree to in turn contain a
 mountpoint. However, circular mount relationships MUST NOT be
 introduced. For this reason, a mounted subtree MUST NOT contain a
 mountpoint that refers back to a mount target that directly or
 indirectly contains the originating mountpoint. As part of a mount
 operation, the mount points of the mounted system need to be checked
 accordingly.

5.9. Transport

 Many secured transports are viable assuming transport, data security,
 scale, and performance objectives are met. Netconf and/or Restconf

https://datatracker.ietf.org/doc/html/draft-i2rs-ephemeral

Voit, et al. Expires September 19, 2016 [Page 16]

Internet-Draft YANG Mount Rqts March 2016

 should be considered as starting points. Other transports may be
 proposed over time.

 It MUST be possible to support Netconf or Restconf Transport of
 subscribed Nodes and Subtrees.

5.10. Security Considerations

 Many security mechanisms exist to protect data access for CLI and API
 on network devices. To the degree possible these mechanisms should
 transparently protect data when performing a Peer Mount.

 The same mechanisms used to determine whether a remote host has
 access to a particular YANG Data Node or Subtree MUST be invoked to
 determine whether a Mount Client has access to that information.

 The same traditional transport level security mechanism security used
 for YANG over a particular transport MUST be used for the delivery of
 objects from a Mount Server to a Mount Client.

 A Mount Server implementation MUST NOT change any credentials passed
 by the Mount Client system for any Mount Binding request.

 The Mount Server MUST deliver no more objects from a Data Node or
 Subtree than allowable based on the security credentials provided by
 the Mount Client.

 To ensure the ensuring maximum scale limits, it MUST be possible to
 for a Mount Server to limit the number of bindings and transactional
 limits

 It SHOULD be possible to prioritize which Mount Binding instances
 should be serviced first if there is CPU, bandwidth, or other
 capacity constraints.

5.11. High Availability

 A key intent for Peer Mount is to allow access to an authoritative
 copy of an object for a particular domain. Of course system and
 software failures or scheduled upgrades might mean that the primary
 copy is not consistently accessible from a single device. In
 addition, system failovers might mean that the authoritative copy
 might be housed on a different device than the one where the binding
 was originally established. Peer Mount architectures must be built
 to enable Mount Clients to transparently provide access to objects
 where the authoritative copy moves due to dynamic network
 reconfigurations .

Voit, et al. Expires September 19, 2016 [Page 17]

Internet-Draft YANG Mount Rqts March 2016

 A Peer Mount architecture MUST guarantee that mount bindings between
 a Mount Server and Mount Clients drive system behavior which is at
 least eventually consistent. The infrastructure providing this level
 of consistency MUST be able to operate in scenarios where a system is
 (temporarily) not fully connected. Furthermore, Mount Clients MAY
 have various requirements on the boundaries under which eventual
 consistency is allowed to take place. This subject can be decomposed
 in the following items:

5.11.1. Reliability

 A scenario that deserves attention in particular is when a subset of
 Mount Clients receive and cache a pushed subscription update. If a
 Mount Server loses connectivity, cross network element consistency
 can be lost. In such a scenario Mount Clients MAY elect a new
 designated Mount Server from the set of Mount Clients which have
 received the latest state.

5.11.2. Alignment to late joining peers

 When a mount binding is established a Mount Server SHOULD provide the
 Mount Client with the latest state of the requested data. In order
 to increase availability and fault tolerance an infrastructure MAY
 support the capability to have multiple alignment sources. In
 (temporary) absence of a Mount Server, Mount Clients MAY elect a
 temporary Mount Server to service late joining Mount Clients.

5.11.3. Liveliness

 Upon losing liveliness and being unable to refresh cached data
 provided from a Mount Server, a Mount Client MAY decide to purge the
 mount bindings of that server. Purging mount bindings under such
 conditions however makes a system vulnerable to losing network-wide
 consistency. A Mount Client can take proactive action based on the
 assumption that the Mount Server is no longer available. When
 connectivity is only temporarily lost, this assumption could be false
 for other datastores. This can introduce a potential for decision-
 making based on semantical disagreement. To properly handle these
 scenarios, application behavior MUST be designed accordingly and
 timeouts with regards to liveliness detection MUST be carefully
 determined.

5.11.4. Merging of datasets

 A traditional problem with merging replicated datasets during the
 failover and recovery of Mount Servers is handling the corresponding
 target data node lifecycle management. When two replicas of a
 dataset experienced a prolonged loss of connectivity a merge between

Voit, et al. Expires September 19, 2016 [Page 18]

Internet-Draft YANG Mount Rqts March 2016

 the two is required upon re-establishing connectivity. A replica
 might have been modifying contents of the set, including deletion of
 objects. A naive merge of the two replicas would discard these
 deletes by aligning the now stale, deleted objects to the replica
 that deleted them.

 Authoritative ownership is an elegant solution to this problem since
 modifications of content can only take place at the owner. Therefore
 a Mount Client SHOULD, upon reestablishing connectivity with a newly
 authoritative Mount Server, replace any existing cache contents from
 a mount binding with the latest version.

5.11.5. Distributed Mount Servers

 For selected objects, Mount Bindings SHOULD be allowed to Anycast
 addresses so that a Distributed Mount Server implementation can
 transparently provide (a) availability during failure events to Mount
 Clients, and (b) load balancing on behalf of Mount Clients.

5.12. Configuration

 At the Mount Client, it MUST be possible for all Mount bindings to
 configure the following such that the application needs no knowledge.
 This will include a diverse list of elements such as the YANG URI
 path to the remote subtree.

5.13. Assurance and Monitoring

 API usage for YANG should be tracked via existing mechanisms. There
 is no intent to require additional transaction tracking than would
 have been provided normally. However there are additional
 requirements which should allow the state of existing and historical
 bindings to be provided.

 A Mount Client MUST be able to poll a Mount Server for the state of
 Subsciptions maintained between the two devices.

 A Mount Server MUST be able to publish the set of Subscriptions which
 are currently established on or below any identified data node.

6. IANA Considerations

 This document makes no request of IANA.

Voit, et al. Expires September 19, 2016 [Page 19]

Internet-Draft YANG Mount Rqts March 2016

7. Acknowledgements

 We wish to acknowledge the helpful contributions, comments, and
 suggestions that were received from Ambika Prasad Tripathy. Shashi
 Kumar Bansal, Prabhakara Yellai, Dinkar Kunjikrishnan, Harish
 Gumaste, Rohit M., Shruthi V. , Sudarshan Ganapathi, and Swaroop
 Shastri.

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

8.2. Informative References

 [draft-clemm-mount]
 Clemm, Alexander., "Mounting YANG-Defined Information from
 Remote Datastores", April 2015, <http://tools.ietf.org/id/

draft-clemm-netmod-mount-03.txt>.

 [draft-i2rs-ephemeral]
 Haas, J., "I2RS Ephemeral State Requirements", March 2016,
 <http://tools.ietf.org/html/

draft-ietf-i2rs-ephemeral-state-00>.

 [i2rs-pub-sub-reqts]
 Voit, Eric., Clemm, Alexander., and Alberto. Gonzalez
 Prieto, "Requirements for Subscription to YANG
 Datastores", February 2016,
 <http://datatracker.ietf.org/doc/

draft-ietf-i2rs-pub-sub-requirements/>.

 [OMG-DDS] "Data Distribution Service for Real-time Systems, version
 1.2", January 2007, <http://www.omg.org/spec/DDS/1.2/>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6020
http://www.rfc-editor.org/info/rfc6020
https://datatracker.ietf.org/doc/html/draft-clemm-mount
http://tools.ietf.org/id/draft-clemm-netmod-mount-03.txt
http://tools.ietf.org/id/draft-clemm-netmod-mount-03.txt
https://datatracker.ietf.org/doc/html/draft-i2rs-ephemeral
http://tools.ietf.org/html/draft-ietf-i2rs-ephemeral-state-00
http://tools.ietf.org/html/draft-ietf-i2rs-ephemeral-state-00
http://datatracker.ietf.org/doc/draft-ietf-i2rs-pub-sub-requirements/
http://datatracker.ietf.org/doc/draft-ietf-i2rs-pub-sub-requirements/
http://www.omg.org/spec/DDS/1.2/

Voit, et al. Expires September 19, 2016 [Page 20]

Internet-Draft YANG Mount Rqts March 2016

 [rfc6020bis]
 Bjorklund, Martin., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", February
 2016, <https://tools.ietf.org/html/draft-ietf-netmod-

rfc6020bis-05>.

 [yang-push]
 Clemm, A., "Subscribing to datastore push updates",
 February 2016, <https://tools.ietf.org/html/draft-ietf-

netconf-yang-push-01>.

8.3. URIs

 [1] http://en.wikipedia.org/wiki/ACID

 [2] http://robertgreiner.com/2014/08/cap-theorem-revisited/

 [3] http://guide.couchdb.org/draft/consistency.html

Authors' Addresses

 Eric Voit
 Cisco Systems

 Email: evoit@cisco.com

 Alexander Clemm
 Cisco Systems

 Email: alex@cisco.com

 Sander Mertens
 Prismtech

 Email: sander.mertens8@gmail.com

https://tools.ietf.org/html/draft-ietf-netmod-rfc6020bis-05
https://tools.ietf.org/html/draft-ietf-netmod-rfc6020bis-05
https://tools.ietf.org/html/draft-ietf-netconf-yang-push-01
https://tools.ietf.org/html/draft-ietf-netconf-yang-push-01
http://en.wikipedia.org/wiki/ACID
http://robertgreiner.com/2014/08/cap-theorem-revisited/
http://guide.couchdb.org/draft/consistency.html

Voit, et al. Expires September 19, 2016 [Page 21]

