
Workgroup: TLS Working Group

Internet-Draft: draft-vvv-tls-alps

Published: 21 September 2020

Intended Status: Standards Track

Expires: 25 March 2021

Authors: D. Benjamin

Google

V. Vasiliev

Google

TLS Application-Layer Protocol Settings Extension

Abstract

This document describes a Transport Layer Security (TLS) extension

for negotiating application-layer protocol settings (ALPS) within

the TLS handshake. Any application-layer protocol operating over TLS

can use this mechanism to indicate its settings to the peer in

parallel with the TLS handshake completion.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the TLS Working Group

mailing list (tls@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/tls/.

Source for this draft and an issue tracker can be found at https://

github.com/vasilvv/tls-alps.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 25 March 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/tls/
https://mailarchive.ietf.org/arch/browse/tls/
https://github.com/vasilvv/tls-alps
https://github.com/vasilvv/tls-alps
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Semantics

4. Wire Protocol

4.1. Client Encrypted Extensions

4.2. 0-RTT Handshakes

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Acknowledgments

Authors' Addresses

1. Introduction

An application-layer protocol often starts with both parties

negotiating parameters under which the protocol operates; for

instance, HTTP/2 [RFC7540] uses a SETTINGS frame to exchange the

list of protocol parameters supported by each endpoint. This is

usually achieved by waiting for TLS handshake [RFC8446] to complete

and then performing the application-layer handshake within the

application protocol itself. This approach, despite its apparent

simplicity at first, has multiple drawbacks:

While the server is technically capable of sending

configuration to the peer as soon as it sends its Finished

message, most TLS implementations do not allow any application

data to be sent until the Finished message is received from the

client. This adds an extra round-trip to the time of when the

server settings are available to the client.

In QUIC, any settings delivered within the application layer

can arrive after other application data; thus, the application

has to operate under the assumption that peer's settings are

not always available.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

https://trustee.ietf.org/license-info

If the application needs to be aware of the server settings in

order to send 0-RTT data, the application has to manually

integrate with the TLS stack to associate the settings with TLS

session tickets.

This document introduces a new TLS extension, application_settings,

that allows applications to exchange settings within the TLS

handshake. Through doing that, the settings can be made available to

the application as soon as the handshake completes, and can be

associated with TLS session tickets automatically at the TLS layer.

This approach allows the application protocol to be designed with

the assumption that it has access to the peer's settings whenever it

is able to send data.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Semantics

Settings are defined to be an opaque blob that is specified by the

application when initiating a TLS connection. The settings are meant

to be a declaration of the protocol parameters supported by the

sender. While in this version of the extension the server settings

are always sent first, this may change in future versions; thus, the

application MUST NOT vary client settings based on the ones received

from the server.

ALPS is not a negotiation mechanism: there is no notion of rejecting

peer's settings, and the settings are not responses to one another.

Nevertheless, it is possible for parties to coordinate behavior by,

for instance, requiring a certain parameter to be present in both

client and server settings. This makes ALPS mechanism similar to

QUIC transport parameters [I-D.ietf-quic-transport] or HTTP/2

SETTINGS frame [RFC7540], but puts it in contrast to similar

mechanisms in TLS.

Settings are exchanged as a part of the TLS handshake that is

encrypted with the handshake keys. When the server settings are

sent, the identity of the client has not been yet established;

therefore, an application MUST NOT use ALPS if it requires the

settings to be available only to the authenticated clients.

The ALPS model provides applications with a guarantee that the

settings are available before any application data can be written.

Note that this implies that when the full handshake is performed,

3.

¶

¶

¶

¶

¶

¶

the server can no longer send data immediately after sending its

Finished message; it has to wait for the client to respond with its

settings. This may negatively impact the latency of the protocols

where the server sends the first message, however it should be noted

that sending application data before receiving has not been widely

supported by TLS implementations, nor has it been allowed in

situations when establishing client identity through TLS is

required.

ALPS can only be used in conjunction with Application-Layer Protocol

Negotiation: the client MUST offer ALPN [RFC7301] if advertising

ALPS support, and the server MUST NOT reply with ALPS unless it is

also negotiating ALPN. The ALPS payload is protocol-dependent, and

as such it MUST be specified with respect to a selected ALPN.

4. Wire Protocol

ALPS is only supported in TLS version 1.3 or later, as the earlier

versions do not provide any confidentiality protections for the

handshake data. The exchange is performed in three steps:

The client sends an extension in ClientHello that enumerates

all ALPN values for which ALPS is supported.

The server sends an encrypted extension containing the server

settings.

The client sends an encrypted extension containing the client

settings.

¶

¶

¶

1.

¶

2.

¶

3.

¶

Figure 1: ALPS exchange in a full TLS handshake

A TLS client can enable ALPS by specifying an application_settings

extension in the ClientHello message. The value of the

extension_data field for this extension SHALL be a

ApplicationSettingsSupport struct:

Here, the supported_protocols field indicates the names of the

protocols (as defined in [RFC7301]) for which ALPS exchange is

supported; this is necessary for the situations when the client

offers multiple ALPN values but only supports ALPS in some of them.

If the server chooses an ALPN value for which the client has offered

ALPS support, the server MAY negotiate ALPS by sending an

application_settings extension in its EncryptedExtensions message.

The value of the extension_data field in that case SHALL be an

opaque blob containing the server settings as specified by the

application protocol.

 Client Server

 ClientHello

 + alpn

 + alps -------->

 ServerHello

 {EncryptedExtensions}

 + alpn

 + alps

 ...

 <-------- {Finished}

 {EncryptedExtensions}

 + alps

 {Certificate*}

 {CertificateVerify*}

 {Finished} -------->

 + Indicates extensions sent in the

 previously noted message.

 {} Indicates messages protected using

 the handshake keys.

 * Indicates optional messages that are

 not related to ALPS.

¶

 struct {

 ProtocolName supported_protocols<2..2^16-1>;

 } ApplicationSettingsSupport;

¶

¶

¶

If the client receives an EncryptedExtensions message containing an

application_settings extension from the server, it MUST send an

EncryptedExtensions message (see Section 4.1) containing an

application_extensions extension. The value of the extension_data in

this extension SHALL be an opaque blob containing the client

settings as specified by the application protocol. A server which

negotiates ALPS MUST abort the handshake with a missing_extension

alert if the client's EncryptedExtensions is missing this extension.

4.1. Client Encrypted Extensions

This specification introduces the client EncryptedExtensions

message. The format and HandshakeType code point match the server

EncryptedExtensions message. When sent, it is encrypted with

handshake traffic keys and sent by the client after receiving the

server Finished message and before the client sends the Certificate,

CertificateVerify (if any), and Finished messages. It SHALL be

appended to the Client Handshake Context, as defined Section 4.4 of

[RFC8446]. It additionally SHALL be inserted after the server

Finished in the Post-Handshake Handshake Context.

The client MUST send the EncryptedExtensions message if any

extension sent in the server EncryptedExtension message contains the

CEE token in the TLS 1.3 column of the TLS ExtensionType Values

registry. Otherwise, the client MUST NOT send the message. The

server MUST abort the handshake with a unexpected_message alert if

the message was sent or omitted incorrectly.

The client MAY send an extension in the client EncryptedExtension

message if that extension's entry in the registry contains a CEE

token and the server EncryptedExtensions message included the

extension. Otherwise, the client MUST NOT send the extension. If a

server receives an extension which does not meet this criteria, it

MUST abort the handshake with an unsupported_extension alert.

Future extensions MAY use the client EncryptedExtensions message by

including the CEE token in the TLS 1.3 registry. The above rules

ensure clients will not send EncryptedExtensions messages to older

servers, but will send EncryptedExtensions when some negotiated

extension uses it.

[[TODO: Section 4.6.1 of RFC8446 allows the server to predict the

client Finished flight and send a ticket early. This is still

possible with 0-RTT handshakes here because we omit rather than

repeat the redudant ALPS information, but, in the general extension

case, client EncryptedExtensions breaks this. Extension order is

unpredictable. We should resolve this conflict, either by dropping

that feature or removing flexibility here.]]

¶

¶

¶

¶

¶

¶

4.2. 0-RTT Handshakes

ALPS ensures settings are available before reading and writing

application data, so handshakes which negotiate early data instead

use application settings from the PSK. To use early data with a PSK,

the TLS implementation MUST associate both client and server

application settings, if any, with the PSK. For a resumption PSK,

these values are determined from the original connection. For an

external PSK, this values should be configured with it. Existing

PSKs are considered to not have application settings.

If the server accepts early data, the server SHALL NOT send an

application_settings extension, and thus the client SHALL NOT send a

application_settings extension in its EncryptedExtensions message.

Unless the server has sent some other extension which uses client

EncryptedExtensions, the client SHALL NOT send an

EncryptedExtensions message. Instead, the connection implicitly uses

the PSK's application settings, if any.

If the server rejects early data, application settings are

negotiated independently of the PSK, as if early data were not

offered.

If the client wishes to send different client settings for the

connection, it MUST NOT offer 0-RTT. Conversely, if the server

wishes to use send different server settings, it MUST reject 0-RTT.

Note that the ALPN itself is similarly required to match the one in

the original connection, thus the settings only need to be

remembered or checked for a single application protocol.

Implementations are RECOMMENDED to first determine the desired

application protocol and settings independent of early data, and

then decline to offer or accept early data if the values do not

match the PSK. This preserves any ALPN and ALPS configuration

specified by the calling application.

5. Security Considerations

ALPS is protected using the handshake keys, which are the secret

keys derived as a result of (EC)DHE between the client and the

server.

In order to ensure that the ALPS values are authenticated, the TLS

implementation MUST NOT reveal the contents of peer's ALPS until

peer's Finished message is received, with exception of cases where

the ALPS has been carried over from the previous connection.

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC7301]

[RFC8174]

[RFC8446]

[I-D.ietf-quic-transport]

[RFC7540]

6. IANA Considerations

IANA will update the "TLS ExtensionType Values" registry to include

application_settings with the value of TBD; the list of messages in

which this extension may appear is CH, EE, CEE.

7. References

7.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Friedl, S., Popov, A., Langley, A., and E. Stephan,

"Transport Layer Security (TLS) Application-Layer

Protocol Negotiation Extension", RFC 7301, DOI 10.17487/

RFC7301, July 2014, <https://www.rfc-editor.org/info/

rfc7301>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

Iyengar, J. and M. Thomson, "QUIC: A UDP-Based

Multiplexed and Secure Transport", Work in Progress,

Internet-Draft, draft-ietf-quic-transport-30, 9 September

2020, <http://www.ietf.org/internet-drafts/draft-ietf-

quic-transport-30.txt>.

Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

Transfer Protocol Version 2 (HTTP/2)", RFC 7540, DOI

10.17487/RFC7540, May 2015, <https://www.rfc-editor.org/

info/rfc7540>.

Acknowledgments

This document has benefited from contributions and suggestions from

Nick Harper, David Schinazi, Renjie Tang and many others.

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8446
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-30.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-30.txt
https://www.rfc-editor.org/info/rfc7540
https://www.rfc-editor.org/info/rfc7540

Authors' Addresses

David Benjamin

Google

Email: davidben@google.com

Victor Vasiliev

Google

Email: vasilvv@google.com

mailto:davidben@google.com
mailto:vasilvv@google.com

	TLS Application-Layer Protocol Settings Extension
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Semantics
	4. Wire Protocol
	4.1. Client Encrypted Extensions
	4.2. 0-RTT Handshakes

	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgments
	Authors' Addresses

