
Network Working Group V. Vasiliev
Internet-Draft Google
Intended status: Standards Track May 3, 2019
Expires: November 4, 2019

The WebTransport Protocol Framework
draft-vvv-webtransport-overview-00

Abstract

 The WebTransport Protocol Framework enables clients constrained by
 the Web security model to communicate with a remote server using a
 secure multiplexed transport. It consists of a set of individual
 protocols that are safe to expose to untrusted applications, combined
 with a model that allows them to be used interchangeably.

 This document defines the overall requirements on the protocols used
 in WebTransport, as well as the common features of the protocols,
 support for some of which may be optional.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 4, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Vasiliev Expires November 4, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft WebTransport May 2019

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Background . 2
1.2. Definitions . 3

2. Common Transport Requirements 5
3. Session Establishment . 5
4. Transport Features . 6
4.1. Datagrams . 6
4.2. Streams . 6
4.3. Protocol-Specific Features 7
4.4. Bandwidth Prediction 7

5. Buffering and Prioritization 8
6. Transport Properties . 8
7. Security Considerations 8
8. IANA Considerations . 9
9. References . 9
9.1. Normative References 9
9.2. Informative References 10

 Author's Address . 11

1. Introduction

1.1. Background

 Historically, web applications that needed bidirectional data stream
 between a client and a server could rely on WebSockets [RFC6455], a
 message-based protocol compatible with Web security model. However,
 since the abstraction it provides is a single ordered stream of
 messages, it suffers from head-of-line blocking (HOLB), meaning that
 all messages must be sent and received in order even if they are
 independent and some of them are no longer needed. This makes it a
 poor fit for latency sensitive applications which rely on partial
 reliability and stream independence for performance.

 One existing option available to the Web developers are WebRTC data
 channels [I-D.ietf-rtcweb-data-channel], which provide a WebSocket-
 like API for a peer-to-peer SCTP channel protected by DTLS. In
 general, it is possible to use it for the use cases addressed by this
 specification; however, in practice, its adoption in a non-browser-
 to-browser by the web developers has been quite low due to dependency
 on ICE (which fits poorly with the Web model) and userspace SCTP
 (which has very few implementations available).

https://datatracker.ietf.org/doc/html/rfc6455

Vasiliev Expires November 4, 2019 [Page 2]

Internet-Draft WebTransport May 2019

 Another option potentially available is layering WebSockets over
 HTTP/3 [I-D.ietf-quic-http] in a manner similar to how they are
 currently layered over HTTP/2 [RFC8441]. That would avoid head-of-
 line blocking and provide an ability to cancel a stream by closing
 the corresponding WebSocket object. However, this approach has a
 number of drawbacks, which all stem primarily from the fact that
 semantically each WebSocket is a completely independent entity:

 o Each new stream would require a WebSocket handshake to agree on
 application protocol used, meaning that it would take at least one
 RTT for each new stream before the client can write to it.

 o Only clients can initiate streams. Server-initiated streams and
 other alternative modes of communication (such as QUIC DATAGRAM
 frame) are not available.

 o While the streams would normally be pooled by the user agent, this
 is not guaranteed, and the general process of mapping a WebSocket
 to the end is opaque to the client. This introduces unpredictable
 performance properties into the system, and prevents optimizations
 which rely on the streams being on the same connection (for
 instance, it might be possible for the client to request different
 retransmission priorities for different streams, but that would be
 impossible unless they are all on the same connection).

 The WebTransport protocol framework avoids all of those issues by
 letting applications create a single transport object that can
 contain multiple streams multiplexed together in a single context
 (similar to SCTP, HTTP/2, QUIC and others), and can be also used to
 send unreliable datagrams (similar to UDP).

1.2. Definitions

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 WebTransport is a framework that aims to abstract away the underlying
 transport protocol while still exposing the specific transport-layer
 aspects of it to the application developers. It is structured around
 the following concepts:

 Transport: A transport is a session established between a client and
 a server. It may correspond to a specific physical connection on
 the transport layer, or it may be a logical entity within an
 existing multiplexed connection. Each instance of a transport is

https://datatracker.ietf.org/doc/html/rfc8441
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Vasiliev Expires November 4, 2019 [Page 3]

Internet-Draft WebTransport May 2019

 logically independent of each other even if some transports can
 share same connection underneath.

 Transport protocol: A transport protocol (WebTransprot protocol in
 context where this might be ambiguos) is a protocol that can be
 used to back a transport on the wire. It can provide the
 transport features described in this document, and is expected to
 fulfill all of the requirements described herein.

 Datagram: A datagram is a unit of transmission that is generally
 treated as a single PDU by underlying network layer protocols,
 and, absent fragmentation, is expected to be treated atomically by
 the queues in the network.

 Stream: A stream is a sequence of bytes that is delivered to the
 receiving application in the same order as it is transmitted by
 the sender. Streams are assumed to be sufficiently long that they
 cannot be buffered entirely into memory, thus requiring the
 transport protocol and the API to provide stream data before the
 stream is finished.

 Message: A message is a stream that is sufficiently small that it
 can be fully buffered before being passed to the application.
 WebTransport does not define messages as a primitive, since from
 the transport perspective they can be simulated by fully buffering
 a stream before passing it to the application. However, this
 distinction is important to highlight since some of the similar
 protocols and APIs (notably WebSocket [RFC6455]) use messages as a
 core abstraction.

 Transport feature: A transport feature refers to the ability of a
 specific transport to provide a specific way of communicating
 data, such as supporting datagrams or streams.

 Transport property: A transport property is a specific behavior that
 may or may not be exhibited by a transport. Some of those are
 inherent for all instances of a given transport protocol (TCP-
 based transport cannot support unreliable delivery), while others
 can vary even within the same protocol (QUIC connections may or
 may not support connection migration).

 Server: A WebTransport server is an application that accepts
 incoming transport sessions.

 Client: A WebTransport client is an application that initiates the
 transport session and may be running in a constrained security
 context, for instance, a JavaScript application running inside the
 browser.

https://datatracker.ietf.org/doc/html/rfc6455

Vasiliev Expires November 4, 2019 [Page 4]

Internet-Draft WebTransport May 2019

 User agent: A WebTransport user agent is a software system that has
 an unrestricted access to the host network stack and can create
 transports on behalf of the client, for instance, the web browser.

2. Common Transport Requirements

 Since the clients are potentially untrusted and have to be
 constrained by the Web security model, WebTransport imposes certain
 requirements on any specific transport protocol used.

 Any transport protocol used MUST use TLS [RFC8446] or a semantically
 equivalent security protocol (for instance, DTLS
 [I-D.ietf-tls-dtls13]). The protocols SHOULD use TLS version 1.3 or
 later, unless they aim for backwards compatibility with legacy
 systems.

 Any transport protocol used MUST require the user agent to obtain and
 maintain an explicit consent from the server to send data. For
 connection-oriented protocols (such as TCP or QUIC), the connection
 establishment and keep-alive mechanisms suffice. For other
 protocols, a mechanism such as ICE [RFC8445] may be used.

 Any transport protocol used MUST limit the rate at which the client
 sends data. This SHOULD be accomplished via a feedback-based
 congestion control mechanism (such as [RFC5681] or
 [I-D.ietf-quic-recovery]).

 Any transport protocol used MUST support simultaneously establishing
 multiple sessions between the same client and server.

 Any transport protocol used MUST prevent the clients from
 establishing transport sessions to the network endpoints that are not
 WebTransport servers.

 Any transport protocol used MUST provide a way for the server to
 filter the clients that can access it by the origin [RFC6454].

3. Session Establishment

 WebTransport session establishment is in general asynchronous,
 although in some transports it can succeed instantaneously (for
 instance, if a transport is immediately pooled with an existing
 connection). A session MUST NOT be considered established until it
 is secure against replay attacks. For instance, in protocols
 creating a new TLS 1.3 session [RFC8446] this would mean that the
 user agent MUST NOT treat the session as established until it
 received a Finished message from the server.

https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8445
https://datatracker.ietf.org/doc/html/rfc5681
https://datatracker.ietf.org/doc/html/rfc6454
https://datatracker.ietf.org/doc/html/rfc8446

Vasiliev Expires November 4, 2019 [Page 5]

Internet-Draft WebTransport May 2019

 The client MUST NOT open streams or send datagrams until the session
 is established. In some situations, it might be possible for the
 client to be able to start sending data earlier, notably using TLS
 0-RTT. In those situations, the user agent MAY provide client with
 ability to send a limited amount of data (using either streams or
 datagrams). The client MUST explicitly request for 0-RTT to be used.

4. Transport Features

 The following transport features are defined in this document. This
 list is not meant to be comprehensive; future documents may define
 new features for both new and already existing transports.

 All transport protocols SHOULD provide datagrams, unidirectional and
 bidirectional streams in order to make the transport protocols easily
 interchangeable.

4.1. Datagrams

 A datagram is a sequence of bytes that is limited in size (generally
 to the path MTU) and is not expected to be reliable. The general
 goal for WebTransport datagrams is to be similar in behavior to UDP
 while being subject to common requirements expressed in Section 2.

 The WebTransport sender is not expected to retransmit datagrams,
 though it may if it is using a TCP-based protocol or some other
 underlying protocol that requires reliable delivery. WebTransport
 datagrams are not expected to be flow controlled, meaning that the
 receiver might drop datagrams if the application is not consuming
 them fast enough.

 The application MUST be provided with the maxiumum datagram size that
 it can send. The size SHOULD be derived from the result of
 performing path MTU discovery.

4.2. Streams

 A unidirectional stream is a one-way reliable in-order stream of
 bytes where the initiator is the only endpoint that can send data. A
 bidirectional stream allows both endpoints to send data and can be
 conceptually represented as a pair of unidirectional streams.

 The streams are in general expected to follow the semantics and the
 state machine of QUIC streams ([I-D.ietf-quic-transport], Sections 2
 and 3). TODO: describe the stream state machine explicitly.

 A WebTransport stream can be reset, indicating that the endpoint is
 not interested in either sending or receiving any data related to the

Vasiliev Expires November 4, 2019 [Page 6]

Internet-Draft WebTransport May 2019

 stream. In that case, the sender is expected to not retransmit any
 data that was already sent on that stream.

 Streams SHOULD be sufficiently lightweight that they can be used as
 messages.

 As streams are reliable, the data sent on a stream has to be flow
 controlled by the transport protocol. In addition to the flow
 control for the stream data, the creation of new streams has to be
 flow controlled as well: an endpoint may only open a limited number
 of streams until the peer explicitly allows creating more streams.

 Every stream within a transport has a unique 64-bit number
 identifying it. Both unidirectional and bidirectional streams share
 the number space. The client and the server have to agree on the
 numbering, so it can be referenced in the application payload.
 WebTransport does not impose any other specific restrictions on the
 structure of stream IDs, and they should be treated as opaque 64-bit
 blobs.

4.3. Protocol-Specific Features

 In addition to features described above, there are some capabilities
 that may be provided by an individual protocol but are not
 universally applicable to all protocols. Those are allowed, but any
 protocol is expected to be useful without those features, and
 portable clients should not rely on them.

 A notable class of protocol-specific features are features available
 only in non-pooled transports. Since those transports have a
 dedicated connection, a user agent can provide clients with an
 extensive amount of transport-level data that would be too noisy and
 difficult to interpret when the connection is shared with unrelated
 traffic. For instance, a user agent can provide the number of
 packets lost, or the number of times stream data was delayed due to
 flow control. It can also expose variables related to congestion
 control, such as the size of the congestion window or the current
 pacing rate.

4.4. Bandwidth Prediction

 Using congestion control state and transport metrics, the client can
 predict the rate at which it can send data. That is essential for a
 lot of WebTransport use cases; for instance, real time media
 applications adapt the video bitrate to be a fraction of throughput
 they expect to be available. While not all transport protocols can
 provide low-level transport details, any protocol SHOULD provide a
 way to estimate the bandwidth available to the client.

Vasiliev Expires November 4, 2019 [Page 7]

Internet-Draft WebTransport May 2019

5. Buffering and Prioritization

 TODO: expand this outline into a full summary.

 o Datagrams are intended for low-latency communications, so the
 buffers for them should be small, and prioritized over stream
 data.

 o In general, the transport should not use any aggregation
 algorithms, e.g. Nagle's algorithm [RFC0896].

6. Transport Properties

 In addition to common requirements, each transport can have multiple
 optional properties associated with it. Querying them allows the
 client to ascertain the nature of transport without being aware of a
 specific implementation, thus simplifying introducing new transports
 as a drop-in replacement.

 The following properties are defined in this specification:

 o Stream independence. Indicates that there is no head of line
 blocking between different streams.

 o Partial reliability. Indicates that if stream is reset, none of
 the data sent on it will be retransmitted. Indicates that
 datagrams will not be retransmitted.

 o Pooling support. Indicates that multiple transports using this
 transport protocol may end up sharing the same transport layer
 connection, and thus share the congestion control and other
 context.

 o Connection mobility. Indicates that the transport may continue
 existing even if the network path between the client and the
 server changes.

7. Security Considerations

 Providing untrusted clients with a reasonably low-level access to the
 network comes with a lot of risks. This document mitigates those
 risks by imposing a set of common requirements described in

Section 2.

 WebTransport mandates the use of TLS for all protocols implementing
 it. This has a dual purpose. On one hand, it protects the transport
 from the network, including both potential attackers and ossification
 by middleboxes. On the other hand, it protects the network elements

https://datatracker.ietf.org/doc/html/rfc0896

Vasiliev Expires November 4, 2019 [Page 8]

Internet-Draft WebTransport May 2019

 from potential confusion attacks such as the one discussed in
Section 10.3 of [RFC6455].

 One potential concern is that even when a transport cannot be
 created, the connection error would reveal enough information to
 allow an attacker to scan the network addresses that would normally
 be inaccessible. Because of that, the user agent that runs untrusted
 clients MUST NOT provide any detailed error information until the
 server has confirmed that it is a WebTransport endpoint. For
 example, the client must not be able to distinguish between a network
 address that is unreachable and that is reachable but is not a
 WebTransport server.

 WebTransport does not support any traditional means of browser-based
 authentication. It is not based on HTTP, and hence does not support
 HTTP cookies or HTTP authentication. Since it uses TLS, individual
 transport protocols MAY expose TLS-based authentication capabilities
 such as client certificates. However, since in some of those
 protocols, multiple transports can be pooled within the same TLS
 connection, such features would not be universally available.

8. IANA Considerations

 There are no requests to IANA in this document.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

https://datatracker.ietf.org/doc/html/rfc6455#section-10.3
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc6454
https://www.rfc-editor.org/info/rfc6454
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8446
https://www.rfc-editor.org/info/rfc8446

Vasiliev Expires November 4, 2019 [Page 9]

Internet-Draft WebTransport May 2019

9.2. Informative References

 [I-D.ietf-quic-http]
 Bishop, M., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", draft-ietf-quic-http-20 (work in progress),
 April 2019.

 [I-D.ietf-quic-recovery]
 Iyengar, J. and I. Swett, "QUIC Loss Detection and
 Congestion Control", draft-ietf-quic-recovery-20 (work in
 progress), April 2019.

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-20 (work
 in progress), April 2019.

 [I-D.ietf-rtcweb-data-channel]
 Jesup, R., Loreto, S., and M. Tuexen, "WebRTC Data
 Channels", draft-ietf-rtcweb-data-channel-13 (work in
 progress), January 2015.

 [I-D.ietf-tls-dtls13]
 Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", draft-ietf-tls-dtls13-31 (work in progress), March
 2019.

 [RFC0896] Nagle, J., "Congestion Control in IP/TCP Internetworks",
RFC 896, DOI 10.17487/RFC0896, January 1984,

 <https://www.rfc-editor.org/info/rfc896>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion
 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,
 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol",
RFC 6455, DOI 10.17487/RFC6455, December 2011,

 <https://www.rfc-editor.org/info/rfc6455>.

 [RFC8441] McManus, P., "Bootstrapping WebSockets with HTTP/2",
RFC 8441, DOI 10.17487/RFC8441, September 2018,

 <https://www.rfc-editor.org/info/rfc8441>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-20
https://datatracker.ietf.org/doc/html/draft-ietf-quic-recovery-20
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-20
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-data-channel-13
https://datatracker.ietf.org/doc/html/draft-ietf-tls-dtls13-31
https://datatracker.ietf.org/doc/html/rfc896
https://www.rfc-editor.org/info/rfc896
https://datatracker.ietf.org/doc/html/rfc5681
https://www.rfc-editor.org/info/rfc5681
https://datatracker.ietf.org/doc/html/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://datatracker.ietf.org/doc/html/rfc8441
https://www.rfc-editor.org/info/rfc8441

Vasiliev Expires November 4, 2019 [Page 10]

Internet-Draft WebTransport May 2019

 [RFC8445] Keranen, A., Holmberg, C., and J. Rosenberg, "Interactive
 Connectivity Establishment (ICE): A Protocol for Network
 Address Translator (NAT) Traversal", RFC 8445,
 DOI 10.17487/RFC8445, July 2018,
 <https://www.rfc-editor.org/info/rfc8445>.

Author's Address

 Victor Vasiliev
 Google

 Email: vasilvv@google.com

Vasiliev Expires November 4, 2019 [Page 11]

https://datatracker.ietf.org/doc/html/rfc8445
https://www.rfc-editor.org/info/rfc8445

