
Network Working Group M. Wall
Internet Draft Carnegie Mellon
Document: draft-wall-acap-vsothers-00.txt September 1996

The Application Configuration Access Protocol
in the Context of Other Internet Protocols

Status of this Memo

 This document is an Internet Draft. Internet Drafts are working
 documents of the Internet Engineering Task Force (IETF), its Areas,
 and its Working Groups. Note that other groups may also distribute
 working documents as Internet Drafts.

 Internet Drafts are draft documents valid for a maximum of six
 months. Internet Drafts may be updated, replaced, or obsoleted by
 other documents at any time. It is not appropriate to use Internet
 Drafts as reference material or to cite them other than as a
 ``working draft'' or ``work in progress''.

 To learn the current status of any Internet-Draft, please check the
 1id-abstracts.txt listing contained in the Internet-Drafts Shadow
 Directories on ds.internic.net, nic.nordu.net, ftp.isi.edu, or
 munnari.oz.au.

 A revised version of this draft document will be submitted to the RFC
 editor as a Proposed Standard for the Internet Community. Discussion
 and suggestions for improvement are requested. This document will
 expire before April 1997. Distribution of this draft is unlimited.

1. Abstract

 The Application Configuration Access Protocol (ACAP) provides a
 client/server-based mechanism for remote access of structured list
 information appropriate to common uses by internet clients. This
 document contrasts the approach ACAP takes to the problem of remote
 storage of client information to the possible use of existing
 protocols for this same purpose.

2. Introduction: The Key Characteristics of ACAP

 The Application Configuration Access Protocol provides a
 client/server-based mechanism for remote access of structured list
 information appropriate to common uses by internet clients. It is a
 user- and client- based approach, one we believe has unique merit.

 The question arises, however: Why another internet protocol? We at

M. Wall [Page 1]

https://datatracker.ietf.org/doc/html/draft-wall-acap-vsothers-00.txt

Internet DRAFT ACAP VS. OTHER PROTOCOLS September 11, 1996

 Project Cyrus at Carnegie Mellon University have tried to explain the
 use for the protocol, why we came to the conclusion a new protocol
 was required (based on years of experience in internet client/server
 development), and an explanation of the functional aspects of the
 protocol in the white paper "The Application Configuration Access
 Protocol and User Mobility on the Internet"
 (http://andrew2.andrew.cmu.edu/cyrus/acap/white-paper.html).

 The legitimate question also comes up in this context, though --
 couldn't the required functionality in ACAP be achieved with another,
 existing protocol? This document summarizes the alternative
 protocol-based (and some non-protocol-based) approaches available
 through current technology by way of illuminating the unique approach
 of ACAP and why we feel its functional capacities have to be
 implemented as a separate protocol.

 The key characteristics of ACAP are:

 * ACAP is designed to accommodate disconnected use

 * ACAP is designed to allows server data (and data structures) to be
 writable by user/clients

 * ACAP is designed to handle potentially (though not necessarily)
 large sets of data

 * ACAP is designed to allow granularity in access to data through an
 Access Control List mechanism

 * ACAP is designed to allow per-user storage of information
 (accommodating problems of mobile, disconnected, and "kiosk"-model
 users)

 * ACAP is designed to allow client definition of data fields,
 allowing user-side flexibility

 * ACAP is designed with per-user security and authenticated operation
 states

 * ACAP is structured to enable server-side searching.

 The ACAP White Paper goes into some detail as to why these are
 considered required features. Here we concentrate on how other
 protocols stack up against these features. (Table 1 below provides a
 checklist of key protocol features among the various approaches that
 have been suggested may partially accomplish ACAP's functional
 goals).

http://andrew2.andrew.cmu.edu/cyrus/acap/white-paper.html

M. Wall [Page 2]

Internet DRAFT ACAP VS. OTHER PROTOCOLS September 11, 1996

 The other protocols and approaches to which we are comparing ACAP in
 this document include: LDAP (Lightweight Directory Access Protocol)
 and directory services in general; DHCP (Dynamic Host Configuration
 Protocol); SNMP (Simple Network Management Protocol); HTTP (Hypertext
 Transfer Protocol); DNS (Domain Naming Service); distributed
 filesystems, such as NFS and AFS; and traditional database-style
 implementations, such as SQL.

 We believe in the concept of 'the right tool for the right job'. We
 have no love for re-implementing the wheel, but in researching the
 available options in the context of Project Cyrus, we discovered this
 particular type of precision screwdriver, and trying to get one of
 these other protocols -- designed for very different forms of
 transactions -- is like using a heavy-duty hammer or a wrench to get
 this particular screw attached.

 Let us look, then, at the job for which each of the above approaches
 was intended by way of an introduction to their flaws in trying to
 apply them to ACAP's job.

3. Protocol Comparison Chart

 Table 1
 Protocol Characteristic Chart
 Internet Client/Server Data Access - Protocols and Approaches

M. Wall [Page 3]

Internet DRAFT ACAP VS. OTHER PROTOCOLS September 11, 1996

 PROTOCOL/APPROACH
 +--+
 |ACAP |LDAP, | DHCP | SNMP | HTTP | DNS |NFS,AFS|Data-|
 FEATURE | |et al | | | | | et al |bases|
 +--+
 Disconnected use | Yes | No | No | No | No | No*1 | No*2 | No*3|
 +--+
 Client-writable | Yes | Yes | No | Yes*4| No | No | Yes | Yes |
 +--+
 Potentially Large | Yes | Yes | No | ? | No | No | Yes | Yes |
 +--+
 Access Control List| Yes | Yes | No | Yes | No | No | Yes | No |
 +--+
 User Storage | Yes | No | No | No | ? | No | Yes | No |
 +--+
 Client-Definable | Yes | No | No | No | ? | Yes*5| Yes | Yes |
 +--+
 Per-user Security | Yes | Yes | ? | No | ? | No | Yes | Yes |
 +--+
 Server-searching | Yes | Yes | No | ? | No | No | No*6 | Yes |
 +--+
 client/server | Yes | Yes | Yes | Yes | Yes | Yes | No | No |
 +--+
 non-proprietary | Yes | Yes | Yes | Yes | Yes | Yes | No | No |
 +--+

 Yes = has this characteristic
 No = does not have this characteristic
 ? = not fully implemented or unclear if this could support this feature
 * = qualified yes or no, see footnote

 This chart addresses capabilities, not necessarily typical use
 (such as SNMP's client-writing capability).

 NOTES:

 1. Only via the cache, which is static and non-authoritative.
 2. Typically limited scalability; limited real use.
 3. Transaction-locking models make this highly implementation-dependent.
 4. The MIB is typically authoritative, however.
 5. Usually used for limited local override, i.e. trusting a hosts file.
 6. Some filesystems can search, but usually without much structure.
 Most don't except through OS extensions, anyway.

M. Wall [Page 4]

Internet DRAFT ACAP VS. OTHER PROTOCOLS September 11, 1996

4. Considerations of Applying Other Protocols to ACAP

 LDAP and Directory Services (CSO, Whois++, etc.)

 ACAP is designed with per-user and client-side control over entries
 in mind, while directory service protocols are designed (inherently)
 for server-side authority and administrative control.

 Directory services are designed for fast lookup of relatively static,
 public data. Structures are defined by the server, and as such the
 server controls the administrative aspects of the client/server
 relationship. The authority for the database is entirely server-
 administered. In other words, if a client were to have a need for a
 non-pre-defined namespace or storagespace on a server, the server's
 administrator would have to re-define a field in the database. In
 many implementations of directory services, this cannot be done
 "live" and requires partial reconstruction of the database. LDAP in
 particular was designed for "Lightweight" access to the complex X.500
 directory structures, in part as a response to the difficulty in
 getting viable implementations of X.500 directory services just for
 the base directory information for which it was intended (oft cited
 as being too complex for the immediate job at hand.)

 Given the rapid pace at which client-side options change even within
 a single application, not to mention the diversity of multiple
 applications being used for similar tasks, the directory services
 approach is singularly ill-suited to supporting dynamic client-side
 data definitions. Extending this problem area to include the issue of
 handling different data types, the structured directory service is
 hampered even more in its ability to accommodate the diverse nature
 of user data.

 Let's consider a couple of practical problems. Directory servers
 don't have per-user quotas for control of option storage space; ACAP
 does. None of the popular directory protocols supports disconnected
 operation, which is essential for typical client use patterns (ACAP
 does). Meaningful inheritance patterns and hierarchies -- such as
 site, system, group, user, etc. -- are non-existent in the directory
 services mentioned. Per-user identification mechanisms, where they
 exist at all, are cumbersome to deploy per-user on a large scale.
 ACAP by contrast allows fairly easy per-user credential control for
 thousands of users. In short, directory service protocols are missing
 many of the features which are fundamental to practical application
 configuration information.

 We know of at least one vendor that is attempting to extend LDAP to
 include a structured option space for a single client. This approach

M. Wall [Page 5]

Internet DRAFT ACAP VS. OTHER PROTOCOLS September 11, 1996

 probably has merit for extremely well- and narrowly-defined
 client/server arrangements, but because it requires pre-defined
 cooperation between data structures on client and server side, and is
 limited to a single, specific client, is a special case solution.
 ACAP attempts to provide a generalized solution to the specific
 problems of internet client/server applications, rather than
 piggybacking (like a Swiss Army Knife) onto a less flexible protocol
 designed for a different purpose.

 One side question that frequently comes up in comparing ACAP to LDAP
 and other directory services protocols is the application of IMSP,
 ACAP's predecessor, to the use of applications which use
 addressbooks. ACAP will also have obvious usefulness for this
 function. Rather than being a competing "directory" service, it's
 better to divide the universe of the semantically ambiguous phrase
 "addressbooks" into two distinct types and uses of data. LDAP and
 directory services provide authoritative, institution- and
 enterprise-wide data about users and "top-down" definitions of groups
 of users. It's somewhat analogous to the company directory or the
 Phone Book (the big paper thing next to your telephone.)

 The use of ACAP for addressbooks (as we've discovered from several
 years of experience with IMSP, ACAP's predecessor, which was fully
 implemented for this purpose) has very different characteristics.
 ACAP/IMSP addressbooks are for the user's own view, organization, and
 annotation of their address information - "bottom up". To return to
 the analogy above, if LDAP et al are "Phone Books" then ACAP is the
 user's "black book" or "rolodex"- a personal repository, with access
 control and groups defined from the user/client's perspective. There
 are many reasons why a user might want to have a differing
 addressbook from the official one: quick reference, re-organization
 of data, renaming of individual user or group characteristics -- such
 as "Doofus" for an alias to the Boss' email address, "Softball team"
 for a quick grouping of people on the company softball team, or "Joe
 at Work and "Joe at Home" to distinguish between multiple email
 addresses in a way that makes sense to the user.

 Our experience with IMSP is that one of its stunning (and unforseen)
 successes was the capability that allowed users to arbitrarily define
 and share addressbook information of this 'personal' nature --
 lessons incorporated in the definition of the ACAP specification.

 From a client-implementer's perspective, this is a key difference.
 Rather than having to know something about the server's view of the
 universe, the option space in ACAP is free and open to unforseen uses
 (allowing for namespace conventions). For example, if a client
 implementer wanted to include information on a user's favorite color
 -- so, perhaps, mail from that user appeared in that color or some

M. Wall [Page 6]

Internet DRAFT ACAP VS. OTHER PROTOCOLS September 11, 1996

 other level of service that might be too "silly" to impose on a
 formal database structure -- ACAP allows this information to be
 associated with any other dataset data in an ACAP dataset at the
 implementer's option.

 LDAP and other directory services should be highly complimentary to
 ACAP and vice versa. The experience of users of the fully-implemented
 clients supporting IMSP -- which provides both IMSP and LDAP access
 -- strongly suggest that this is the case in real life. But for the
 purposes of user-storage and client-defined data, LDAP does not fill
 the need that ACAP does.

 DHCP

 DHCP was designed to address the specific problem of boot-time
 bootstrap information for a given, single machine. As the name
 implies, it's a protocol designed for "host configuration". All data
 is administrator- and server-specified. It is not intended or
 constructed with the features necessary for per-user (in contrast to
 per-machine) configuration on the "fly" as applications are launched
 sequentially or in parallel, often by multiple users on the same
 machine (also in sequence or parallel, depending on the Operating
 System).

 We have done an implementation of a DHCP server locally and found the
 protocol to be wholly unsuitable for application configuration work
 in practice: it's not user-writable and has no working features
 designed to support user-writing with the full suite of features
 (security, access control at a granular layer, user-defined options,
 server vs. client override, etc.)

 SNMP

 SNMP was designed (originally largely within our development group at
 Carnegie Mellon University) for device monitoring and control -
 "network management". It lacks most features required for user
 configuration data management, and in particular the scalability of
 data and access models requisite for large-volume manipulation and
 retrieval of data. Like DHCP, it's not designed to store per-user
 data, and presently has little security in practice. ASN.1 MIBs
 produce similar problems of structural inflexibility to X.500.

 HTTP

 HTTP is largely structured for document access -- storage and
 transport with semantics ("hypertext"). Its main application --
 albeit as successful an application as you could imagine -- is a
 specific form of document delivery, oriented to presentation of data

M. Wall [Page 7]

Internet DRAFT ACAP VS. OTHER PROTOCOLS September 11, 1996

 to users rather than interpreted use by client programs. It is
 presently underspecified for uses outside of HTML. While much work
 is being done at present to extend and solidify http, its fatal flaw
 in this context is a complete lack of data strucutre. Information is
 not intended to be machine-parseable; it's not structured, as ACAP
 is, for structured subsets of collections of data.

 DNS

 DNS is simply designed to provide a return of pairs of IP addresses
 and names, for the parsing and interpretation of domain and node
 names. For a given entity 'domain name', it can hold a set of tagged
 values, albeit a restricted set in practice: IP addresses, CNames, MX
 records. But DNS is limited to 256 tags, which have to be understood
 by prior agreement between client and server, so the data format is
 nowhere near flexible enough for ACAP-style information.

 It provides an internet-wide hierarchy of unique tagged fields, with
 the engineering goal of providing very fast access to very small
 amounts of data. The typical ACAP application has no need for a net-
 wide hierarchy and needs moderately fast access to larger sets of
 data, with the data itself being much larger than a typical DNS
 entry. DNS typically provides a single-return value, while ACAP is
 intended to be almost always used for multiple returns from the
 server. DNS only provides "disconnected" access in the sense that
 data is statically cached and used in absence of contact with the
 server; and is also not written to be user-writable.

 Distributed Filesystems (AFS, NFS, DFS, etc.)

 Distributed filesystems are intended for storage of (mostly)
 unstructured user data. We have no small experience with building
 internet applications on top of distributed filesystems; our current
 messaging system (AMS -- see the ACAP White Paper for a further
 discussion) is layered on top of AFS (the Andrew File System, now
 owned and maintained by Transarc). Structure can be imposed onto a
 filesystem for the purpose of supporting an application, but of
 course this adds an additional layer of complexity to the
 client/server transaction and quite a bit of pre-configuration at all
 layers. Since there is no "universal" file system -- for many
 reasons well beyond the scope of this document -- any filesystem
 approach has the inherent flaw of being unsuitable for some operating
 systems due to the tight coupling of OS-specific filesystems with
 modern operating systems.

 In many, many typical uses of internet client/server application use,
 the user has no need, interest, or access to a distributed file
 system. They're simply out of reach to the average user. And finally

M. Wall [Page 8]

Internet DRAFT ACAP VS. OTHER PROTOCOLS September 11, 1996

 we would note the obvious: even the more relatively "usual"
 distributed filesystems are proprietary, and none could be described
 as "standards-based". The core of our approach with ACAP has been to
 liberate the application, and the user, from reliance on any
 particular filesystem.

 Distributed and Traditional Databases (SQL, Z39.50, etc.)

 The popular approach of a traditional database application is not
 really appropriate for the purposes of application configuration.
 Database systems are almost entirely proprietary, even though
 "standard" query languages are available. Aside from some performance
 issues, which may simply be questions of implementation, databases do
 not lend themselves to disconnected operation due to their extremely
 high data integrity protections. Typically remote access, when done,
 is done through remote procedure calls, rather than protocol, with
 all the attendant problems of RPCs. Finally, the structure of queries
 in client/server databases shares many of the same characteristics of
 the structured directory service problem: data structure is
 authoritatively defined on the 'server' (database) side, requiring
 administrator intervention for new applications, fields, and data
 types.

6. Conclusions

 Internet client application options are probably the most important
 type of configuration information to the vast majority of users of
 the internet. Other protocols were simply not designed to deal with
 this type of data and typical use, as evidenced by the lack of key
 features somewhat peculiar to application configuration. ACAP is a
 carefully-engineered IETF-style solution to the application
 configuration problem, rather than a retrofit of a protocol designed
 for another purpose.

7. Acknowledgements

 Thanks to Chris Newman and Ned Freed of Innosoft, John Myers and Sam
 Weiler of Carnegie Mellon, and two reviewers who wished to remain
 anonymous for comments and suggestions, some of which have been
 incorporated into this document without specific attribution.

8. References

 Myers, J., "ACAP", internet-drafts/draft-myers-acap-spec-00.txt

 Wall, M., "The Application Configuration Access Protocol and User
 Mobility on the Internet", http://andrew2.andrew.cmu.edu/acap/acap-

white-paper.html

http://andrew2.andrew.cmu.edu/acap/acap-white-paper.html
http://andrew2.andrew.cmu.edu/acap/acap-white-paper.html

M. Wall [Page 9]

Internet DRAFT ACAP VS. OTHER PROTOCOLS September 11, 1996

9. Author's Address

 Matthew Wall
 Carnegie-Mellon University
 5000 Forbes Ave.
 Pittsburgh PA, 15213-3890

 Email: wall@cmu.edu

M. Wall [Page 10]

