
ALTO WG X. Wang
Internet-Draft S. Dong
Intended status: Informational Tongji University
Expires: January 21, 2016 G. Chen
 Huawei Technologies
 July 20, 2015

Design and Implementation of Large Data Transfer Coordinator
draft-wang-alto-large-data-framework-01.txt

Abstract

 The Application-Layer Traffic Optimization (ALTO) protocol provides
 network information with the goal of improving both application
 performance and network resource utilization. As data transfers
 become larger (e.g., due to big data analysis), more data transfers
 are concurrent but with service requirements, and more network
 capabilities are emerging (e.g., SDN allowing a data transfer to
 request specific routes or Qos), the management of large data
 transfers has become an increasingly challenging issue. This
 document introduces Data Transfer Coordinator (DTC), a centralized
 data transfer scheduling framework which provides Scheduling Hub
 Service (SHS) to coordinate and schedule large data transfers. DTC
 considers all three components: data transfer requirements, (ALTO)
 network information, and SDN control capabilities. This document
 specifies not only the basic framework of DTC, but also a key
 component, service API for SHS to specify data transfers and their
 relations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 21, 2016.

Wang, et al. Expires January 21, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Large Data Transfer Coordinator July 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Requirements Language . 3
3. Terminology and Notation 3
4. Data Transfer Coordinator Framework 4
4.1. Architecture . 4
4.2. Job Collector . 5
4.3. ALTO Client . 5
4.3.1. PASSIVE and ACTIVE Mode 6

4.4. Task Scheduler . 6
4.4.1. Priority Model 6

4.5. DTN Controller . 7
5. Scheduling Hub Service 7
5.1. Application Compute-Transfer Structure 8
5.2. Abstract Computation 8
5.3. DataTransferTask and SyncTask 9
5.4. Service API . 10

6. Example . 11
7. Security Considerations 12
8. IANA Considerations . 12
9. Acknowledgments . 12
10. References . 12
10.1. Normative References 12
10.2. Informative References 12

 Authors' Addresses . 13

1. Introduction

 There is substantial need to manage large data transfers.
 Considering limited network resources such as bandwidth,
 inappropriate handling large data transfer would reduce performance
 significantly. It could be easier to cause network congestion than

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Wang, et al. Expires January 21, 2016 [Page 2]

Internet-Draft Large Data Transfer Coordinator July 2015

 low traffic. Congested network can result in higher rate of packet
 loss, then triggers retransmissions, which can cripple already
 heavily loaded networks. It's necessary to manage large data
 transfer not only for high network resource utilization but also for
 users' experience aspect.

 Scheduling data flows needs network information such as available
 bandwidth between two transfer nodes. ALTO defines cost maps
 providing cost between two pids and endpoint cost service for two
 endpoints. By utilizing these network information, application can
 determine how to allocate bandwidth for each data flow. However, to
 archive such scheduling, there needs a centralized coordinator that
 can be aware of every data flow requirements. Moreover, to get the
 customized requirements for each data transfer, a general interface
 is need to obtain the correlation among data flows besides single
 data flow requirements.

 This document introduces a centralized framework, Data Transfer
 Coordinator (DTC), which provides Scheduling Hub Service (SHS) for
 applications. SHS implements common functionalities for data
 transfers and provides cross-app coordination for achieving better
 network-wide utility. Also SHS provides a general API for
 applications to express data transfer relations by using two basic
 structures, DataTransferTask and SyncTask.

 This document is organized as follows: Section 3 defines the
 Terminology and Notation in this document. Section 4 gives the
 details of SHS for scheduling large data transfer. Section 5 gives
 details of service API designed. Section 6 gives a MapReduce example
 for specifying relations between data transfers.

2. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Terminology and Notation

 This document uses the following additional terms:DTC, SHS, Job,
 Task.

 o DTC

 Data Transfer Coordinator. A centralized framework includes Job
 Collector, Task Scheduler, ALTO Client, and DTN Controller to
 provide data transfer scheduling service to applications. See
 more detailed description in Section 4.

https://datatracker.ietf.org/doc/html/rfc2119

Wang, et al. Expires January 21, 2016 [Page 3]

Internet-Draft Large Data Transfer Coordinator July 2015

 o SHS

 Scheduling Hub Service. Data transfer scheduling service
 considers both network information and data transfer requests.
 Data transfer requests are captured by two basic structures,
 DataTransferTask and SyncTask.See more detailed description in

Section 5.

 o Job

 Data transfer job that is registered by applications. A job
 includes tasks indicating data transfers and their relations
 submitted by one application. See more detailed description in

Section 5.

 o Task

 Including DataTransferTask and SyncTask that specifies data
 transfer information and their relations, respectively. See more
 detailed description in Section 5.

4. Data Transfer Coordinator Framework

4.1. Architecture

 This section describes the design details of four components of the
 DTC framework, 1. Job Collector; 2. ALTO Client; 3. Task
 Scheduler; 4. Data Transfer Nodes (DTN) Controller. Among these
 four modules, task scheduler is the core of the framework. Job
 Collector provides interface to users for submitting data transfer
 requests, which will be passed to task scheduler for further process.
 Task scheduler makes scheduling based on the network information
 generated by ALTO client as well as the requirements of each data
 transfer from tasks. After computing allocation of bandwidth for
 each task, task scheduler will send transfer commands to DTN
 controller to start data transmission. Figure 1 shows the whole
 process.

Wang, et al. Expires January 21, 2016 [Page 4]

Internet-Draft Large Data Transfer Coordinator July 2015

 .-----------.
 | Users |
 '-----------'
 | submit jobs
 .- - - - - - - - - - - - - - - | - - - - - - - - - - - - - - .
 | .-----------. |
 | | Job | |
 | DTC | Collector | |
 | '-----------' |
 | | pass user defined tasks |
 | | to Task Scheduler |
 | .-----------. .-----------. .---------. |
 | | DTN |----------| Task |----------| ALTO | |
 | | Controller| send | Scheduler | get | Client | |
 | '-----------' transfer '-----------' network '---------' |
 | commands state |
 ' -'

 The benefits of DTC include:

 o 1. It can achieve better network resource (bandwidth) allocation
 since it manages all data transfer requirements in a centralized
 framework.

 o 2. It takes customized data transfer requirement into
 consideration by introducing DataTransferTask and SyncTask to
 capture correlation among data flows.

 o 3. It's modular to support different scheduler algorithm
 implementations.

4.2. Job Collector

 The job collector is responsible to manage data transfer requests
 from user and pass them to task scheduler for further process. It is
 important that the requests are dynamic and hence the API of the job
 collector allows dynamic insertion and deletion of data transfers.
 Details of the data transfer description and APIs for users are
 described in Section 5.3: Service API.

4.3. ALTO Client

 ALTO client will be responsible to get network state to task
 scheduler for further usage. Although different scheduling
 algorithms may request different ALTO services, cost map and endpoint
 cost map seems to be the most useful services for scheduling tasks.

Wang, et al. Expires January 21, 2016 [Page 5]

Internet-Draft Large Data Transfer Coordinator July 2015

4.3.1. PASSIVE and ACTIVE Mode

 ALTO client should support two modes according to the way it
 perceives network state changes, PASSIVE and ACTIVE. In PASSIVE
 mode, ALTO client will query ALTO server periodically to get latest
 network states. If the network state changes after one query, the
 ALTO client will not be aware of the change until next query. In
 ACTIVE mode, ALTO client will only query ALTO server once to get the
 initial network state. If network state changes after that, the ALTO
 client will be notified by ALTO server so it does not have to query
 ALTO server again. Note that ACTIVE mode will only be supported by
 ALTO server with ALTO SSE implemented.

4.4. Task Scheduler

 The duty of task scheduler is to assign tasks from job collector to
 proper data transfer nodes (DTNs), splitting a file to several
 partial files to different DTNs if necessary, and notify the DTN
 controller to initiate the transfer. We will not discuss specific
 algorithm in this document but we assume algorithms used by scheduler
 should take network states provided by ALTO client into
 consideration. Different schedulers may obey different principles,
 some schedulers aims to maximize the number of finished tasks while
 some try to transfer as much data as possible.

4.4.1. Priority Model

 In this section, we proposed a schedule model based on priority. In
 this model, every task will be set a predefined priority value, e.g.
 LOW, MEDIUM and HIGH, to indicate how important it is. The principle
 of this model is that tasks with higher priority have the privilege
 to occupy more resources such as available bandwidth. If the
 priority is not set, the task must be set a default one. Things
 become tricky when user does not specify priority but an expected
 finish time instead. However, in this model, it is easy to be solved
 by transforming expected finish time to priority by following steps:

 o 01. Assign the lowest priority to the task and schedule the task.

 o 02. Calculate the task's estimated finish time. If the estimated
 finish time is longer than user specified finish time, increase
 the task priority by one and reschedule the task, else the
 schedule procedure completes.

 o 03. Keep doing step 2 until either the schedule procedure
 completes or the task is assigned as highest priority. If the
 task is still not able to be finished, we will keep it as highest
 priority and transfer as much data as possible.

Wang, et al. Expires January 21, 2016 [Page 6]

Internet-Draft Large Data Transfer Coordinator July 2015

 The specific algorithm used to adjust the resources according to the
 priority is not described in this document.

4.5. DTN Controller

 DTN controller is only responsbile for two following functions:

 o 01. Receive and process instructions from task scheduler, e.g.
 starting a new transfer, aborting a running transfer and adjusting
 transfer parameters such as transfer rate or number of
 connections.

 o 02. Monitor transfer status and update status changes to task
 scheduler. If a transfer failed or finished, it should notify
 task scheduler the details for further scheduling.

 If we assume task scheduler is a manager, then DTN controller are
 workers who focusing on its own job without caring anything else.
 DTN controllers are not able to communicate with each other, which
 means it does not have a global view. Since the DTN controller has
 to utilize DTNs to transfer data, it should be deployed either in a
 server able to access DTNs or in the DTNs themselves.

5. Scheduling Hub Service

 Introducing a systematic description of data transfer for SHS is
 challenging. Although it is easy to describe each individual data
 transfer, this simple description method is not sufficient for a
 centralized data transfer coordinator because it is not capable of
 representing relations, e.g. dependencies, between different data
 transfers. To solve this problem, this section first introduces the
 concept of Application Compute-Transfer Structure (ACTS) that
 captures the computation logic of application. ACTS includes the two
 basic components, data computation and data transfer. We find that
 for many data processing applications, they are composed of several
 data computations and several data transfers by which data
 computations are linked as a complete data processing. For example,
 MapReduce job includes mappers and reducers as data computation
 components, and data transfers act as connections between mappers and
 reducers.

 However, for SHS, it doesn't need the exact computation at data
 computation nodes, but the enough knowledge to reflect the dependency
 between data transfers. Hence, we provide the ability of abstracting
 computation to applications for expressing dependency anf
 coordination between data transfers. By abstracting data
 computation, application can define the relation between data

Wang, et al. Expires January 21, 2016 [Page 7]

Internet-Draft Large Data Transfer Coordinator July 2015

 transfers to/from one data computation node or a cluster of nodes,
 for expressing coarse grained dependency.

 Finally, to map the concept to the design, SHS service API includes
 two transfer task types, DataTransferTask and SyncTask, which defines
 the basic data transfer information and relations between data
 transfers, respectively.

5.1. Application Compute-Transfer Structure

 For many applications, the whole data processing would be divided
 into several pieces of small data computations depending on the
 different roles of servers, e.g., the MapReduce job is divided into
 two types of tasks, mapper and reducer, based on the role of servers.
 All partial data computations are linked by data transfers which
 transmit the result of computation from one place to another. By the
 joint collaboration of all small data computations, the application
 achieves the specific data processing. Then we use Application
 Compute-Transfer Structure (ACTS) which includes data computation and
 data transfer to convey the computation pattern of application. The
 mapping from computation logic of application to ACTS should be very
 obvius since it only includes data computation and data transfer.

 By using ACTS, the computation logic of application can be defined as
 several data computations and several data transfers which link data
 computations, i.e., a Directed Acyclic Graph (DAG), in which each
 node is data computation and each link is data transfer.

5.2. Abstract Computation

 For SHS, it doesn't need to know the exact computation of each data
 computation nodes in ACTS. But to schedule data transfers submitted
 by different applications, SHS needs the information about the
 relation between data transfers, such as dependency and coordiantion.
 The relation between data transfers is defined at data computation
 nodes. To achieve a collaboration of multiple data computation, each
 data computation must rely on the result of others. The dependency
 of data computations defines the relation of data transfers which is
 needed by SHS. Hence, to express the relation of data transfers, for
 a better scheduling, application should abstract its data
 computations

 In this document, we define some attributes (dependency type,
 throughput matching, pipelining or blocking, and deadline) that can
 be used for abstract computation. Dependency type includes two
 values, all and one, to specify when to start the output data trnsfer
 at data computation nodes. All indicates the output data transfer
 cannot start until all input data transfers (at the same data

Wang, et al. Expires January 21, 2016 [Page 8]

Internet-Draft Large Data Transfer Coordinator July 2015

 computation node) finishes, and one indicates if one input data
 transfer finishes, it can start output data transfer instead of
 waiting for other input data transfers. Throughput matching will
 defines the throughout relation between input data transfers and
 output data transfers. E.g., application needs a higher throughput
 for output data transfers than input ones. Pipelining and blocking
 indicates whether should the output data transfers wait the finishing
 of input data transfers or not. Deadline specifies the deadline for
 add dependent data transfers.

5.3. DataTransferTask and SyncTask

 In this section, we define two types of task for mapping the concept
 to design of service API. DataTransferTask defines the basic
 information of data transfers while SyncTask defines the relation
 between data tansfers, i.e., abstract computation.

 The schema for DataTransferTask (dtt) representation is described as
 following:

 object {
 ResourcePath src;
 ResourcePath dst;
 JSONNumber dataSize;
 JSONNumber offset;
 [JSONString deadline;]
 } DataTransferTask;

 object {
 JSONString dependencies<1..*>;
 Attributes attributes<1..*>;
 } SyncTask;

 object {
 JSONString ss_id;
 JSONString path;
 } ResourcePath

 object {
 JSONString -> JSONString;
 } Attributes;

 with fields:

 o src

Wang, et al. Expires January 21, 2016 [Page 9]

Internet-Draft Large Data Transfer Coordinator July 2015

 This field specifies the source of data transfer.

 o dst

 This field specifies the destination of data transfer.

 o ResourcePath

 This field identifies a unique resource in multiple storege
 systems. Since a storage system could be connected by multiple
 data transfer nodes, it is not accurate to identify a resource by
 server host and file path anymore. To solve this problem, DTC
 will assign every connected storage system a unique id. Thus,
 users can combine ss_id, which is the unique storage system id,
 and file_path, which indicates location of the file in the
 corresponding storage system, to identify a unique resource.

 o dataSize

 This field specifies the size of data to transport.

 o offset

 This field specifies the offset of data. This provides the
 flexibility to application to split the data and transport them
 separately.

 o dependencies

 This field specifies the dependencies of the SyncTask. Mapping to
 the ACTS, dependency of a SyncTask is the input data transfer of a
 data computation node.

 o attributes

 This field specifies the attributes of the SyncTask. Attributes
 is key-value that key is the attributes name and value is the
 attributes value. Attributes can be dependency type of throughput
 matching as described.

5.4. Service API

 Normally, users will register transfer jobs to include all
 conrresponding DataTransferTasks and SyncTasks. While a transfer jon
 is running, the user should be able to add tasks to or remove tasks
 from the job dynamically. To enable these features, a job collector
 should provide the following five functions for user:

Wang, et al. Expires January 21, 2016 [Page 10]

Internet-Draft Large Data Transfer Coordinator July 2015

 o register()

 This function creates a new transfer job. It must return a job id
 for user to identify the job created. If the creation fails, it
 must throw an error.

 o unregister(job_id)

 This function aborts a running transfer job. It accepts a job_id
 parameter and must abort all tasks belonging to the job. The
 function return value should indicate if the abort action succeeds
 or not. If the job does not exist, it must throw an error.

 o createTaskDesc(type, [args])

 This function creates a task description satisfying the structure
 defined above. Type argument specifies the type of task,
 DataTransferTask or SyncTask. Args list specifies the content of
 the task, for DataTransferTask, it includes src, dst, dataSize,
 offset, and deadline; for SyncTask, it includes dependencies and
 attributes. This function returns the specified task for further
 operations.

 o addTask(job_id, task)

 This function adds a new task to a existing job. This function
 accepts a job_id and a task as parameters. It must return a task
 id for user to identify the added task. If the creation fails, it
 must throw an error.

 o removeTaskS(job_id, task_id,)

 This function removes a task from a existing job. This function
 accepts a job_id and a task_id. The job_id and task_id will
 identify a unique task to be removed. The function return value
 should indicate if the remove action succeeds or not.

6. Example

 Suppose a MapReduce job has 10 mappers and 5 reducers. Each mapper
 transfers data to each reducer. There will be 50 data transfers in
 all. Application wants to express its requirements that minimize the
 finishing time of all transfers, not one individual transfer. Here
 we give a JSON example to show what should be sent to job collector
 for adding a DataTransferTask and a SyncTask to existing transfer
 job. After application added a DataTransferTask to transfer job, it
 will receive a task_id to identify the task (task_01, ..., task_50).
 Then it will use those task_id to add a SyncTask.

Wang, et al. Expires January 21, 2016 [Page 11]

Internet-Draft Large Data Transfer Coordinator July 2015

 {
 "job-id": "job_00",
 "task": {
 "type": "data-transfer-task",
 "src": "http://192.168.0.0/bigdata/mapreduce/map0.data",
 "dst": "http://192.168.1.0/bigdata/mapreduce/reduce0.data",
 "data-size": "100",
 "offset": "0"
 }
 }

 {
 "job-id": "job_00",
 "task": {
 "type": "sync-task",
 "dependencies": ["task_01", "task_02",..., "task_50"],
 "dependency_type": "all"
 }
 }

7. Security Considerations

 This document has not conducted its security analysis.

8. IANA Considerations

 This document does not specified its IANA considerations, yet.

9. Acknowledgments

 The authors thank discussions with Yicheng Qian.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

10.2. Informative References

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Wang, et al. Expires January 21, 2016 [Page 12]

Internet-Draft Large Data Transfer Coordinator July 2015

 [RFC7285] Alimi, R., Ed., Penno, R., Ed., Yang, Y., Ed., Kiesel, S.,
 Previdi, S., Roome, W., Shalunov, S., and R. Woundy,
 "Application-Layer Traffic Optimization (ALTO) Protocol",

RFC 7285, DOI 10.17487/RFC7285, September 2014,
 <http://www.rfc-editor.org/info/rfc7285>.

Authors' Addresses

 Xin Wang
 Tongji University
 4800 Cao'an Road, Jiading District
 Shanghai
 China

 Email: xinwang2014@hotmail.com

 Shu Dong
 Tongji University
 4800 Cao'an Road, Jiading District
 Shanghai
 China

 Email: dongs2011@gmail.com

 Guohai Chen
 Huawei Technologies
 101 Software Avenue, Yuhua District
 Nanjing
 China

 Email: chenguohai@huawei.com

https://datatracker.ietf.org/doc/html/rfc7285
http://www.rfc-editor.org/info/rfc7285

Wang, et al. Expires January 21, 2016 [Page 13]

