
Network Working Group Y. Wang
Internet-Draft Microsoft Corp.
Intended status: Informational R. Alimi
Expires: September 5, 2009 Yale University
 D. Pasko
 Verizon
 L. Popkin
 Pando Networks, Inc.
 Y. Yang
 Yale University
 March 4, 2009

P4P Protocol Specification
draft-wang-alto-p4p-specification-00.txt

Status of This Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on September 5, 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents in effect on the date of
 publication of this document (http://trustee.ietf.org/license-info).
 Please review these documents carefully, as they describe your rights

Wang, et al. Expires September 5, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft P4P Protocol Specification March 2009

 and restrictions with respect to this document.

Abstract

 Provider Portal for Network Applications (P4P) is a framework that
 enables Internet Service Providers (ISPs) and network application
 software developers to work jointly and cooperatively to optimize
 application communications. The goals of this cooperation are to
 reduce network resource consumption and to accelerate applications.
 To achieve these goals, P4P allows ISPs to provide network
 information and guidance to network applications, allowing clients to
 exchange data more effectively. This document specifies the P4P
 protocol operations and message formats. The goal is provide a
 formal specification for developers to create inter-operable
 implementations.

Table of Contents

1. Introduction . 4
1.1. Status of this Memo 4
1.2. Terminology . 4
1.3. Protocol Overview . 5
1.3.1. Location Portal Service 5
1.3.2. pDistance Portal Service 5

1.4. Common Application Scenario 5
1.5. Key Features . 6

2. Conventions Used in This Document 6
3. Messages . 6
3.1. Definitions . 6
3.1.1. Basic Types . 7
3.1.2. IP Addresses . 7
3.1.3. Autonomous System Numbers 7
3.1.4. Network Location Identifiers 8
3.1.5. ISP Identifiers 8
3.1.6. PIDs . 8
3.1.7. pDistance Values 8
3.1.8. pDistance Endpoint 9

3.2. Syntax . 9
3.2.1. Headers . 9
3.2.2. Content-Type . 10
3.2.3. GetPID and PID Messages 10
3.2.4. GetPIDMap and PIDMap Messages 11
3.2.5. GetpDistance and pDistance Messages 11

4. Protocol Operations . 13
4.1. Standard Definitions and Reserved Values 13
4.1.1. PIDs . 13
4.1.2. pDistances . 14

4.2. Message Handling . 14

Wang, et al. Expires September 5, 2009 [Page 2]

Internet-Draft P4P Protocol Specification March 2009

4.2.1. Common Operations 15
4.2.2. GetPID . 15
4.2.3. GetPIDMap . 16
4.2.4. GetpDistance . 17

4.3. Exception Handling . 19
4.3.1. Invalid Request URI Path 19
4.3.2. Invalid Request Format 19

4.4. Timers . 19
4.5. Message Exchange Examples 19
4.5.1. GetPID . 20
4.5.2. GetPIDMap . 22
4.5.3. GetpDistance . 23

5. Discussions . 24
5.1. Discovery . 24
5.2. Delegation . 25
5.3. Load Balancing Considerations 25
5.4. Caching P4P Information 25
5.5. Transport and Encoding Considerations 25

6. Security Considerations 26
6.1. Protecting P4P Information 26
6.1.1. Authentication . 26
6.1.2. Encryption . 26

6.2. ISPs . 26
6.3. Clients . 27

7. IANA Considerations . 27
8. Conclusions . 27
9. References . 27
9.1. Normative References 27
9.2. Informative References 28

Appendix A. Contributors . 28
Appendix B. Acknowledgments 29

Wang, et al. Expires September 5, 2009 [Page 3]

Internet-Draft P4P Protocol Specification March 2009

1. Introduction

 Provider Portal for Network Applications (P4P) [I-D.p4p-framework] is
 a framework that enables Internet Service Providers (ISPs) and
 network application software developers to work jointly and
 cooperatively to optimize application communications. The goals of
 this cooperation are to reduce network resource consumption and to
 accelerate applications. To achieve these goals, P4P allows ISPs to
 provide network information and guidance to network applications,
 allowing clients to exchange data more effectively.

 This document specifies the P4P protocol operations and message
 formats. The goal is provide a formal specification for developers
 to create inter-operable implementations.

1.1. Status of this Memo

 The goal of this specification is to provide a snapshot of the
 current P4P design and implementation. Please refer to the P4P
 Framework document [I-D.p4p-framework] for detailed description of
 the design rationale and architecture. As the P4P framework is still
 under field trials and active development, this document will be
 updated to track the progress of major milestones or releases of the
 P4P framework.

1.2. Terminology

 A detailed description of the terminology can be found in
 [I-D.p4p-framework]. This section provides a short list of the
 terminology used in this specification.

 o Network Location Identifier: IP address, IP prefix, or an
 autonomous system number (ASN).

 o PID (Partition ID): an identifier for a set of Network Location
 Identifiers defined by ISPs for aggregation purposes under similar
 network characteristics; a PID can represent different network
 scopes such as subnet, groups of subnets, autonomous system (AS),
 etc. depending on the granularity desired by an ISP.

 o pDistance: a metric representing network information or preference
 between PIDs or Network Location Identifiers. pDistances have
 (optional) attributes to indicate type (e.g., routing cost, hop
 count, geographical distance, etc) and their interpretation (e.g.,
 numerical or ordinal ranking).

 o Location Portal Service: (described in Section 1.3.1)

Wang, et al. Expires September 5, 2009 [Page 4]

Internet-Draft P4P Protocol Specification March 2009

 o pDistance Portal Service: (described in Section 1.3.2)

1.3. Protocol Overview

 The P4P framework provides two services to applications, which
 correspond to the two sets of information defined in the P4P
 Protocol: the Location Portal Service and the pDistance Portal
 Service.

1.3.1. Location Portal Service

 The Location Portal Service provides a lookup service for the
 mappings between PIDs and Network Location Identifiers. There are
 two interfaces defined in the Location Portal Service:

 o GetPID: returns the PIDs corresponding to the Network Location
 Identifiers queried.

 o GetPIDMap: returns the lists of Network Location Identifiers
 contained within the PIDs queried. This allows applications to
 locally perform the mapping from Network Location Identifiers to
 their corresponding PIDs without further querying the Location
 Portal Service.

1.3.2. pDistance Portal Service

 The pDistance Portal Service: provides a lookup service for the
 pDistances between given PIDs. There is a single interface:

 o GetpDistance: returns the pDistances between given PID pairs or
 between given Network Location Identifier pairs.

1.4. Common Application Scenario

 A common usage scenario is for a network application, such as a peer-
 to-peer application, to use the P4P services to determine the order
 of communication preferences among a pool of available nodes that can
 provide the desired contents or services.

 One possibility is for an application to rely on the pDistance Portal
 Service alone by using Network Location Identifiers directly in the
 query. The returned pDistances may then be used by the application
 to specify the order in which target nodes are contacted. This use
 case may raise privacy and scalability issues due to inclusion of
 private information in requests and frequent queries.

 A second possibility is that the application queries the Location
 Portal Service to first obtain mappings between PIDs and network

Wang, et al. Expires September 5, 2009 [Page 5]

Internet-Draft P4P Protocol Specification March 2009

 nodes. These PID mappings may remain stable for a longer period of
 time. The application can then query the pDistance Portal Service to
 obtain pDistances between the target PIDs and its own PIDs, and rank
 the network nodes accordingly. The pDistance information may be
 refreshed at a smaller timescale than PID mappings.

 The introduction of PIDs as an aggregation point can reduce redundant
 lookups among nodes belong to the PIDs where pDistances are known
 (from prior lookups). The separation of the Location Portal Service
 and the pDistance Portal Service provides a clean differentiation
 between the two basic types of information in P4P, which can be
 updated at different timescales.

1.5. Key Features

 While the P4P Framework does not depend on any particular transport
 or message formats and encodings, the current P4P protocol is
 implemented primarily considering ease of application integration,
 caching of network information (Section 5.4), and authentication and
 encryption (Section 6.1). Also see Section 5.5 for further
 discussion.

2. Conventions Used in This Document

 In examples, "C:" and "S:" indicate lines sent by the client and
 server respectively.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. Messages

 This section formally specifies the P4P protocol messages that
 implement the P4P interfaces presented in Section 1.3. This section
 presents encodings for data types used in the messages, and then
 defines the messages themselves.

 The current P4P protocol uses textual encodings for request and
 response messages. The following definitions use the Augmented BNF
 and Core Rules in [RFC4234] to specify the encodings.

3.1. Definitions

 The P4P interfaces make use of data types such as IP addresses and
 PIDs. We first define the encodings used for these data types.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4234

Wang, et al. Expires September 5, 2009 [Page 6]

Internet-Draft P4P Protocol Specification March 2009

3.1.1. Basic Types

 P4P data type definitions use some basic data types:

 ACHAR = ALPHA ; Alphanumeric character
 / DIGIT
 SCHAR = ACHAR ; Alphanumeric character
 / "-" ; or hyphen

 ASTRING = 1*ACHAR ; Alphanumeric string

 NZDIGIT = %x31-39 ; Non-zero digit

 UINT = NZDIGIT *DIGIT ; Unsigned integer
 / "0"

 Note that when a particular definition requires an unsigned integer
 with a particular range (e.g., 16-bit unsigned integer with range 0 -
 65535), its format is indicated as UINT-K where K is the size in bits
 (e.g., UINT-16).

3.1.2. IP Addresses

 IPv4 addresses and prefixes use their standard textual
 representation:

 ipv4-addr = UINT-8 3("." UINT-8) ; IPv4 address
 ipv4-prfx = ipv4-addr "/" UINT-5 ; IPv4 prefix

 IPv6 addresses and prefixes use the standard textual representations
 as specified in Sections 2.2 and 2.3 of [RFC2373]. These
 representations are indicated in this document as 'ipv6-addr' and
 ipv6-prfx', respectively.

 IP Addresses and Prefixes may either be IPv4 or IPv6:

 ip-addr = ipv4-addr ; IP address
 / ipv6-addr
 ip-prfx = ipv4-prfx ; IP prefix
 / ipv6-prfx

3.1.3. Autonomous System Numbers

 Autonomous System numbers may either be 16-bit or 32-bit:

https://datatracker.ietf.org/doc/html/rfc2373

Wang, et al. Expires September 5, 2009 [Page 7]

Internet-Draft P4P Protocol Specification March 2009

 asn16 = "AS" UINT-16 ; 16-bit ASN
 asn32 = "AS" UINT-16 "." UINT-16 ; 32-bit ASN

 asn = asn16 ; 16-bit or 32-bit ASN
 / asn32

3.1.4. Network Location Identifiers

 Network Location Identifiers can be either IPv4 or IPv6 addresses or
 prefixes, as well as Autonomous System numbers:

 netloc-id = ip-addr ; Network Location
 / ip-prfx ; Identifier
 / asn

3.1.5. ISP Identifiers

 ISP identifiers follow standard domain name syntax:

 hostname = ACHAR *(*SCHAR ACHAR) ; Hostname
 tld = 1*ACHAR ; Top-level Domain
 domainname = 1*(hostname ".") tld ; Domain name

 isp-id = domainname ; ISP identifier

3.1.6. PIDs

 PIDs use an indicator to specify whether they represent intradomain
 ("internal") or interdomain ("external") network locations:

 pid-ind-int = "i" ; Internal PID indicator
 pid-ind-ext = "e" ; External PID indicator

 pid-ind = pid-ind-int ; PID indicator
 / pid-ind-ext

 A PID name is fully-specified by a 16-bit integer, its indicator, and
 ISP identifier:

 pid = UINT-16 "." pid-ind "." isp-id
 ; PID

3.1.7. pDistance Values

 pDistance values are 16-bit unsigned integers:

 pdist = UINT-16 ; pDistance value

Wang, et al. Expires September 5, 2009 [Page 8]

Internet-Draft P4P Protocol Specification March 2009

3.1.8. pDistance Endpoint

 pDistances are configured between pDistance Endpoints, which may be
 PIDs or specialized to Network Location Identifiers:

 pdist-endp = pid ; pDistance Endpoint
 / netloc-id

3.2. Syntax

 This section formally defines the message formats used by the P4P
 interfaces. The P4P protocol operates over HTTP 1.0 [RFC1945] or 1.1
 [RFC2616]. Thus, this specification defines the following components
 of the request and response messages:

 o Request Method

 o Request URI Path and Query String

 o Request Data

 o Response Data

3.2.1. Headers

 In addition to the components of individual messages defined in this
 section, the P4P protocol defines additional headers.

3.2.1.1. PIDMap Version Tag Response Header

 A PIDMap Version Tag (discussed in Section 4.2.1.1) is specified in
 response messages from a Portal Server using the header:

 X-P4P-PIDMap: <UINT-32>

 where <UINT-32> is a string following the 'UINT-32' format.

3.2.1.2. pDistance Type Response Header

 The Type of pDistances contained in a response from the pDistance
 Portal Service is specified using the header:

 X-P4P-pDistType: <ASTRING>

 where <ASTRING> is a string following the 'ASTRING' format.

https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/rfc2616

Wang, et al. Expires September 5, 2009 [Page 9]

Internet-Draft P4P Protocol Specification March 2009

3.2.1.3. pDistance Mode Response Header

 The Mode of pDistances contained in a response from the pDistance
 Portal Service is specified using the header:

 X-P4P-pDistMode: <ASTRING>

 where <ASTRING> is a string following the 'ASTRING' format.

3.2.2. Content-Type

 The data contained in the request and response messages MUST use a
 Content-Type of 'text/plain'. The standard HTTP mechanisms for
 encoding (e.g., Content-Encoding and Transfer-Encoding) the data MAY
 additionally be applied as indicated by the HTTP standard.

3.2.3. GetPID and PID Messages

3.2.3.1. GetPID Request

 The GetPID message requests the PIDs corresponding to a set of
 Network Location Identifiers.

 The format of the Request Data is:

 getpid-data = *(netloc-id CRLF)

 The GetPID message is then specified as:

 Request Method: POST (may be GET if Request Data is empty)
 Request URI: /pid
 Request Data: getpid-data

3.2.3.2. PID Response

 The PID message is returned by a Portal Server in response to a
 GetPID request and provides the PID for the requested Network
 Location Identifiers.

 The format of the Response Data is:

 pid-data = 1*(netloc-id WSP pid CRLF)

 The PID message is specified as:

 Response Data: pid-data

Wang, et al. Expires September 5, 2009 [Page 10]

Internet-Draft P4P Protocol Specification March 2009

3.2.4. GetPIDMap and PIDMap Messages

3.2.4.1. GetPIDMap Request

 The GetPIDMap message requests the Network Location Identifiers
 contained within PIDs.

 The format of the Request Data is:

 getpidmap-data = *(pid CRLF)

 The GetPIDMap message is specified as:

 Request Method: POST (may be GET if Request Data is empty)
 Request URI: /pid/map
 Request Data: getpidmap-data

3.2.4.2. PIDMap Response

 The PIDMap message is returned by a Portal Server in response to a
 GetPIDMap request and provides the list of Network Location
 Identifiers for each of the requested PIDs.

 Each line of the Response Data contains a PID and the Network
 Location Identifiers contained in the PID. The count of Network
 Location Identifiers in the list is also included to simplify
 processing. The format of the Response Data is:

 pidmap-line = pid WSP UINT-32 1*(WSP netloc-id)

 pidmap-data = *(pidmap-line CRLF)

 The PIDMap message is specified as:

 Response Data: pidmap-data

3.2.5. GetpDistance and pDistance Messages

3.2.5.1. GetpDistance Request

 The GetpDistance message requests pDistances of the specified type
 between pDistance Endpoints (i.e., a list of Source Endpoint ->
 Destination Endpoint pairs).

 pDistance Type and Mode are optionally specified as a query string
 arguments in the Request URI.

 Conceptually, the message data specifies a list of Source ->

Wang, et al. Expires September 5, 2009 [Page 11]

Internet-Draft P4P Protocol Specification March 2009

 Destination pairs in the Request Data. For efficiency, however, a
 more compact representation is used.

 Each line of the Request Data encodes a request for the pDistances
 from a particular Source Endpoint to a list of Destination Endpoints.
 By specifying an "inc-reverse" option, the pDistances from the
 Destination Endpoints to the Source Endpoint may also be requested.
 The count of Destination Endpoints in the list is also included to
 simplify processing. The format of the Request Data is:

 getpdist-line = pdist-endp
 WSP ("inc-reverse" / "no-reverse")
 WSP UINT-32
 1*(WSP pdist-endp)

 getpdist-data = *(getpdist-line CRLF)

 The GetpDistance message is then specified as:

 Request Method: POST (may be GET if Request Data is empty)
 Request URI: /pdistance?type=<ASTRING>&mode=<ASTRING>&direct
 Request Data: getpdist-data

 where <ASTRING> indicates a string following the 'ASTRING' format.
 The 'direct' parameter indicates that pDistance Endpoints are Network
 Location Identifiers instead of PIDs.

 The 'type', 'mode', and 'direct' Request URI query string parameters
 are optional. Section 4.2.4 indicates the default behavior if not
 explicitly supplied.

3.2.5.2. pDistance Response

 The pDistance message is returned by a Portal Server in response to a
 GetpDistance request and specifies the pDistances for the requested
 Source Endpoint -> Destination Endpoint pairs.

 The encoding for the Response Data follows a similar pattern as the
 GetpDistance message Request Data.

 Each line of the Response Data specifies the pDistances from a Source
 Endpoint to a list of Destination Endpoints. The pDistance to a
 Destination Endpoint is encoded directly following Destination
 Endpoint in the list. If the reverse option is "inc-reverse", a
 second pDistance is included indicating the pDistance from the
 Destination Endpoint to the Source Endpoint. The format of the
 Response Data is:

Wang, et al. Expires September 5, 2009 [Page 12]

Internet-Draft P4P Protocol Specification March 2009

 dst-pdist = pdist-endp 1*2(WSP pdist)

 pdist-line = pdist-endp
 WSP ("inc-reverse" / "no-reverse")
 WSP UINT-32
 1*(WSP dst-pdist)

 pdist-data = *(pdist-line CRLF)

 The pDistance message is specified as:

 Response Data: pdist-data

4. Protocol Operations

 The P4P Protocol is a simple request/response protocol. This section
 first discusses standard definitions such as well-known values, and
 then defines message and error handling.

4.1. Standard Definitions and Reserved Values

4.1.1. PIDs

4.1.1.1. Well-Known PIDs

 Some PID names are well-known and used for specific purposes. These
 PIDs use ISP Identifier "pid.p4p".

4.1.1.1.1. Default Aggregation PID

 Each Portal Server MUST define a PID which implicitly contains all
 Network Location Identifiers not contained by other Aggregation PIDs.
 This PID has the name:

 0.i.pid.p4p

4.1.1.2. Routing Cost PIDs

 The pDistance Portal Service allows applications to query pDistances
 between PIDs. We use the term Routing Cost PID to refer to a PID for
 which Routing Cost pDistances are defined. As defined later in

Section 4.2.4, a "default" request to the GetpDistance interface
 returns the Routing Cost pDistances between each pair of PIDs. The
 full set of PIDs contained in this response message is the full set
 of Routing Cost PIDs.

Wang, et al. Expires September 5, 2009 [Page 13]

Internet-Draft P4P Protocol Specification March 2009

4.1.2. pDistances

4.1.2.1. Reserved pDistance Types

 The pDistance Portal Service may define pDistances of multiple types.
 Specific pDistance types have reserved names beginning with "p4p".

4.1.2.1.1. Routing Cost pDistance

 Each Portal Server MUST define the Routing Cost pDistance type. This
 type uses the name:

 p4proutingcost

4.1.2.2. Reserved pDistance Modes

 pDistances have an attribute, called a Mode, indicating how they
 should be interpreted. Modes for both numerical and ordinal
 pDistances have reserved names.

4.1.2.2.1. Numerical pDistances

 Each Portal Server MUST reserve the following pDistance Mode to
 indicate numerical pDistances:

 p4pnumerical

 Numerical pDistances are defined such that a smaller pDistance value
 indicates a higher preference, while larger pDistance values
 indicates a lower preference.

4.1.2.2.2. Ordinal pDistances

 Each Portal Server MUST reserve the following pDistance Mode to
 indicate ordinal pDistances:

 p4pordinal

 Ordinal pDistances are defined such that a smaller pDistance value
 indicates a higher preference, while a larger pDistance value
 indicates a lower preference.

4.2. Message Handling

 This section further defines P4P interfaces by detailing the
 semantics applied to the P4P messages discussed in Section 3.2.

Wang, et al. Expires September 5, 2009 [Page 14]

Internet-Draft P4P Protocol Specification March 2009

4.2.1. Common Operations

 In addition to the specific message handling behavior discussed later
 in this section, certain common operations apply to all P4P
 interfaces.

4.2.1.1. PIDMap Version Tag

 Recall that P4P information is separated into two services, and that
 information provided by the pDistance Portal Service may be dependent
 on current PID mappings provided by the Location Portal Service.
 Applications may query the services independently, but should also
 ensure that they use consistent information.

 PIDMap Version Tags are opaque identifiers that allow an application
 to detect when previously-retrieved PID mappings are no longer valid.
 Conceptually, a Portal Server maintains a database, called the
 PIDMap, containing the mappings between Network Location Identifiers
 and PIDs. All responses from the Location Portal Service and
 pDistance Portal Service include the Version Tag of the PIDMap used
 to generate the response. If the Version Tag for pDistance
 information received by an application does not match the Version Tag
 for the stored PID mappings, the PID mappings should be updated from
 the Location Portal Service.

 One way to implement the Version Tag is as an integer which is
 incremented when the PIDMap is changed at the Portal Server. The
 integer can wrap around to 0 if necessary.

 Each non-error response message from a Portal Server MUST include a
 'X-P4P-PIDMap' header with its value being the Version Tag of the
 PIDMap used to generate the response.

4.2.1.2. Successful Responses

 A Portal Server MUST use HTTP Status Code 200 when replying to an
 operation that completed successfully. Note that this includes cases
 where the Portal Server responds with only a subset of the requested
 information, as discussed later in this section. The requesting
 application is expected to handle such cases if necessary.

4.2.2. GetPID

 A P4P Portal Server MUST implement the GetPID interface.

 The GetPID interface is defined to allow the Portal Server to
 directly return the PIDs for the supplied list of Network Location
 Identifiers. In the absence of an error condition specified in

Wang, et al. Expires September 5, 2009 [Page 15]

Internet-Draft P4P Protocol Specification March 2009

Section 4.3, the Portal Server MUST respond with a PID message
 specifying a PID for each queried Network Location Identifier
 supplied in the GetPID request message.

4.2.2.1. Empty Requests

 If the GetPID request message is empty (i.e., it contains a zero-
 length list of Network Location Identifiers), the Portal Server MUST
 interpret the request as if the list of Network Location Identifiers
 contained the IP address of the requestor as its only element.

 This provides an easy mechanism for a client to lookup its own PID
 even when it is behind a NAT or has multiple network interfaces.

4.2.3. GetPIDMap

 A P4P Portal Server SHOULD implement the GetPIDMap interface.

 The GetPIDMap interface is defined to provide an application
 information such that it can locally map between Network Location
 Identifiers and PIDs. In the absence of an error condition specified
 in Section 4.3, the Portal Server MUST respond with a PIDMap message
 containing lists of Network Location Identifiers for at least the
 Routing Cost PIDs supplied in the GetPIDMap request message. If the
 request specifies a non-empty list of PIDs, the Portal Server MUST
 NOT respond with lists of Network Location Identifiers for PIDs not
 contained in the request.

4.2.3.1. Empty Requests

 If the GetPIDMap request message is empty (i.e., it contains a zero-
 length list of PIDs), the Portal Server MUST interpret the request as
 if the list of PIDs were the full set of Routing Cost PIDs.

4.2.3.2. Non-Routing Cost PIDs

 If the GetPIDMap request message contains PIDs that are not in the
 set of Routing Cost PIDs, the Portal Server MAY interpret the request
 as if the list of PIDs did not contain such PIDs.

4.2.3.3. Network Location Identifier Lists

 The Network Location Identifiers returned by the Portal Server
 SHOULD, where possible, allow applications to locally obtain
 equivalent mappings between PIDs and Network Location Identifiers as
 would be obtained using the GetPID interface. If the list of Network
 Location Identifiers contains AS numbers, the Portal Server SHOULD
 ensure that this mapping can be done by applications with reasonable

Wang, et al. Expires September 5, 2009 [Page 16]

Internet-Draft P4P Protocol Specification March 2009

 accuracy with publicly-available information (e.g., public
 databases).

4.2.4. GetpDistance

 A P4P Portal Server MUST implement the GetpDistance interface for
 pDistances amongst PIDs. A P4P Portal Server MAY implement the
 GetpDistance interface for pDistances directly between Network
 Location Identifiers.

 The GetpDistance interface provides pDistances between PIDs defined
 by the Location Portal Service. It may also be used to directly
 query the pDistances between Network Location Identifiers. In the
 absence of an error condition specified in Section 4.3, the Portal
 Server MUST respond with a pDistance message containing pDistances of
 the requested type for all requested Source Endpoint -> Destination
 Endpoint pairs for which the pDistance type is defined. If the
 request specifies a non-empty list of Source Endpoint -> Destination
 Endpoint pairs, the Portal Server MUST NOT respond with pDistances
 for pairs not contained in the request.

4.2.4.1. Endpoint Types

 If the GetpDistance request message does not specify the 'direct'
 query string parameter, the Portal Server MUST parse all endpoints in
 the Request Data as PIDs (and hence follow the 'pid' syntax). If the
 'direct' query string parameter is specified, the Portal Server MUST
 parse all endpoints in the Request Data as Network Location
 Identifiers (and hence follow the 'netloc-id' syntax). If an
 endpoint in the request is found to not meet the expected format, the
 Portal Server MUST reject the request as being incorrectly formatted
 (see Section 4.3.2).

4.2.4.2. Invalid PID Pairs

 If the GetpDistance request message contains PIDs that are not in the
 set of PIDs that define pDistances of the requested type, the Portal
 Server MAY interpret the request as if the list of Source PID ->
 Destination PID pairs did not contain pairs referring to such PIDs.

4.2.4.3. Network Location Identifier Endpoints

 If the 'direct' query string parameter is specified, the the Portal
 Server MAY return customized pDistances instead of pDistances amongst
 the PIDs that contain the Network Location Identifiers.

 If a Portal Server does not implement the GetpDistance query for
 Network Location Identifiers, it MUST reply with a HTTP 501 (Not

Wang, et al. Expires September 5, 2009 [Page 17]

Internet-Draft P4P Protocol Specification March 2009

 Implemented) status code.

4.2.4.4. Default pDistance Type

 If the GetpDistance request message does not specify a pDistance type
 via a 'type' query string parameter, the Portal Server MUST interpret
 the message as if it specified the type as 'p4proutingcost'.

4.2.4.5. Unsupported pDistance Type

 If the GetpDistance request message specifies a pDistance type that
 is not supported by the Portal Server, the Portal Server MUST reply
 with a HTTP 501 (Not Implemented) status code.

4.2.4.6. pDistance Type Handling

 The pDistances encoded in the response message MUST be pDistances
 with the Type specified in the request message. If the pDistances
 encoded in the response message are not Routing Cost pDistances, the
 Portal Server MUST specify the returned pDistances' Type using the
 'X-P4P-pDistType' header.

4.2.4.7. Default pDistance Mode

 If the GetpDistance request message does not specify a pDistance Mode
 via a 'mode' query string parameter, the Portal Server MUST interpret
 the message as if it specified the mode as 'p4pnumerical'.

4.2.4.8. Unsupported pDistance Mode

 If the GetPDistance request message specifies a pDistance Mode that
 is not supported, the Portal Server MUST reply with pDistances with
 either a Mode of 'p4pnumerical' or 'p4pordinal'. Thus, a Portal
 Server must implement at least one of 'p4pnumerical' or 'p4pordinal'
 pDistances, but it may choose which to support.

4.2.4.9. pDistance Mode Handling

 The pDistances encoded in the response message SHOULD be pDistances
 with the Mode specified in the request message. If the pDistances
 encoded in the response message are not numerical pDistances, the
 Portal Server MUST specify the returned pDistances' Mode using the
 'X-P4P-pDistMode' header.

4.2.4.10. Empty Requests

 If the GetpDistance request message is empty (i.e., it contains no
 Source Endpoint -> Destination Endpoint pairs) and the 'direct' query

Wang, et al. Expires September 5, 2009 [Page 18]

Internet-Draft P4P Protocol Specification March 2009

 string parameter is not specified, the Portal Server MUST interpret
 the request as if the list of PIDs were the full set of PIDs that
 define pDistances of the requested type.

 If the request message is empty and the 'direct' query string
 parameter is specified, the Portal Server MUST reject the request as
 being incorrectly formatted (see Section 4.3.2).

4.3. Exception Handling

 This section specifies Portal Server behavior for specific error
 conditions that may be encountered. Standard HTTP status codes are
 returned by a Portal Server. The Portal Server MUST follow the HTTP
 protocol version in use for the current request for error conditions
 (e.g., indicating server overload conditions) not explicitly listed
 in this section.

4.3.1. Invalid Request URI Path

 If the Path portion of the Request URI does not refer to a valid P4P
 interface, the Portal Server MUST return an HTTP 404 (Not Found)
 status code.

4.3.2. Invalid Request Format

 If the Request Data or a Request URI Query String parameter is
 formatted incorrectly (i.e., it does not follow the syntax in

Section 3.2 or it fails to meet additional requirements specified in
Section 4.2), the Portal Server MUST return an HTTP 400 (Bad Request)

 status code.

4.4. Timers

 The P4P protocol is simple request/response protocol and hence does
 not require any additional timers beyond those required by the
 underlying protocol (i.e., HTTP and TCP).

4.5. Message Exchange Examples

 This section presents example message captures from the P4P protocol.
 Note that the message captures use HTTP chunked encoding for requests
 and responses. This is an implementation detail and does not imply
 that the P4P protocol must use chunked encoding.

 The message exchange examples in this section use a Portal Server
 configured with the following simple, illustrative topology. Labels
 on arrows between PIDs indicate pDistances. The pDistance from a PID
 to itself is configured to be 1. Note that the Portal Server reports

Wang, et al. Expires September 5, 2009 [Page 19]

Internet-Draft P4P Protocol Specification March 2009

 end-to-end pDistances. The method and factors (including, but not
 limited to, algorithm and routing policy) for computing end-to-end
 pDistances is a policy decision implemented by the Portal Server, and
 is outside the scope of this document. These examples are only
 provided to illustrate message format.

 .-------------.
 | 4.e.isp.net |
 '-------------'
 ^
 | 60
 v
 .-------------. 8 .-------------.
 | 0.i.isp.net | <------> | 3.i.isp.net |
 '-------------' '-------------'
 ^ ^
 | 4 | 4
 v v
 .-------------. 10 .-------------. 40 .-------------.
 | 1.i.isp.net | <------> | 2.i.isp.net | <--> | 5.e.isp.net |
 '-------------' '-------------' '-------------'

 Each PID has a set of Network Location Identifiers configured:

 0.i.isp.net : 10.0.0.0/24 10.0.1.0/24
 1.i.isp.net : 10.1.0.0/16
 2.i.isp.net : 10.2.0.0/24 10.2.1.0/24
 3.i.isp.net : 10.3.0.0/24
 4.e.isp.net : 172.16.0.0/12
 5.e.isp.net : 192.168.0.0/16

4.5.1. GetPID

4.5.1.1. Request PID for Own IP Address

 The following message exchange illustrates a client requesting its
 own PID from a Portal Server. The client uses an empty request, and
 the Portal Server responds with the client's IP address and the PID
 corresponding to the IP address.

Wang, et al. Expires September 5, 2009 [Page 20]

Internet-Draft P4P Protocol Specification March 2009

 C: POST /pid HTTP/1.1
 C: Host: localhost:6671
 C: Accept: */*
 C: Transfer-Encoding: chunked
 C: Expect: 100-continue

 S: HTTP/1.1 100 Continue

 C: 2

 C: 0

 S: HTTP/1.1 200 OK
 S: Transfer-Encoding: chunked
 S: X-P4P-PIDMap: 1
 S: Cache-Control: max-age=604800
 S: Content-Type: text/plain
 S: Date: Tue, 24 Feb 2009 19:26:43 GMT

 S: 17
 S: 10.1.1.12 1.i.isp.net

 S: 0

4.5.1.2. Request PIDs for List of IP Addresses

 The following message exchange illustrates a client directly asking
 the Portal Server to map a set of IP addresses into their
 corresponding PIDs.

Wang, et al. Expires September 5, 2009 [Page 21]

Internet-Draft P4P Protocol Specification March 2009

 C: POST /pid HTTP/1.1
 C: Host: localhost:6671
 C: Accept: */*
 C: Transfer-Encoding: chunked
 C: Expect: 100-continue

 S: HTTP/1.1 100 Continue

 C: 1e
 C: 10.1.23.200
 C: 192.168.1.128

 C: 0

 S: HTTP/1.1 200 OK
 S: Transfer-Encoding: chunked
 S: X-P4P-PIDMap: 1
 S: Cache-Control: max-age=604800
 S: Content-Type: text/plain
 S: Date: Tue, 24 Feb 2009 19:26:47 GMT

 S: 34
 S: 10.1.23.200 1.i.isp.net
 S: 192.168.1.128 5.e.isp.net

 S: 0

4.5.2. GetPIDMap

4.5.2.1. Request PID Map

 The following message exchange illustrates an application requesting
 the set of Network Location Identifiers contained within particular
 PIDs. Note that the application could also request for Network
 Location Identifiers in all Routing Cost PIDs by using an empty
 request.

Wang, et al. Expires September 5, 2009 [Page 22]

Internet-Draft P4P Protocol Specification March 2009

 C: GET /pid/map HTTP/1.1
 C: Host: localhost:6671
 C: Accept: */*
 C: Transfer-Encoding: chunked
 C: Expect: 100-continue

 S: HTTP/1.1 100 Continue

 C: 1c
 C: 0.i.isp.net
 C: 2.i.isp.net

 C: 0

 S: HTTP/1.1 200 OK
 S: Transfer-Encoding: chunked
 S: X-P4P-PIDMap: 1
 S: Cache-Control: max-age=604800
 S: Content-Type: text/plain
 S: Date: Tue, 24 Feb 2009 19:26:55 GMT

 S: 4E
 S: 0.i.isp.net 2 10.0.0.0/24 10.0.1.0/24
 S: 2.i.isp.net 2 10.2.0.0/24 10.2.1.0/24

 S: 0

4.5.3. GetpDistance

4.5.3.1. Request pDistance Among PIDs

 The following message exchange illustrates an application requesting
 Routing Cost pDistances between particular PIDs. Note that the
 application could also request pDistances amongst all Routing Cost
 PIDs by using an empty request.

Wang, et al. Expires September 5, 2009 [Page 23]

Internet-Draft P4P Protocol Specification March 2009

 C: POST /pdistance HTTP/1.1
 C: Host: localhost:6671
 C: Accept: */*
 C: Transfer-Encoding: chunked
 C: Expect: 100-continue

 S: HTTP/1.1 100 Continue

 C: 98
 C: 0.i.isp.net no-reverse 1 2.i.isp.net
 C: 1.i.isp.net no-reverse 1 5.e.isp.net
 C: 2.i.isp.net no-reverse 1 0.i.isp.net
 C: 3.i.isp.net no-reverse 1 4.e.isp.net

 C: 0

 S: HTTP/1.1 200 OK
 S: Transfer-Encoding: chunked
 S: X-P4P-PIDMap: 1
 S: Cache-Control: max-age=7200
 S: Content-Type: text/plain
 S: Date: Tue, 24 Feb 2009 19:26:39 GMT

 S: A4
 S: 0.i.isp.net no-reverse 1 2.i.isp.net 14
 S: 1.i.isp.net no-reverse 1 5.e.isp.net 50
 S: 2.i.isp.net no-reverse 1 0.i.isp.net 14
 S: 3.i.isp.net no-reverse 1 4.e.isp.net 68

 S: 0

5. Discussions

5.1. Discovery

 To make use of a P4P Portal Server, an application must first be able
 to identify the address and port on which the server is running. The
 discovery mechanism is not part of the P4P protocol specification as
 it can be provided as a modular component in the framework. Several
 existing protocols, such as DNS, DHCP, or IP multicast, can be used
 to discover the service locations of the P4P Portal Servers. This
 section briefly describes the discovery mechanism used by the current
 P4P implementation.

 The P4P prototype is (as of this writing) deployed with a small
 number of active Portal Servers. Thus, a simple centralized
 discovery mechanism is used for clients that must discover a Portal
 Server. Manual configuration is used for tracker-based integrations,

Wang, et al. Expires September 5, 2009 [Page 24]

Internet-Draft P4P Protocol Specification March 2009

 by configuring Application Trackers with addresses of available
 Portal Servers. This mechanism is independent of the protocol
 messages exchanged between applications and Portal Servers, and hence
 can easily be replaced by another mechanism (e.g., as recommended by
 ALTO).

5.2. Delegation

 During P4P field tests, ISPs have proposed the possibility of
 delegation, in which an ISP provides information for customer
 networks which do not wish to run Portal Servers themselves. A
 consideration for delegation is that customer networks may wish to
 explicitly configure such delegation.

5.3. Load Balancing Considerations

 Due to a large volume of requests or fault tolerance concerns, it may
 an ISP may wish to provide multiple Portal Servers to serve requests.
 The current P4P protocol only requests information from Portal
 Servers, so it is straightforward to use existing load balancing
 techniques and/or providing redundant backup Portal Servers.

5.4. Caching P4P Information

 P4P information can include parameters controlling the lifetime and
 caching options. In particular, the standard HTTP Expires (for HTTP
 1.0 and 1.1) and Cache-Control (for HTTP 1.1) headers MAY be included
 in response messages from Portal Services. Portal Servers MUST NOT
 include Cache-Control headers enabling caching in responses to non-
 empty requests. The semantics applied to the Expires and Cache-
 Control headers follow the interpretation in the standard HTTP
 protocol.

 Requests to Portal Services MAY include Cache-Control headers to
 serve as instructions to the Portal Server. The Portal Server MUST
 follow standard HTTP behavior in response to such headers. Note that
 this includes the possibility of ignoring the instruction and
 including a Warning header in the response message.

5.5. Transport and Encoding Considerations

 The P4P framework does not depend on any particular message transport
 or encoding. However, the current P4P Protocol uses HTTP since it is
 widely-implemented and directly provides or integrates with much of
 the desired functionality:

 o Authentication and Encryption: HTTP directly provides Basic and
 Digest authentication options. Existing implementations also

Wang, et al. Expires September 5, 2009 [Page 25]

Internet-Draft P4P Protocol Specification March 2009

 commonly integrate SSL/TLS which can also provide authentication
 and encryption. See Section 6.1 for further discussion.

 o Caching: Network information may be easily cached to reduce load
 on a Portal Server. The current P4P protocol formats requests and
 responses (by specifying operations and parameters in the Request
 URI) such that they may be cached using existing HTTP cache
 servers. As discussed in Section 5.4, Portal Servers indicate the
 lifetime of P4P information, and the same caching parameters
 indicate to applications how long P4P information is valid before
 it should be refreshed.

 Note, however, that other transports or message encodings may have
 benefits in certain (e.g., UDP for small messages).

6. Security Considerations

6.1. Protecting P4P Information

 A Portal Server can optionally control access to P4P information to
 specific users or applications. Additionally, the transport of such
 information may be encrypted. This section discusses the
 authentication and encryption as they relate to the P4P protocol.
 Note that authorization is outside the scope of this document.

 Note that the discovery mechanism may need to account for certain
 Portal Server capabilities (e.g., SSL/TLS).

6.1.1. Authentication

 If a Portal Server wishes the P4P interfaces to be accessible to
 particular users or applications, it MAY use either a standard HTTP
 authentication techniques (e.g., Basic and Digest), or SSL/TLS.

6.1.2. Encryption

 If a Portal Server wishes requests and responses to be encrypted, it
 MAY use standard SSL/TLS techniques.

6.2. ISPs

 Additional security consideration for ISPs lies in the potential risk
 of disclosing network topology and provisioning information through
 PIDs and pDistances. ISPs must evaluate how much information to
 reveal and the associated risks. For example, if an ISP reveals
 extremely fine-grained information, it may be easier for attackers to
 infer network topology information. ISPs should also take into
 account that revealing overly coarse-grained information may not

Wang, et al. Expires September 5, 2009 [Page 26]

Internet-Draft P4P Protocol Specification March 2009

 provide benefits to either them or applications.

6.3. Clients

 There are two possible security concerns for the clients: privacy and
 malicious P4P providers. First, clients can potentially disclose
 private information to the P4P Service Portals if either PIDs are
 extremely fine-grained or Network Location Identifiers are included
 directly in the query. In such a case, ISPs may be able to infer
 from the queries the communication patterns of a client. One
 possibility is for clients to only retrieve the full set of PIDs (via
 GetPIDMap) and pDistances (via GetpDistance).

 Second, a malicious or ineffective P4P service provider could lead to
 bad application performance or, in extreme cases, denial of service.
 Clients may use other mechanisms to complement P4P information, or
 replace or ignore P4P information if it is ineffective.

7. IANA Considerations

 The P4P protocol includes identifiers and well-known values that may
 be assigned by the IANA. However, as the P4P framework is still
 under field trials and active development, this current specification
 does not cover such policies. This document will be updated to
 include any IANA considerations at a later point.

8. Conclusions

 The main contribution of the P4P Framework is to establish a
 communication channel between network applications and the
 infrastructure providers (ISPs). The current implementation focuses
 on providing the services to query PIDs for aggregation and
 pDistances for network information and preferences among PIDs for
 communication. This document provides a formal specification of the
 detailed operations and message formats for the base P4P protocol
 used in the P4P framework.

9. References

9.1. Normative References

 [I-D.p4p-framework] Alimi, R., Pasko, D., Popkin, L., Wang, Y., and
 Y. Yang, "P4P: Provider Portal for P2P
 Applications", draft-p4p-framework-00 (work in
 progress), November 2008.

 [RFC1945] Berners-Lee, T., Fielding, R., and H. Nielsen,
 "Hypertext Transfer Protocol -- HTTP/1.0",

https://datatracker.ietf.org/doc/html/draft-p4p-framework-00

Wang, et al. Expires September 5, 2009 [Page 27]

Internet-Draft P4P Protocol Specification March 2009

RFC 1945, May 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to
 Indicate Requirement Levels", BCP 14, RFC 2119,
 March 1997.

 [RFC2373] Hinden, R. and S. Deering, "IP Version 6
 Addressing Architecture", RFC 2373, July 1998.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk,
 H., Masinter, L., Leach, P., and T. Berners-Lee,
 "Hypertext Transfer Protocol -- HTTP/1.1",

RFC 2616, June 1999.

 [RFC4234] Crocker, D., Ed. and P. Overell, "Augmented BNF
 for Syntax Specifications: ABNF", RFC 4234,
 October 2005.

9.2. Informative References

 [SIGCOMM08] H. Xie, Y.R. Yang, A. Krishnamurthy, Y. Liu, and
 A. Silberschatz., "P4P: Provider Portal for
 (P2P) Applications", In ACM SIGCOMM. 2008.

Appendix A. Contributors

 The P4P project includes contributions from many members of the P4P
 Working Group, hosted by DCIA.

 The individuals involved in the design and P4P field tests include
 (in alphabetical order):

 o Richard Alimi, Yale University

 o Alex Gerber, AT&T

 o Chris Griffiths, Comcast

 o Ramit Hora, Pando Networks

 o Arvind Krishnamurthy, University of Washington

 o Y. Grace Liu, IBM Watson

 o Jason Livingood, Comcast

 o Michael Merritt, AT&T

https://datatracker.ietf.org/doc/html/rfc1945
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2373
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc4234

Wang, et al. Expires September 5, 2009 [Page 28]

Internet-Draft P4P Protocol Specification March 2009

 o Doug Pasko, Verizon

 o Reinaldo Penno, Juniper Networks

 o Laird Popkin, Pando Networks

 o Stefano Previdi, Cisco

 o Satish Raghunath, Juniper Networks

 o James Royalty, Pando Networks

 o Thomas Scholl, AT&T

 o Emilio Sepulveda, Telefonica

 o Stanislav Shalunov, BitTorrent

 o Avi Silberschatz, Yale

 o Hassan Sipra, Bell Canada

 o Haibin Song, Huawei

 o Oliver Spatscheck, AT&T

 o Jia Wang, AT&T

 o Richard Woundy, Comcast

 o Hao Wang, Yale University

 o Ye Wang, Yale University

 o Haiyong Xie, Yale University

 o Y. Richard Yang, Yale University

Appendix B. Acknowledgments

 The authors would like to thank the members of the P4P Working Group
 for their collaboration, and the members of the p2pi mailing list for
 their comments and questions. We would like to think Marty Lafferty
 from DCIA, Erran Li, Jin Li, and See-Mong Tang for giving us
 excellent feedback.

 We would also like to thank David Zhang from PPLive for identifying
 the need for PIDMap Version Tags.

Wang, et al. Expires September 5, 2009 [Page 29]

Internet-Draft P4P Protocol Specification March 2009

Authors' Addresses

 Yu-Shun Wang
 Microsoft Corp.
 One Microsoft Way
 Redmond, WA 98052
 USA

 EMail: yu-shun.wang@microsoft.com

 Richard Alimi
 Yale University

 EMail: richard.alimi@yale.edu

 Doug Pasko
 Verizon

 EMail: doug.pasko@verizon.com

 Laird Popkin
 Pando Networks, Inc.

 EMail: laird@pando.com

 Y. Richard Yang
 Yale University

 EMail: yry@cs.yale.edu

Wang, et al. Expires September 5, 2009 [Page 30]

