
draft:

Workgroup: Internet Engineering Task Force

draft-wang-open-service-access-protocol-00

Published: 18 March 2021

Intended Status: Standards Track

Expires: 19 September 2021

Authors: B. Wang, Ed.

Hikvision

S.P. Zhou, Ed.

Hikvision

C. Li, Ed.

Guangzhou University

C.M. Wu, Ed.

Zhejiang University

Z.Z. Wang, Ed.

Zhejiang University

Open Service Access Protocol for IoT Smart Devices

Abstract

With the development of IoT(Internet of Things) technology,

everything is interconnected. Mass IoT data, devices, businesses,

and services adopt different data descriptions and service access

methods, resulting in fragmentation issues, such as data

heterogeneous, device heterogeneous, and application heterogeneous,

which hinders the development of the industry. In order to solve the

problem, this draft proposes the requirements for IoT smart devices

to transmit and control, as well as transmission and protocol

interfaces. It is for the program design, system testing and

acceptance, and related research. Structured, unified, and

standardized open service interconnection model reduces business

replication cost and removes service barriers to push industrial

development.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 19 September 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Preface

2. requirements for Consistency

2.1. Terms and Definitions

2.1.1. Area

2.1.2. Attribute

2.1.3. Operation

2.1.4. Event

2.1.5. Resource

2.1.6. IoT Device Management Platform

2.1.7. Device Access Service

2.1.8. IoT Smart Devices

2.2. Abbreviations and Acronyms

3. Framework of Device Communication Protocol

4. Interface protocol structure

5. Device certification

6. Get access service

7. Heartbeat

8. Security Considerations

9. IANA Considerations

10. Informative References

Authors' Addresses

1. Preface

With the development of the IoT technology, everything is widely

interconnected, human-machine interact deep, including autonomous

vehicles, telemedicine, smart factories, smart cities and other

innovative applications. With the development of business, Mass IoT

data, devices, businesses, and services adopt different data

descriptions and service access methods, resulting in fragmentation

issues, such as data heterogeneous, device heterogeneous, and

application heterogeneous, which hinders the development of the

industry, which mainly refers to:

Low value of data: IoT data has the characteristics of multi-

source heterogeneity and huge scale, making it difficult for

data analysis and sharing. At the same time, the lack of

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1.

https://trustee.ietf.org/license-info

business relevance between massive amounts of data leads to

inefficient use of data.

High cost of business replication: different devices use

different access standards. The cost of device access is too

high and the time is too long. With the growth quantity of

applications and devices, new device needs to be customized and

developed multiple times for different standards, resulting in

increased business replication cost.

Difficulty in industrial chain cooperation: There are different

access protocols and data models between different

manufacturers. The internal industrial chain has its own

system, which makes it difficult for industrial chain to

collaborate, for devices to be linked, maintained, for service

to be compatible, Which seriously affects the user experience.

In order to solve the problem, this draft proposes the requirements

for IoT smart devices to transmit and control, as well as

transmission and protocol interfaces. It is for the program design,

system testing and acceptance, and related research. Structured,

unified, and standardized open service interconnection model reduces

business replication cost and removes service barriers to push

industrial development.

2. requirements for Consistency

2.1. Terms and Definitions

2.1.1. Area

A set of related functions, which is business independent.

2.1.2. Attribute

Used to describe the sustainable state of the devices during

operation, which can be read and set.

2.1.3. Operation

A method that can be called externally by a device or platform. The

operation includes "input parameters" and "output parameters". The

input parameters are the instruction information that needed to

perform the operation, and the output parameters are the feedback

information after the instruction is executed.

2.1.4. Event

Information actively reported by the device. This type of

information needs to be reported in real time and processed by the

¶

2.

¶

3.

¶

¶

¶

¶

¶

platform in time. If the device network is interrupted, it can be

cached and reported after recovery.

2.1.5. Resource

An entity that is a relatively independent component of the device

and can independently handle user requirements. User applications

can independently show or manage the resources of the device. For

example, the video channel of NVR device.

2.1.6. IoT Device Management Platform

A system that connects a large number of diverse and heterogeneous

sensing devices and can unify access management of devices, collect,

process and store data.

2.1.7. Device Access Service

Services for managing, controlling and configing device functions

and support attributes, operations, and events.

2.1.8. IoT Smart Devices

Physical entities with video, image, and information perception

capabilities, including: video equipment, access control, radar,

etc. It can be directly connected to the IoT device management

platform, or be a gateway that connects the agent sub-device and the

IoT device management platform.

2.2. Abbreviations and Acronyms

Abbreviations and Acronyms Full Name

JSON Java Script Object Notation

MQTT[MQTT2016] Message Queuing Telemetry Transport

TLS[RFC8446] Transport Layer Security

UTF-8 8-bit Unicode Transformation Forma

URL Uniform Resoure Locator

Table 1

3. Framework of Device Communication Protocol

The framework of the protocol is shown below:

¶

¶

¶

¶

¶

¶

Figure:Framework of Device Communication Protocol

The business is separated from the protocol. In the bottom layer, it

adopts MQTT to transmit data. Different transmission channels are

used for authentication, media, storage and attributes, operations,

and events.

4. Interface protocol structure

In this draft, the session channel interface adopts MQTT protocol.

Structure of MQTT protocol is divided into three sections: fixed

header, variable header and payload. Structure of MQTT protocol is

shown below.

Bussiness Protocol---+

| +------+ +-----+ +-------+ +----+ +--------+ |

| | | | | | | |area| |Resource| |

| |store/| |Media| |Upgrate| +----+ +--------+ |

| |file | | | | | +---------+ +---------+ +-----+ |

| | | | | | | |attribute| |operation| |event| |

| +------+ +-----+ +-------+ +---------+ +---------+ +-----+ |

+--+

Fundamental communication protocol---------------------------+

| +---------------------------+ |

| | +-----------------------+ +----------------------------+ |

| | | store | media |update | | attribute|operation| event | |

| | |channel|channel|channel| | channel | channel |channel| |

| | +-----------------------+ +----^-----+----^---------^--+ |

| +---------------------------+ | | | |

| ^ ^ ^ | | | |

| | | +---+---------+----------+---------+--+ |

| | | | MQTT | |

| | | +-----------------^---------------^---+ |

| | | | | |

| | | | +----+---+ |

| | | | | TLS | |

| | | | +----^---+ |

| | | | | |

| +---+---+ +--+---------------------+---------------+---+ |

| |HTTP(S)| | TCP | |

| +-------+ +--+ |

+--+

¶

¶

¶

¶

Table: MQTT protocol structure

General protocols and business protocol bodies need AES (128)

encryption during transmission, and UTF-8 encoding is used uniformly

for character strings.

5. Device certification

The overall protocol format of the authentication process is shown

as follows:

--------+---------------------------+-----------------------------------

 | |

 | Header | Payload

structre|------------+--------------+----------------+------------------

 | | | |

 |Fixedheader |Variableheader|GeneralPayload |ApplicationPayload

--------+------------+--------------+-------+--------+------------------

name |Fixedheader |Variableheader|length |content |content

--------+------------+--------------+-------+--------+------------------

symbol |FixedHEADER |VariableHEADER|LEN |Gernal |Func

--------+------------+--------------+-------+--------+------------------

length |2-5 bytes |variable |2 bytes|variable|variable

--------+------------+--------------+-------+--------+------------------

des- |Depending |Different |The |See |The format

cription|on the |control |length |defi- |depends on

 |length of |message has |of |nition |specific

 |the variable|different |general|for its |transaction

 |header and |variable |payload|format |

 |payload, the|headers | | |

 |length of | | | |

 |the fixed | | | |

 |header | | | |

 |varies | | | |

 |between 2 | | | |

 |and 5 bytes | | | |

--------+------------+--------------+-------+--------+------------------

¶

¶

¶

¶

Table: MQTT protocol format

The protocol version definition is shown as follows:

name type description

FORM_VERSION char version number of protocol form

HIGHTYPEVERSION char version number of protocol type(high)

LOWTYPEVERSION char version number of protocol type(low)

Table 2: Protocol version definition

Device access adopts bidirectional negotiation protocol process.

Devices sends the supported type of protocol group to the balance

load service, and the server will determine which way to communicate

--------+--------------------------+------------------------------------

 | |

 | Header | Payload

structre|-----------+--------------+-----------------+------------------

 | | | |

 |Fixedheader|Variableheader|GeneralPayload |ApplicationPayload

--------+-----------+--------------+---------+-------+------------------

name |Fixedheader|Variableheader|version |con+ |

 | | | |tent |

--------+-----------+--------------+---------+-------+------------------

symbol |FixedHEADER|VariableHEADER|PROTOCOL-| |PROTOCOL-

 | | |VERSION |Func |VERSION

 | | | | |

--------+-----------+--------------+---------+-------+------------------

length |2|5 bytes |Variable |3 bytes |Va- |3 bytes

 | | | |riable |

 | | | | |

--------+-----------+--------------+---------+-------+------------------

des- |Depending |Different |The |See |The

cription|on the |control |version |tran- |version

 |length of |message has |of |saction|of

 |the |different |protocol |for its|protocol

 |variable |variable | |format |

 |header and |headers | | |

 |payload, | | | |

 |the | | | |

 |length of | | | |

 |the fixed | | | |

 |header | | | |

 |varies | | | |

 |between 2 | | | |

 |and 5 bytes| | | |

--------+-----------+--------------+---------+-------+------------------

¶

¶

¶

depending on its own situation. After the device being

authenticated, it can establish an MQTT connection with the device

access service (Das) through the sessionkey to communicate with the

bussiness protocol. The specific bidirectional negotiation diagram

is as follows:

Figure 1: bidirectional negotiation diagram - consistence

¶

 +------+ +------+

 |device| |server|

 +---+--+ +------+

 | |

 | |

 | |

 | |

+----------------------+----------+ | |

| negotiation request | | | |

+----------------------+ | +--negotiation request---> +--+

| Control message type:0x1 | | | |

| | | | |

| Control flag:0x1 | | | |

| | | | |

| protocol type:1 | | | |

| | | | |

| protocol group:(1,2,4,8) | | | |

| | | <--negotiation response--+ |

| transaction content:xxxxxx | | | |

+---------------------------------+ | +--+

 | |

 | |

+----------------------+----------+ | |

| negotiation response | | | |

+----------------------+ | | |

| Control message type:0x2 | | |

| | | |

| Control flag:0x1 | | |

| | | |

| protocol type:1 | | |

| | | |

| transactionocontent:xxxxxx | | |

+---------------------------------+ | |

Figure 2: bidirectional negotiation diagram - inconsistence

bidirectional negotiation can be divided into two conditions:

 +------+ +------+

 |device| |server|

 +---+--+ +------+

+----------------+-+ | | +----------------+-+

| negotiation | | | | | negotiation | |

| request2 | | | | | response2 | |

+----------------+ | | negotiation | +----------------+ |

|Control | +-- request1 --> | |Control |

|message type:0x1 | | | |message type:0x2 |

| | | | | |

|Control flag:0x1 | | | |Control flag:0x1 |

| | | | | |

|protocol type:2 | | | |protocol type:2 |

| | | | | |

|protocol | | negotiation | |protocol |

|group:(1,2,4,8) | | <-- response1--+ |group:(2,4,8) |

| | | | | |

|transaction | | | |transaction |

|content:xxxx | | | |content:xxxx |

+------------------+ | | +------------------+

 | |

+--+

 | negotiation |

 disconnect +-- request2 --> |

 | |

+----------------+-+ | | +----------------+-+

| negotiation | | | | | negotiation | |

| request2 | | | | | response2 | |

+----------------+ | | | +----------------+ |

|Control | | | |Control |

|message type:0x1 | | negotiation | |message type:0x2 |

| | | <-- response2--+ | |

|Control flag:0x1 | | | |Control flag:0x1 |

| | | | | |

|protocol type:2 | | | |protocol type:2 |

| | | | | |

|protocol | | | |transaction |

|group:(1,2,4,8) | | | |content:xxxx |

| | | | | |

|transaction | | | | |

|content:xxxx | | | | |

+------------------+ | | +------------------+

 | |

 | |

 + +

¶

(1) If the service supports this type of protocol, select the most

secure protocol in the device's protocol group to complete the

negotiation and communicate with the device;

(2) If the service does not support the type of protocol, return the

message to the device,which contains the type of protocol and

protocol group supported by the service. And then, interupt TCP

connection. If the device supports it, use again the type of

protocol and protocol group supported by the service to go through

the authentication process. Otherwise, the device should give up

authentication with the service.

In order to ensure forward compatibility with the ECDH key

interaction mode, Bit1 of the control flag bit is enabled. When Bit1

is 0, the control message type remains in the original mode, and

when Bit1 is 1, it means that the ECDH key mode is used for

interaction. The key algorithm of secret key in the authentication

process:

sharekey:pdkdf2SHA256(md5(md5(MD5(verification code + device serial

number)+www.88075998.com))) Device masterkey: ecdhNIDsecp384r1

(lbspublickey, deviceprivatekey) Server masterkey: ecdhNIDsecp384r1

(devicepublickey, lbs_privatekey)

a) First Authentication

When the device requires for working online the first time,

useexchange algorithm of ECDH secret key to initialize DEVID and

MasterKey. The process is shown as follows:

¶

¶

¶

¶

¶

¶

Figure 3: First Authentication

b) Reauthentication

When the device is disconnected and ask for reauthenticated, it

needs to request reauthentication from the platform and update the

sessionkey. The specific process is shown as follows:

 +------+ +-----------+

 |Device| |Lbs service|

 +------+ +------+----+

 | |

+-----------------Privatekey exchange------------------------+

 +-----+ |

 | |Generate privatekey and publickey |

 <-----+ |

 +-----+ |

 | |Generate sharekey |

 <-----+ |

 |-------Request for privatekey interaction------->

 <-------Reponse for privatekey interaction-------+

 +-----+ |

 | |Decrypt lbs_publickey from response |

 <-----+ |

 +-----+ |

 | |Generate materkey |

 <-----+ |

 +-------------------- apply devid---------------------------+

 |-------| Request for applying devid |----------->

 <---------Reponse for applying devid-------------+

 +-----+ |

 | |Decrypt devid and sessionkey from response|

 <-----+ |

 |---|Request for getting Das service address----->

 <----Reponse for getting Das service address-----+

 | |

 + +

¶

¶

Figure 4: Re-authenticate

c) Define the ECDH control message type as follows:

message

direction

control

message
name description

Dev<--->Lbs 0x1 AuthenticationECDHReq
request for

ECDH exchange

Dev<--->Lbs 0x2 AuthenticationECDHRsp
response for

ECDH exchange

Dev<--->Lbs 0x3 Rsrv reserve

Dev<--->Lbs 0x4 RefreshSessionKeyReq

refresh

SessionKey

request

Dev<--->Lbs 0x5 Rsrv reserve

Dev<--->Lbs 0x6 RefreshSessionKeyRsp

refresh

SessionKey

response

Dev<--->Lbs 0x7 Authenticationapplydevid_Req
request device

ID

Dev<--->Lbs 0x8 Authenticationapplydevid_Rsq
response device

ID

Dev<--->Lbs 0x9 Authenticationapplydevid_Cfm
confirm device

ID

Table 3

Table: Protocol version definition

 +------+ +-----------+

 |Device| |Lbs Service|

 +------+ +-----+-----+

 | |

+---+

 +------+ Update request for sessionkey +---------->

 | |

 <------+ Update respond for sessionkey +----------+

 | |

 +-----+ |

 | Decrypt sessionkey |

 | | from response |

 <-----+ |

+---+

 | |

 +---------+ Get service address request +--------->

 | |

 <---------+ Get service address response +--------+

 | |

¶

¶

6. Get access service

As the number of device accesses increases, there will be

bottlenecks in the performance of single-node accesses, so the

platform needs to support the mode of multiple device accesses. To

support this mode, the devices are redirected to multiple access

services by load balancing server. After the device obtains the

sessionKey through two-way authentication, it initiates a request

for access service within the same TCP connection, and the message

in the request is encrypted with the sessionKey.

+------+ |Balance load| |Device access| |Device| | ser^ice | |

service | +------+ +------+-----+ +------+------+ | | |

Redirect---------------------------------+ | | +--- F1:Request for

getting a -----> | | | | device access service address | | | | | | |

| | <--- F2:Return a device access ----+ | | | | ser^ice information

| | | +--+ | | | |

Bussiness---+ | |

| | | | <------- Business message:AES128(message)----------> | | |

AES128 privatekey:sessionkey | | | | | | |

+---+ + +

+

Figure 5: Registration and Deregistration

a) F1: After the device and platform network connection is

established, the device sends a online request to the platform via

¶

 +------------+ +-------------+¶

¶

Figure: Get access service

Registration and Deregistration

After the device completes two-way authentication to obtain a specific access service address, the device initiates a request to register online through the MQTT protocol, and the application message body in the request is encrypted using the sessionKey obtained by two-way authentication.

+-------------+ +------------+

| Device | | Platform |

|(MQTT Client)| |(MQTT Sever)|

+-----+-------+ +------+-----+

 | |

 +------- F1:Device register and login(MQTT CONNECT) ------->

 | |

 <-------- F2:Register and respond(MQTT CONNACK) -----------+

 | |

 <---------------- Business interaction -------------------->

 | |

 +---- F3:Send request for disconnect(MQTT DISCONNECT) ----->

 | |

 + +

MQTTCONNECT, of which payload contains one or more encoded fields,

including: unique identifier of the client, Will subject, Will

message, username and password.

b) F2: The platform returns the response message to the device via

MQTTCONNACK to inform it whether it succeeded or not;

c) F3: Before disconnecting, the device sends a DISSCONNECT message

to the platform, indicating that it wants to disconnect normally,

and the platform will close the TCP/IP connection after receiving

the request.

7. Heartbeat

After the device has registered with the platform, it needs to send

heartbeat requests periodically according to the heartbeat interval

indicated in the registration request. The interval is usually 30s.

Used for:

a) Inform the platform that the device is alive when no other

control messages are sent from the device to the platform

b) Request the platform to send a response confirming that it is

alive.

c) Use the network to confirm that the network connection is not

disconnected.

Figure 6: Heartbeat

8. Security Considerations

This entire memo deals with security issues.

9. IANA Considerations

This documents has no IANA actions.

10. Informative References

¶

¶

¶

¶

¶

¶

¶

+------+ +--------+

|Device| |Platform|

+------+ +----+---+

 | |

 +------ F1: Send a heartbeat request(MQTT PINGREQ) ----------->

 | |

 <--- F2: Respond to the heartbeat request MQTT PINGRESP) -----+

 | |

¶

¶

[MQTT2016]

[RFC8446]

ISOIEC, "Information technology — Message Queuing

Telemetry Transport", <https://www.iso.org/obp/ui/

#iso:std:iso-iec:20922:ed-1:v1:en>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", DOI 10.17487/RFC8446, August 2018,

<https://www.rfc-editor.org/info/rfc8446>.

Authors' Addresses

Bin Wang (editor)

Hikvision

555 Qianmo Road, Binjiang District

Hangzhou

310051

China

Phone: +86 571 8847 3644

Email: wbin2006@gmail.com

Shaopeng Zhou (editor)

Hikvision

555 Qianmo Road, Binjiang District

Hangzhou

310051

China

Phone: +86 571 8847 3644

Email: zhoushaopeng@hikvision.com

Chao Li (editor)

Guangzhou University

230 Wai Huan Xi Road

Guangzhou

510006

China

Email: lichao@gzhu.edu.cn

Chunming Wu (editor)

Zhejiang University

866 Yuhangtang Rd

Hangzhou

310058

China

Email: wuchunming@zju.edu.cn

Zizhao Wang (editor)

https://www.iso.org/obp/ui/#iso:std:iso-iec:20922:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:20922:ed-1:v1:en
https://www.rfc-editor.org/info/rfc8446
tel:+86%20571%208847%203644
mailto:wbin2006@gmail.com
tel:+86%20571%208847%203644
mailto:zhoushaopeng@hikvision.com
mailto:lichao@gzhu.edu.cn
mailto:wuchunming@zju.edu.cn

Zhejiang University

866 Yuhangtang Rd

Hangzhou

310058

China

Email: 22021272@zju.edu.cn

mailto:22021272@zju.edu.cn

	Open Service Access Protocol for IoT Smart Devices
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Preface
	2. requirements for Consistency
	2.1. Terms and Definitions
	2.1.1. Area
	2.1.2. Attribute
	2.1.3. Operation
	2.1.4. Event
	2.1.5. Resource
	2.1.6. IoT Device Management Platform
	2.1.7. Device Access Service
	2.1.8. IoT Smart Devices

	2.2. Abbreviations and Acronyms

	3. Framework of Device Communication Protocol
	4. Interface protocol structure
	5. Device certification
	6. Get access service
	7. Heartbeat
	8. Security Considerations
	9. IANA Considerations
	10. Informative References
	Authors' Addresses

