
Workgroup: Privacy Preserving Measurement

Internet-Draft: draft-wang-ppm-dap-taskprov-02

Published: 16 November 2022

Intended Status: Informational

Expires: 20 May 2023

Authors: S. Wang

Apple Inc.

C. Patton

Cloudflare

In-band Task Provisioning for DAP

Abstract

An extension for the Distributed Aggregation Protocol (DAP) is

specified that allows the task configuration to be provisioned in-

band.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://

wangshan.github.io/draft-wang-ppm-dap-taskprov/draft-wang-ppm-dap-

taskprov.html. Status information for this document may be found at

https://datatracker.ietf.org/doc/draft-wang-ppm-dap-taskprov/.

Discussion of this document takes place on the Privacy Preserving

Measurement Working Group mailing list (mailto:ppm@ietf.org), which

is archived at https://mailarchive.ietf.org/arch/browse/ppm/.

Subscribe at https://www.ietf.org/mailman/listinfo/ppm/.

Source for this draft and an issue tracker can be found at https://

github.com/wangshan/draft-wang-ppm-dap-taskprov.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 20 May 2023.

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://wangshan.github.io/draft-wang-ppm-dap-taskprov/draft-wang-ppm-dap-taskprov.html
https://wangshan.github.io/draft-wang-ppm-dap-taskprov/draft-wang-ppm-dap-taskprov.html
https://wangshan.github.io/draft-wang-ppm-dap-taskprov/draft-wang-ppm-dap-taskprov.html
https://datatracker.ietf.org/doc/draft-wang-ppm-dap-taskprov/
mailto:ppm@ietf.org
https://mailarchive.ietf.org/arch/browse/ppm/
https://www.ietf.org/mailman/listinfo/ppm/
https://github.com/wangshan/draft-wang-ppm-dap-taskprov
https://github.com/wangshan/draft-wang-ppm-dap-taskprov
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. The "task_prov" Extension

3.1. Deriving the Task ID

3.2. Deriving the VDAF Verification Key

3.3. Configuring a Task

3.4. Supporting HPKE Configurations Independent of Tasks

4. Client Behavior

5. Leader Behavior

5.1. Upload Protocol

5.2. Aggregate Protocol

5.3. Collect Protocol

6. Helper Behavior

7. Collector Behavior

8. Security Considerations

9. IANA Considerations

10. Normative References

Contributors

Authors' Addresses

1. Introduction

The DAP protocol [DAP] enables secure aggregation of a set of

reports submitted by Clients. This process is centered around a

"task" that determines, among other things, the cryptographic scheme

to use for the secure computation (a Verifiable Distributed

Aggregation Function [VDAF]), how reports are partitioned into

batches, and privacy parameters such as the minimum size of each

batch. Before a task can be executed, it is necessary to first

provision the Clients, Aggregators, and Collector with the task's

configuration.

¶

¶

¶

https://trustee.ietf.org/license-info

However, The core DAP specification does not define a mechanism for

provisioning tasks. this document describes a mechanism designed to

fill this gap. Its key feature is that task configuration is

performed completely in-band. It relies solely on the upload channel

and the metadata carried by reports themselves.

This method presumes the existence of a logical "task author"

(written as "Author" hereafter) who is capable of pushing

configurations to Clients. All parameters required by downstream

entities (the Aggregators and Collector) are encoded in an extension

field of the Client's report. There is no need for out-of-band task

orchestration between Leader and Helpers, therefore making adoption

of DAP easier.

The extension is designed with the same security and privacy

considerations of the core DAP protocol. The Author is not regarded

as a trusted third party: It is incumbent on all protocol

participants to verify the task configuration disseminated by the

Author and opt-out if the parameters are deemed insufficient for

privacy. In particular, adopters of this extension should presume

the Author is under the adversary's control. In fact, we expect in a

real-world deployment that the Author may be implemented by one of

the Aggregators or Collector.

Finally, the DAP protocol requires configuring the entities with a

variety of assets that are not task-specific, but are important for

establishing Client-Aggregator, Collector-Aggregator, and

Aggregator-Aggregator relationships. These include:

The Collector's HPKE [RFC9180] configuration used by the

Aggregators to encrypt aggregate shares.

Any assets required for authenticating HTTP requests.

This specification does not specify a mechanism for provisioning

these assets; as in the core DAP protocol, these are presumed to be

configured out-of-band.

Note that we consider the VDAF verification key [VDAF], used by the

Aggregators to aggregate reports, to be a task-specific asset. This

document specifies how to derive this key for a given task from a

pre-shared secret, which in turn is presumed to be configured out-

of-band.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

¶

¶

¶

¶

*

¶

* ¶

¶

¶

Task configuration:

Task author:

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document uses the same conventions for error handling as [DAP].

In addition, this document extends the core specification by adding

the following error types:

Type Description

invalidTask
An Aggregator has opted out of the indicated task as

described in Section 3.3

Table 1

The terms used follow those described in [DAP]. The following new

terms are used:

The non-secret parameters required to create a

task in task provision.

The entity that defines a task's configuration.

3. The "task_prov" Extension

A new extension is defined:

When the Client includes this extension with its report, the body of

the extension is a TaskConfig defined follows:

¶

¶

¶

¶

¶

¶

enum {

 task_prov(0xff00),

 (65535)

} ExtensionType;

¶

¶

The purpose of TaskConfig is to define all parameters that are

necessary for configuring an Aggregator. It includes all the fields

to be associated with a task. (See task configuration in [DAP].) In

addition to the Aggregator endpoints, maximum batch query count, and

task expiration, the structure includes an opaque task_info field

that is specific to a deployment. For example, this can be a string

describing the purpose of this task.

The query_config field defines the DAP query configuration used to

guide batch selection. It is defined as follows:

The vdaf_config defines the configuration of the VDAF in use for

this task. It is structured as follows (codepoints are as defined in

[VDAF]):

struct {

 /* Info specific for a task. */

 opaque task_info<1..2^8-1>;

 /* A list of URLs relative to which an Aggregator's API endpoints

 can be found. Defined in I-D.draft-ietf-ppm-dap-02. */

 Url aggregator_endpoints<1..2^16-1>;

 /* This determines the query type for batch selection and the

 properties that all batches for this task must have. */

 QueryConfig query_config;

 /* Time up to which Clients are allowed to upload to this task.

 Defined in I-D.draft-ietf-ppm-dap-02. */

 Time task_expiration;

 /* Determines the VDAF type and its config parameters. */

 VdafConfig vdaf_config;

} TaskConfig;

¶

¶

¶

struct {

 QueryType query_type; /* I-D.draft-ietf-ppm-dap-02 */

 Duration time_precision; /* I-D.draft-ietf-ppm-dap-02 */

 uint16 max_batch_query_count; /* I-D.draft-ietf-ppm-dap-02 */

 uint32 min_batch_size;

 select (QueryConfig.query_type) {

 case time_interval: Empty;

 case fixed_size: uint32 max_batch_size;

 }

} QueryConfig;

¶

¶

Apart from the VDAF-specific parameters, this structure includes a

mechanism for differential privacy (DP). This field, dp_config, is

structured as follows:

OPEN ISSUE: Should spell out definition of DpConfig for various

differential privacy mechanisms and parameters. See issue #94 for

discussion.

The definition of Time, Duration, Url, and QueryType follow those in

[DAP].

3.1. Deriving the Task ID

When using the task_prov extension, the task ID is computed as

follows:

enum {

 prio3_aes128_count(0x00000000),

 prio3_aes128_sum(0x00000001),

 prio3_aes128_histogram(0x00000002),

 poplar1_aes128(0x00001000),

 (2^32-1)

} VdafType;

struct {

 DpConfig dp_config;

 VdafType vdaf_type;

 select (VdafConfig.vdaf_type) {

 case prio3_aes128_count: Empty;

 case prio3_aes128_sum: uint8; /* bit length of the summand */

 case prio3_aes128_histogram: uint64<8..2^24-8>; /* buckets */

 case poplar1_aes128: uint16; /* bit length of input string */

 }

} VdafConfig;

¶

¶

enum {

 reserved(0), /* Reserved for testing purposes */

 none(1),

 (255)

} DpMechanism;

struct {

 DpMechanism dp_mechanism;

 select (DpConfig.dp_mechanism) {

 case none: Empty;

 }

} DpConfig;

¶

¶

¶

¶

task_id = SHA-256(task_config)¶

https://github.com/cfrg/draft-irtf-cfrg-vdaf/issues/94

where task_config is the TaskConfig structure disseminated by the

Author. Function SHA-256() is as defined in [SHS].

3.2. Deriving the VDAF Verification Key

When a Leader and Helper implement the task_prov extension in the

context of a particular DAP deployment, they SHOULD compute the

shared VDAF verification key [VDAF] as described in this section.

The Aggregators are presumed to have securely exchanged a pre-shared

secret out-of-band. The length of this secret MUST be 32 bytes. Let

us denote this secret by verify_key_init.

Let VERIFY_KEY_SIZE denote the length of the verification key for

the VDAF indicated by the task configuration. (See [VDAF], Section

5.)

The VDAF verification key used for the task is computed as follows:

where task_prov_salt is defined to be the SHA-256 hash of the octet

string "dap-taskprov" and task_id is as defined in Section 3.1.

Functions HKDF-Extract() and HKDF-Expand() are as defined in

[RFC5869]. Both functions are instantiated with SHA-256.

3.3. Configuring a Task

Prior to participating in a task, each protocol participant must

determine if the TaskConfig disseminated by the Author can be

configured. The participant is said to "opt in" to the task if the

derived task ID (see Section 3.1) corresponds to an already

configured task or the task ID is unrecognized and therefore

corresponds to a new task.

A protocol participant MAY "opt out" of a task if:

The derived task ID corresponds to an already configured task,

but the task configuration disseminated by the Author does not

match the existing configuration.

The VDAF, DP, or query configuration is deemed insufficient for

privacy.

¶

¶

¶

¶

¶

verify_key = HKDF-Expand(

 HKDF-Extract(

 task_prov_salt, # salt

 verify_key_init, # IKM

),

 task_id, # info

 VERIFY_KEY_SIZE, # L

)

¶

¶

¶

¶

1.

¶

2.

¶

A secure connection to one or both of the Aggregator endpoints

could not be established.

The task lifetime is too long.

A protocol participant MUST opt out if the task has expired.

The behavior of each protocol participant is determined by whether

or not they opt in to a task.

3.4. Supporting HPKE Configurations Independent of Tasks

In DAP, Clients need to know the HPKE configuration of each

Aggregator before sending reports. (See HPKE Configuration Request

in [DAP].) However, in a DAP deployment that supports the task_prov

extension, if a Client requests the Aggregator's HPKE configuration

with the task ID computed as described in Section 3.1, the task ID

may not be configured in the Aggregator yet, because the Aggregator

is still waiting for the first Client report with the task_prov

extension to arrive.

To mitigate this issue, if an Aggregator wants to support the

task_prov extension, it SHOULD choose which HPKE configuration to

advertise to Clients independent of the task ID. It MAY continue to

support per-task HPKE configurations for other tasks that are

configured out-of-band.

In addition, if a Client wants to include the task_prov extension in

its report, it SHOULD NOT specify the task_id parameter when

requesting the HPKE configuration from an Aggregator.

4. Client Behavior

Upon receiving a TaskConfig from the Author, the Client decides

whether to opt in to the task as described in Section 3.3. If the

Client opts out, it MUST not attempt to upload reports for the task.

OPEN ISSUE: In case of opt-out, would it be useful to specify how

to report this to the Author?

Once the client opts in to a task, it MAY begin uploading reports

for the task. Each report MUST offer the task_prov extension with

the TaskConfig disseminated by the Author as the extension payload.

In addition, the report's task ID MUST be computed as described in

Section 3.1.

3.

¶

4. ¶

¶

¶

¶

¶

¶

¶

¶

¶

5. Leader Behavior

5.1. Upload Protocol

Upon receiving a Report from the Client with the task_prov

extension, if the Leader does not support the extension, it MUST

ignore the extension payload and proceed as usual. In particular, if

the task ID is not recognized, then it MUST abort the upload request

with "unrecognizedTask".

NOTE: This behavior assumes unrecognized extensions are to be

ignored. See #334 for discussion.

Otherwise, if the Leader does support the extension, it first

attempts to parse the payload. If parsing fails, it MUST abort with

"unrecognizedMessage".

Next, it checks that the task ID included in the report matches the

task ID derived from the extension payload as specified in

Section 3.1. If the task ID does not match, then the Leader MUST

abort with "unrecognizedTask".

The Leader then decides whether to opt in to the task as described

in Section 3.3. If it opts out, it MUST abort the upload request

with "invalidTask".

OPEN ISSUE: In case of opt-out, would it be useful to specify how

to report this to the Author?

Finally, once the Leader has opted in to the task, it completes the

upload request as usual.

5.2. Aggregate Protocol

When the Leader opts in to a task, it derives the VDAF verification

key for that task as described in Section 3.2.

5.3. Collect Protocol

The Collector might issue a collect request for a task provisioned

by the task_prov extension prior to opting in to the task. In this

case, the Leader would need to abort the collect request with

"unrecognizedTask". When it does so, it SHOULD also include a

"Retry-After" header in its HTTP response indicating the time after

which the Collector should retry its request.

TODO: Find RFC reference for "Retry-After".

OPEN ISSUE: This semantics is awkward, as there's no way for the

Leader to distinguish between Collectors who support the

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://github.com/ietf-wg-ppm/draft-ietf-ppm-dap/issues/334

extension and those that don't. We should consider adding an

extension field to CollectReq.

6. Helper Behavior

Upon receiving of an AggregateInitializeReq from the Leader, If the

Helper does not support the task_prov extension, it MUST ignore the

extension payload and process each ReportShare as usual. In

particular, if the Helper does not recognize the task ID, it MUST

abort the aggregate request with error "unrecognizedTask".

Otherwise, if the Helper supports the extension, it proceeds as

follows.

First, the Helper checks that all report shares carried by the

request pertain to the same task. In particular, it checks that:

Either all report shares have the task_prov extension or none

do. If not the Helper MUST abort with "unrecognizedMessage".

All report shares with the task_prov extension have the same

extension payload. If not, the Helper MUST abort with

"unrecognizedMessage".

OPEN ISSUE: This awkward input validation step could be skipped

if AggregateInitializeReq had an extension field that we could

stick the task configuration in. This would also save

significantly in overhead.

Next, the Helper attempts to parse the extension payload. If parsing

fails, it MUST abort with "unrecognizedMessage".

Next, the Helper checks that the task ID included in the message

matches the task ID derived from the extension payload as defined in

Section 3.1. If not, the Helper MUST abort with "unrecognizedTask".

Next, the Helper decides whether to opt in to the task as described

in Section 3.3. If it opts out, it MUST abort the aggregate request

with "invalidTask".

OPEN ISSUE: In case of opt-out, would it be useful to specify how

to report this to the Author?

Finally, the Helper completes the aggregate initialize request as

usual, deriving the VDAF verification key for the task as described

in Section 3.2.

7. Collector Behavior

Upon receiving a TaskConfig from the Author, the Collector first

decides whether to opt in to the task as described in Section 3.3.

¶

¶

¶

1.

¶

2.

¶

¶

¶

¶

¶

¶

¶

If the Collector opts out, it MUST not attempt to upload reports for

the task.

Otherwise, once opted in, the Collector MAY begin to issue collect

requests for the task. The task ID for each request MUST be derived

from the TaskConfig as described in Section 3.3.

If the Leader responds to a collect request with an

"unrecognizedTask" error, but the HTTP response includes a "Retry-

After" header, the Collector SHOULD retry its collect request after

waiting for the duration indicated by the header.

8. Security Considerations

This document has the same security and privacy considerations as

the core DAP specification. In particular, for privacy we consider

the Author to be under control of the adversary. It is therefore

incumbent on protocol participants to verify the privacy parameters

of a task before opting in.

In addition, the task_prov extension is designed to maintain

robustness even when the Author misbehaves, or is merely

misconfigured. In particular, if the Clients and Aggregators have an

inconsistent view of the the task configuration, then aggregation of

reports will fail. This is guaranteed by the binding of report

metadata to encrypted input shares provided by HPKE encryption.

OPEN ISSUE: What if the Collector and Aggregators don't agree on

the task configuration? Decryption should fail.

A malicious coalition of Clients might attempt to pollute an

Aggregator's long-term storage by uploading reports for many

(thousands or perhaps millions) of distinct tasks. While this does

not directly impact tasks used by honest Clients, it does present a

Denial-of-Service risk for the Aggregators themselves.

TODO: Suggest mitigations for this. Perhaps the Aggregators need

to keep track of how many tasks in total they are opted in to?

The HKDF [RFC5869] extraction function is used to derive the task

ID. An extractor is not required for security. In fact, a collision-

resistant hash function would be sufficient for our application. The

choice to use an extractor is conservative in that it allows the

derived task ID to be treated as pseudorandom whenever the task

configuration itself has high min-entropy from the perspective of

the adversary. However, whether this is the case depends on the

specific threat model. We note that, in the the threat model for the

core DAP protocol, the task configuration is known to the attacker

and thus has no entropy.

¶

¶

¶

¶

¶

¶

¶

¶

¶

[DAP]

[RFC2119]

[RFC5869]

[RFC8174]

[RFC9180]

[SHS]

[VDAF]

9. IANA Considerations

NOTE(cjpatton) Eventually we'll have IANA considerations (at the

very least we'll need to allocate a codepoint) but we can leave

this blank for now.

10. Normative References

Geoghegan, T., Patton, C., Rescorla, E., and C. A. Wood,

"Distributed Aggregation Protocol for Privacy Preserving

Measurement", Work in Progress, Internet-Draft, draft-

ietf-ppm-dap-02, 22 September 2022, <https://

datatracker.ietf.org/doc/html/draft-ietf-ppm-dap-02>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

rfc/rfc5869>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Barnes, R., Bhargavan, K., Lipp, B., and C. Wood, "Hybrid

Public Key Encryption", RFC 9180, DOI 10.17487/RFC9180,

February 2022, <https://www.rfc-editor.org/rfc/rfc9180>.

"Secure Hash Standard", FIPS PUB 180-4 , 4 August 2015.

Barnes, R., Patton, C., and P. Schoppmann, "Verifiable

Distributed Aggregation Functions", Work in Progress,

Internet-Draft, draft-irtf-cfrg-vdaf-03, 24 August 2022,

<https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-

vdaf-03>.

Contributors

CP: Unless the order is meaningful, consider alphabetizing these

names.

Junye Chen Apple Inc. junyec@apple.com

Suman Ganta Apple Inc. sganta2@apple.com

Gianni Parsa Apple Inc. gianni_parsa@apple.com

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-ietf-ppm-dap-02
https://datatracker.ietf.org/doc/html/draft-ietf-ppm-dap-02
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc5869
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc9180
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-03
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf-03

Michael Scaria Apple Inc. mscaria@apple.com

Kunal Talwar Apple Inc. ktalwar@apple.com

Christopher A. Wood Cloudflare caw@heapingbits.net

Authors' Addresses

Shan Wang

Apple Inc.

Email: shan_wang@apple.com

Christopher Patton

Cloudflare

Email: chrispatton+ietf@gmail.com

¶

¶

¶

mailto:shan_wang@apple.com
mailto:chrispatton+ietf@gmail.com

	In-band Task Provisioning for DAP
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. The "task_prov" Extension
	3.1. Deriving the Task ID
	3.2. Deriving the VDAF Verification Key
	3.3. Configuring a Task
	3.4. Supporting HPKE Configurations Independent of Tasks

	4. Client Behavior
	5. Leader Behavior
	5.1. Upload Protocol
	5.2. Aggregate Protocol
	5.3. Collect Protocol

	6. Helper Behavior
	7. Collector Behavior
	8. Security Considerations
	9. IANA Considerations
	10. Normative References
	Contributors
	Authors' Addresses

