
Workgroup: TSVWG

Published: 14 June 2022

Intended Status: Standards Track

Expires: 16 December 2022

Authors: R. Wang

Agora Lab

L. Si

Agora Lab

B. He

Agora Lab

Sliding Window Selective Linear Code (SLC) Forward Error Correction

(FEC) Scheme for FECFRAME

Abstract

RFC8680 describes a framework for using Sliding Window Forward Error

Correction(FEC) codes to protection against packet loss, the

framework significantly improves FEC efficiency and reduces FEC-

related added latency compared to block FEC codes defined in RFC

6363. RFC8681 further describes two fully specified FEC schemes for

Sliding Window Random Linear Codes(RLC), the schemes rely on an

encoding window that slides over a continuous set of source symbols,

generating new repair symbols whenever needed. This document

describes a fully specified FEC scheme for Sliding Window Selective

Linear Code(SLC) over the Galois Field GF (2^^8) , compared to

RFC8681, this framework use a discrete encoding window which can

protect arbitrary media streams selectively, and has better recovery

performance in scenarios such as layered video coding or mixed

streams for video streaming applications.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/


This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1.  Introduction

2.  Terminology

3.  Definitions Notations and Abbreviations

3.1.  Definitions

3.2.  Notations

3.3.  Abbreviations

4.  Formats and Codes

4.1.  FEC Framework Configuration Information

4.1.1.  Mandatory

4.1.2.  FEC Scheme-Specific Information

4.2.  FEC Payload IDs

4.2.1.  Explicit Source FEC Payload ID

4.2.2.  Repair FEC Payload ID

5.  Procedures

5.1.  Restrictions

5.2.  ADU, ADUI, and Source Symbols Mappings

5.  Encoding Window Management

5.4.  Coding Matrix Generation

5.5.  Linear Operation on encoding side and decoding side

5.5.1.  Encoding Side

5.5.2.  Decoding Side

6.  FEC Code Specification

6.1.  Encoding Side

6.2.  Decoding Side

7.  Security Considerations

7.1.  Attacks Against the Data Flow

7.1.1.  Access to Confidential Content

7.1.2.  Content Corruption

7.2.  Attacks Against the FEC Parameters

7.3.  When Several Source Flows Are to Be Protected Together

7.4.  Baseline Secure FECFRAME Operation

8.  Operations and Management Considerations

8.1.  Operational Recommendations: gc_max

9.  IANA Considerations

10. Acknowledgments

11. References

11.1.  Normative References

¶

https://trustee.ietf.org/license-info


11.2.  Informative References

Authors' Addresses

1. Introduction

The use of Application-Level Forward Erasure Correction (AL-FEC)

codes is a widely-used error control method used to improve the

reliability of unicast, multicast, and broadcast transmissions.

The [RFC5052] document describes a general framework to use FEC in

Content Delivery Protocols (CDPs), and it is suitable for FEC

schemes based on building blocks. Based on this framework, the 

[RFC5170] describes two fully-specified FEC Schemes, Low-Density

Parity Check (LDPC) Staircase and LDPC Triangle, and the [RFC5510]

describes one Fully-Specified FEC Scheme for the special case of

Reed-Solomon (RS) over GF (2^^8).

The [RFC6363] document describes a general framework used to protect

arbitrary media streams along the lines defined by FECFRAME. The FEC

scheme defined by the framework does not limit the type of input

data, but only processes the data.

Similar to [RFC5052], [RFC6363] only considers block FEC schemes,

which requires that the input stream be divided into a series of

blocks according to the block partitioning algorithm defined in 

[RFC5052]. The [RFC6681], [RFC6816], and [RFC6865] are FEC schemes

based on this framework. The value for the block size affects the

packet loss resistance and the encoding and decoding delay of the

FEC scheme. At the same code rate, the FEC scheme with larger size

blocks have higher robustness (e.g., in case of long packet erasure

bursts), but it has higher decoding delay which is unacceptable for

real-time video streaming application.

The framework described in [RFC8680] provides support for FEC codes

based on a sliding coding window. The FEC scheme in this framework 

[RFC8681] is advantageous for real-time flows because of its high

robustness and low additional delay.

In general video coding, all frames in a GOP follow the rule of the

frame by frame reference, that is, the reconstruction of the current

video frame relies on the preceding frame. In that case, all frames

in the encoding window are beneficial to the decoding of the current

frame. However, for layered video coding, video frames may not

reference the preceding frames, but the upper layer frames. When

non-reference frames are encoded, the recovered packets will not

help the decoding of the current frame, and even have a negative

effect on the FEC error correction ability in extreme cases 

[Hel2011], [Wan2022].

¶

¶

¶

¶

¶

¶



This document introduces one fully specified FEC scheme, it is

capable to protect streams selectively by adding a filter into the

FEC coding window management. The Sliding Window SLC FEC scheme

described in this document belongs to the broad class of Sliding

Window AL-FEC Codes (a.k.a., convolutional codes) [RFC8406]. The

encoding process is based on an encoding window, and the source

symbols are encoded by sliding the encoding window. However, the

encoding window does not slide directly over the set of the source

symbols. Instead, it filters the source symbols according to the

rule defined by application (e.g., video frame dependency, or stream

type) and then slide over the set of these filtered source symbols 

[Wan2022]. Repair symbols are generated on-the-fly, by the

computation of a linear combination of source symbols present in the

current encoding window and passed to the transport layer.

When the loss of source symbol is detected at the receiver, the SLC

decoder will recover the lost source symbol according to the linear

combination of the source symbols and each received repair symbol

(when the rank of the equations involved is solvable).

This fully-specified FEC scheme follows the structure required by 

[RFC6363], Section 5.6 ("FEC Scheme Requirements"), namely:

Formats and Codes: This section defines the FEC Framework

Configuration Information (FFCI) carrying signaling, including

mandatory elements and Scheme-Specific elements. It also defines

the Source FEC Payload ID and Repair FEC Payload ID formats,

carrying the signaling information associated with each source or

repair symbol, including ESI, indexes of source symbols

participating in encoding, and coding coefficients.

Procedures: This section describes procedures specific to this

FEC scheme, including encoding window management, coding matrix

generation, a linear combination of source symbol computation in

Finite Field, and the mapping between ADU, ADUI, and Source

Symbols.

FEC Code Specification: This section provides a high-level

description of the Sliding Window SLC encoder and decoder.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in 

[RFC2119] [RFC8174].

¶

¶

¶

*

¶

*

¶

*

¶

¶

https://rfc-editor.org/rfc/rfc6363#section-5.6


Source symbol:

Encoding symbol:

Repair symbol:

Packet erasure channel:

Application Data Unit (ADU):

ADU Information (ADUI):

FEC Framework Configuration Information (FFCI):

FEC Source Packet:

FEC Repair Packet:

m:

3. Definitions Notations and Abbreviations

3.1. Definitions

This document uses the following terms and definitions. Some of

these terms and definitions are FEC scheme-specific and are in line

with [RFC5052] [RFC6363]:

unit of data used during the encoding process.

unit of data generated by the encoding process.

an encoding symbol that is not a source symbol.

a communication path where packets are

either dropped (e.g., by a congested router, or because the

number of transmission errors exceeds the correction capabilities

of the physical layer codes) or received. When a packet is

received, it is assumed that this packet is not corrupted.

unit of source data provided as

payload to the transport layer. Depending on the use case, an ADU

may use an RTP encapsulation.

unit of data constituted by the ADU and the

associated Flow ID, Length and Padding fields.

information that

controls the operation of FECFRAME. Each FEC Framework instance

has its own configuration information. And the FFCI enables the

synchronization of the FECFRAME sender and receiver instances.

at a sender (respectively, at a receiver) a

payload submitted to (respectively, received from) the transport

protocol containing an ADU along with an Explicit Source FEC

Payload ID.

at a sender (respectively, at a receiver) a

payload submitted to (respectively, received from) the transport

protocol containing one repair symbol along with a Repair FEC

Payload ID and possibly an RTP header.

3.2. Notations

This document uses the following notations and some of them are FEC

scheme-specific:

defines the length of the elements in the finite field, in bits.

In this document, m is such that m=8.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



GF(q):

a^^b:

E:

cw_size:

cw_size_max:

gc:

gc_max:

cm:

cm_r:

cm_c:

ESI:

Start_ESI:

Residual_ESI_:

Group_Size_:

FEC:

ADU:

ADUI:

ESI:

FFCI:

FSSI:

denotes a finite field (also known as the Galois Field) with

q elements. We assume that q = 2^^m in this document.

denotes a raised to the power b.

denotes the size of an encoding symbol length in bytes.

denotes coding window size (in symbols).

denotes coding window maximum size (in symbols).

denotes the count of symbol groups participating in encoding

(if there is a gap in the serial number, it is considered a new

group) when a repair symbol is generated.

denotes the maximum count of symbol groups involved in

encoding when generating maintenance symbols.

denotes coding matrix.

denotes row in the coding matrix.

denotes col in the coding matrix.

denotes the first source symbol of the ADUI corresponding to

this FEC Source Packet.

denotes the first ADUI's ESI of the first group.

denotes the residual value of the starting ESI of

the current group relative to the previous group.

denotes the number of ADUIs contained in each group.

3.3. Abbreviations

This document uses the following abbreviations, and some of them are

FEC scheme-specific:

stands for Forward Error (or Erasure) Correction codes.

stands for Application Data Unit.

stands for Application Data Unit Information.

stands for Encoding Symbol ID.

stands for FEC Framework Configuration Information.

stands for FEC Scheme-Specific Information.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



FEC Encoding ID:

Encoding Symbol size (E):

The maximum coding window size (cw_size_max):

The maximum number of gc (gc_max):

Encoding symbol length (E):

4. Formats and Codes

This section describes the format of FEC Framework Configuration

Information (or FFCI) and FEC Payload IDs, which are carried in

"big-endian" or "network order" format.

4.1. FEC Framework Configuration Information

The FFCI needs to be shared between FECFRAME sender and receiver

instances to ensure the synchronization of information. It includes

mandatory elements (e.g., FEC Encoding ID) and scheme-specific

elements (e.g., Encoding Symbol size).

4.1.1. Mandatory

the value assigned to this Fully-Specified FEC

scheme MUST be XXX, as assigned by IANA(Section 9).

4.1.2. FEC Scheme-Specific Information

The FEC scheme-specific information (FSSI) of this scheme is as

follows:

a non-negative integer that indicates the

size of each encoding symbol in bytes;

a non-negative

integer that indicates the maximum size of the coding window

allowed (in symbols);

a non-negative integer that

indicates the maximum count of groups protected by each repair

packet.

These elements are required both by the encoder and decoder.

When SDP is used to communicate the FFCI, this FEC Scheme-Specific

Information MUST be carried in the 'fssi' parameter in textual

representation specified in [RFC6364]. For instance:

              fssi=E:1500,cw_size_max:128,gc_max:4

If another mechanism requires the FSSI to be carried as an opaque

octet string (for instance after a Base64 encoding), the encoding

format consists of the following four octets:

16-bit field;

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Maximum coding window size (cw_size_max):

Maximum size of gc (gc_max):

Encoding Symbol ID (ESI) (32-bit field):

8-bit field;

8-bit field.

The encoding format consists of the following 4 octets of Figure 1:

Figure 1: FSSI Encoding Format

4.2. FEC Payload IDs

4.2.1. Explicit Source FEC Payload ID

A FEC Source Packet MUST contain an Explicit Source FEC Payload ID

that is appended to the end of the packet as illustrated in Figure

2.

Figure 2: Structure of an FEC Source Packet with the Explicit Source

FEC Payload ID

More precisely, the Explicit Source FEC Payload ID is composed of

the following field:

this unsigned integer

identifies the first source symbol of the ADUI corresponding to

this FEC Source Packet. The ESI is incremented for each new

source symbol, and after reaching the maximum value (2^^32-1),

wrapping to zero occurs.

¶

¶

¶

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|   Encoding Symbol Length (E)  |  cw_size_max  |     gc_max    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

+---------------------------------+

|            IP Header            |

+---------------------------------+

|         Transport Header        |

+---------------------------------+

|               ADUI              |

+---------------------------------+

| Explicit Source FEC Payload ID  |

+---------------------------------+

¶

¶



Start_ESI (32-bit field):

gc (8-bit field):

cm_r (8-bit field):

Residual_ESI_ (8-bit field):

Group_Size_ (8-bit field):

Figure 3: Source FEC Payload ID Encoding Format

4.2.2. Repair FEC Payload ID

A FEC repair packet MUST contain a Repair FEC Payload ID prepended

to the repair symbol as illustrated in Figure 4. There MUST be a

single repair symbol per FEC repair packet.

Figure 4: Structure of an FEC Repair Packet with the Repair FEC Payload

ID

More precisely, the SLC decoder scheme require the following

information from the Repair FEC Payload ID:

this unsigned integer indicates the ESI

of the first source symbol of the first group in the encoding

window when this repair symbol was generated.

this unsigned integer indicates the number of

symbol groups in the encoding window when this repair symbol is

generated (if there is a gap in the serial number, it is

considered a new group).

this unsigned integer is used as a parameter to

generate the desired encoding matrix. This cm_r MUST NOT be

greater than cw_size_max.

this unsigned integer represents the

residual value of the starting ESI of the current group relative

to the previous group.

this unsigned integer is the number of

the source symbols contained in each group.

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                   Encoding Symbol ID (ESI)                    |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

+---------------------------------+

|            IP Header            |

+---------------------------------+

|         Transport Header        |

+---------------------------------+

|       Repair FEC Payload ID     |

+---------------------------------+

|          Repair Symbol          |

+---------------------------------+

¶

¶

¶

¶

¶

¶



1.

2.

Flow ID (F) (8-bit field):

Length (L) (16-bit field):

Figure 5: Repair FEC Payload ID Encoding Format

The length of the Repair FEC Payload ID depends on the gc parameter.

5. Procedures

5.1. Restrictions

This specification has the following restrictions:

There MUST be exactly one source symbol per ADUI, and therefore

per ADI;

There MUST be exactly one repair symbol per FEC Repair Packet.

5.2. ADU, ADUI, and Source Symbols Mappings

Before FEC coding, the mapping from ADU to AUDI needs to be

established. When multiple source flows (e.g., media streams) are

mapped onto the same FECFRAME instance, each flow is assigned its

Flow ID value. The Flow ID needs to be included in the ADUI. Then,

the recovered ADU can be allocated to the corresponding source flow

by its Flow ID.

Because the length of each ADU may be inconsistent, to ensure that

the decoder can extract ADU from ADUI, the original ADU length also

needs to be added to ADUI.

For each incoming ADU, an ADUI MUST be created as follows. First of

all, 3 bytes are prepended (Figure 6):

this unsigned byte contains the integer

identifier associated with the source ADU flow to which this ADU

belongs.

this unsigned integer contains the

length of this ADU in network byte order (i.e., big endian). This

length is for the ADU itself and does not include the F, or Pad

fields.

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                           Start_ESI                           |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|       gc      |     cm_r      | Residual_ESI_2|      ...      |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|Residual_ESI_gc|  Group_Size_1 |      ...      | Group_Size_gc |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

¶

¶

¶

¶

¶

¶

¶

¶

¶



Padding (Pad) (variable size field):

Then, zero padding is added to the ADU if needed:

this field is used for

alignment purposes up to a size of exactly E bytes.

The data unit resulting from the ADU and the F, L, and Pad fields is

called ADUI. An ADUI always contributes to an integral number of

source symbols.

Figure 6: ADUI Creation Example

5. Encoding Window Management

Whenever an ADU arrives, ADU-to-source symbols mapping will be

performed. Then, the source symbols will be added to the array

source_symbol_history. Whenever a repair symbol needs to be

generated, the SLC FEC encoder will search backward in the

source_symbol_history, and the source symbols that conforms the

rules defined by the application will be put into the encoding

window. When the encoding window cw_size is equal to its maximum

value cw_size_max or the symbol group count gc is equal to its

maximum value gc_max, the search is stopped and the FEC coding will

be performed on the source symbols in the encoding window.

Taking Figure 7 as an example, the coding dependency between frames

is used as the rule of source symbol selection, and frame I is the

reference frame of frame P1, so I and P1 are placed in the encoding

window when generating Repair2. However, P1 is not the reference

frame of P2 under the SVC mode, so P1 is skipped, I and P2 are put

into the encoding window to generate Repair3. The same process is

performed to produce Rapair4 and Repair5.

¶

¶

¶

                Encoding Symbol Length (E)

+-------+-------------+------------------------+---------+

|   F   |      L      |          ADU           |   Pad   |

+-------+-------------+------------------------+---------+

\___________________________ ____________________________/

                            v

                     SLC FEC encoding

+--------------------------------------------------------+

|                         Repair                         |

+--------------------------------------------------------+

¶

¶



Figure 7: Example of Encoding Window Management

Note that each time a repair symbol is generated, cm_r will be

updated. The update rules are as follows:

if (++cm_r>=cw_size_max) cm_r=0;

5.4. Coding Matrix Generation

Compared with the RLC FEC encoder, which depends on a pseudorandom

number generator to compute the coding coefficients, the SLC FEC

encoder uses a fixed coding matrix to reduce overhead. The elements

of the coding matrix calculated by a contant formula with parameters

cm_r and cm_c at both the SLC FEC encoder and the decoder. The cm_r

and cm_c parameters control these elements. The values of cm_c

between 0 (the minimum value) and cw_size_max-1 (the maximum value).

And the values of cm_r between 0 and 255-cw_size_max.

G (cm_r, cm_c) = y_c / (x_r + y_c) = (cm_c + cw_size_max) / (cm_r

+ cm_c + cw_size_max)

where cm_r represents the row number in the matrix, cm_c represents

the col number in the matrix, cw_size_max represents the maximum

value of the encoding window, x_r = cm_r, y_c = cw_size_max+cm_c.

| +---+  FEC coding  +-------+

| | I |------------->|Repair1|

| +---+              +-------+

|

| +---+    +----+  FEC coding  +-------+

| | I |--->| P1 |------------->|Repair2|

| +---+    +----+              +-------+

|   +-------------+

|   |             |

| +---+    +----+ |   +----+  FEC coding  +-------+

| | I |    |    | +-->| P2 |------------->|Repair3|

| +---+    +----+     +----+              +-------+

|   +-------------+

|   |             |

| +---+    +----+ |   +----+    +----+  FEC coding  +-------+

| | I |    |    | +-->| P2 |--->| P3 |------------->|Repair4|

| +---+    +----+     +----+    +----+              +-------+

|   +-------------+      +-------------+

|   |             |      |             |

| +---+    +----+ |   +----+    +----+ |   +----+  FEC coding  +-------+

| | I |    |    | +-->| P2 |    |    | +-->| P4 |------------->|Repair5|

| +---+    +----+     +----+    +----+     +----+              +-------+

|

| time

¶

¶

¶

¶



The basic operations of the above equations are carried out in the

GF (2^^8).

5.5. Linear Operation on encoding side and decoding side

5.5.1. Encoding Side

In Section 5.4, the elements of coding matrix G(cm_r, cm_c) are

obtained. Then, a repair symbol is generated by the computation of a

linear combination of source symbols.

A linear combination of the cw_size source symbols present in the

encoding window, say src_0 to src_cw_size_1, is computed as follows.

For each byte of position i in each source and the repair symbol,

where i belongs to [0; E-1].

repair[i] = G(cm_r, 0) * src_0[i] + G(cm_r, 1) * src_1[i] + ... +

G(cm_r, cw_size-1) * src_cw_size_1[i]

where * is the multiplication over GF (2^^8), + is the addition over

GF (2^^8). In this document, the following irreducible polynomial is

used for GF(2^^8).

x^^8 + x^^4 + x^^3 + x^^2 + 1

5.5.2. Decoding Side

For decoding side, it is assumed that the repair symbol protects

cw_size source symbols, among which j source symbols are lost, then,

remove_src[i] = repair[i] - G(cm_r, 0) * src_0[i] - ... - G(cm_r,

k) * src_k[i] - G(cm_r, k + j + 1) * src_k_j_1[i] - ... - G(cm_r,

cw_size-1) * src_cw_size_1[i]

It is assumed that in the linear system maintained by the decoding

side, there is a symbol sequence S = {lost_src_1, lost_src_2, ... ,

lost_src_N} consisting of N lost source symbols, a symbol sequence R

= {repair_1, repair_2, ... , repair_N} consisting of N repair

symbols

There is a matrix A whose row represents the position of the repair

symbol in R and whose column represents the position of the lost

source symbol in S. A[row][col] represents the matrix element of

lost_src_row corresponding to repair_col (if it does not exist, then

A[row][col] = 0).

A[row][col] = G(cm_r,cm_c)

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



where cm_r can be extracted from the Repair FEC Payload ID, cm_c

represents the position of the lost source symbol in the encoding

window.

Therefore, there is a linear system of equation as follows:

A * Transpose(lost_src_1, lost_src_2, ... , lost_src_N) =

Transpose(remove_src_1, remove_src_2, ... , remove_src_N)

The inverse matrix of A can be obtained by Gauss elimination method,

and finally S can be recovered:

Transpose(lost_src_1, lost_src_2, ... , lost_src_N) = A^^-1 *

Transpose(remove_src_1, remove_src_2, ... , remove_src_N)

6. FEC Code Specification

6.1. Encoding Side

1. Whenever a new repair symbol needs to be produced, the source

symbols are put into the sliding encoding window according to the

rule defined by application (e.g., coding dependency between

frames).

2. The SLC FEC encoder gathers the cw_size source symbols currently

in the sliding encoding window.

3. The elements of the coding matrix are determined according to the

parameters cm_r and cm_c (Section 5.4).

4. The SLC FEC encoder computes the repair symbol by a linear

combination of the cw_size source symbols present in the encoding

window using the coding matrix (Section 5.5.1).

When encoding, the execution object is ADUI composed of Flow ID,

Length, ADU, Padding.

6.2. Decoding Side

1. A linear system composed of source symbols, elements of the

coding matrix, and repair symbols MUST to be maintained to recover

the lost source packets.

2. When a repair symbol is received, it detects whether there is

loss in the protected source symbols. If at least one of the

corresponding source symbols has been lost, an equation composed of

the repair symbol, the corresponding source symbols, and the

elements of the coding matrix will be added to the linear system

(the elements of the coding matrix are generated by the method

provided in Section 5.4).

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



FEC Encoding ID:

3. When the linear system covering one or more lost source symbols

is full, decoding is performed in order to recover lost source

symbols (Section 5.5.2).

4. Each time an ADUI can be totally recovered, padding is removed

(thanks to the Length field, L, of the ADUI), and the ADU will be

assigned to the corresponding flow.

Note that the recovered source symbols can be directly passed to the

application through the callback function, or passed to the

application after receiving a certain number of source symbols,

which depends on the operation decision of the application.

7. Security Considerations

The FEC Framework document [RFC6363] provides a comprehensive

analysis of security considerations applicable to FEC schemes.

Therefore, the present section follows the security considerations

section of [RFC6363] and only discusses specific topics.

7.1. Attacks Against the Data Flow

7.1.1. Access to Confidential Content

The Sliding Window SLC FEC scheme specified in this document does

not change the recommendations of [RFC6363]. To summarize, if

confidentiality is a concern, it is RECOMMENDED that one of the

solutions mentioned in [RFC6363] is used with special considerations

to the way this solution is applied (e.g., is encryption applied

before or after FEC protection, within the end system or in a

middlebox), to the operational constrains (e.g., performing FEC

decoding in a protected environment may be complicated or even

impossible) and to the threat model.

7.1.2. Content Corruption

The Sliding Window SLC FEC scheme specified in this document does

not change the recommendations of [RFC6363]. To summarize, it is 

RECOMMENDED that one of the solutions mentioned in [RFC6363] is used

on both the FEC Source and Repair Packets.

7.2. Attacks Against the FEC Parameters

The Sliding Window SLC FEC scheme specified in this document defines

parameters that can be the basis of attacks. More specifically, the

following parameters of the FEC Framework Configuration Information

may be modified by an attacker (Section 4.1):

changing this parameter leads the receiver to

consider a different FEC Scheme. It will lead to severe

¶

¶

¶

¶

¶

¶

¶



Encoding symbol length (E):

Encoding Symbol ID (ESI):

Start_ESI:

gc:

cm_r:

Residual_ESI_:

Group_Size_:

consequences that the format of the AUDI, the Explicit Source FEC

Payload ID, and Repair FEC Payload ID of received packets will

probably differ. The FEC decoder can't get the correct decoding

information, resulting in decoding failure or decoding error.

setting this E parameter to a different

value will enable an attacker to create a DoS since the repair

symbols and certain source symbols will be larger or smaller than

E, incoherency for the receiver.

Therefore, it is RECOMMENDED that security measures be taken to

guarantee the FFCI integrity, as specified in [RFC6363]. How to

achieve this depends on how the FFCI is communicated from the sender

to the receiver, which is not specified in this document.

Similarly, attacks are possible against the Explicit Source FEC

Payload ID and Repair FEC Payload ID. More specifically, in the case

of an FEC Source Packet, the following value can be modified by an

attacker who targets receivers:

changing the ESI leads a receiver to

consider a wrong ADU, resulting in severe consequences, including

corrupted content passed to the receiving application. And in the

case of an FEC Repair Packet.

changing this value causes the FEC decoder to add the

wrong source symbol in the linear system, and therefore any

source symbol recovered by the linear system may be wrong.

changing this value causes the FEC decoder to add an incorrect

number of source symbols in the linear system. Therefore any

source symbol recovered by the linear system may be wrong.

changing this value leads a receiver to generate a wrong

coding coefficient, and therefore any source symbol decoded using

the repair symbol contained in this packet will be corrupted.

changing this value causes the FEC decoder to add

the wrong source symbol in the linear system, and therefore any

source symbol recovered by the linear system may be wrong.

changing this value causes the FEC decoder to add an

incorrect number of source symbols in the linear system.

Therefore any source symbol recovered by the linear system may be

wrong.

Therefore, it is RECOMMENDED that security measures are taken to

guarantee the FEC Source and Repair Packets as stated in [RFC6363].

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



XXX

7.3. When Several Source Flows Are to Be Protected Together

The Sliding Window SLC FEC scheme specified in this document does

not change the recommendations of [RFC6363].

7.4. Baseline Secure FECFRAME Operation

The Sliding Window SLC FEC scheme specified in this document does

not change the recommendations of [RFC6363] concerning the use of

the IPsec/Encapsulating Security Payload (ESP) security protocol as

a mandatory-to-implement (but not mandatory-to-use) security scheme.

This is well suited to situations where the only insecure domain is

the one over which the FEC Framework operates.

8. Operations and Management Considerations

The FECFRAME document [RFC6363] provides a comprehensive analysis of

operations and management considerations applicable to FEC schemes.

Therefore, the present section only discusses specific topics.

8.1. Operational Recommendations: gc_max

The Sliding Window SLC FEC scheme specified in this document defines

the maximum number of groups participating in encoding, called

gc_max, reflecting the maximum number of source symbols that the

coding window can hold. Gc_max is directly proportional to the

computational complexity of FEC encoding. If gc_max is too large,

the time complexity of FEC encoding will be too high, and the CPU

overhead will be too large. Generally, it is appropriate to

associate gc_max with cw_size_max.

For example, in real-time video streaming applications, the frame

rate (FR) and bit rate (BR) is determined by transmitting the video

frames. The possible number of packets per frame can be calculated

according to FR and BR, and they can calculate the maximum number of

symbols in the coding window.

BR kbps / 8 / FR fps / MTU * gc_max <= cw_size_max

Where MTU denotes Maximum Transmission Unit.

9. IANA Considerations

This document registers one values in the "FEC Framework (FECFRAME)

FEC Encoding IDs" sub-registry as follows:

refers to the Sliding Window Selective Linear Code (SLC)

Forward Error Correction (FEC) Scheme for Arbitrary Packet Flows.

¶

¶

¶

¶

¶

¶

¶

¶

¶



[RFC2119]

[RFC5052]

[RFC6363]

[RFC6364]

[RFC8174]

[RFC8680]

[Hel2011]

[RFC5170]

10. Acknowledgments

The authors would like to thank the FEC Framework Design Team for

providing a great FEC Framework. The authors would also like to

thank Shie Qian for reviewing the earlier draft versions of this

document.

11. References

11.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Watson, M., Luby, M., and L. Vicisano, "Forward Error

Correction (FEC) Building Block", RFC 5052, DOI 10.17487/

RFC5052, August 2007, <https://www.rfc-editor.org/info/

rfc5052>. 

Watson, M., Begen, A., and V. Roca, "Forward Error

Correction (FEC) Framework", RFC 6363, DOI 10.17487/

RFC6363, October 2011, <https://www.rfc-editor.org/info/

rfc6363>. 

Begen, A., "Session Description Protocol Elements for the

Forward Error Correction (FEC) Framework", RFC 6364, DOI

10.17487/RFC6364, October 2011, <https://www.rfc-

editor.org/info/rfc6364>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

Roca, V. and A. Begen, "Forward Error Correction (FEC)

Framework Extension to Sliding Window Codes", RFC 8680, 

DOI 10.17487/RFC8680, January 2020, <https://www.rfc-

editor.org/info/rfc8680>. 

11.2. Informative References

Cornelius, H., Barquero, G., Schierl, D., and T. Wiegand,

"Sliding-Window Forward Error Correction Based on

Reference Order for Real-Time Video Streaming", DOI

10.1109/TMM.2011.2129499, June 2011, <https://

ieeexplore.ieee.org/document/9741773/>. 

Roca, V., Neumann, C., and D. Furodet, "Low Density

Parity Check (LDPC) Staircase and Triangle Forward Error

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5052
https://www.rfc-editor.org/info/rfc5052
https://www.rfc-editor.org/info/rfc6363
https://www.rfc-editor.org/info/rfc6363
https://www.rfc-editor.org/info/rfc6364
https://www.rfc-editor.org/info/rfc6364
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8680
https://www.rfc-editor.org/info/rfc8680
https://ieeexplore.ieee.org/document/9741773/
https://ieeexplore.ieee.org/document/9741773/


[RFC5510]

[RFC6681]

[RFC6816]

[RFC6865]

[RFC8406]

[RFC8681]

[Wan2022]

Correction (FEC) Schemes", RFC 5170, DOI 10.17487/

RFC5170, June 2008, <https://www.rfc-editor.org/info/

rfc5170>. 

Lacan, J., Roca, V., Peltotalo, J., and S. Peltotalo, 

"Reed-Solomon Forward Error Correction (FEC) Schemes", 

RFC 5510, DOI 10.17487/RFC5510, April 2009, <https://

www.rfc-editor.org/info/rfc5510>. 

Watson, M., Stockhammer, T., and M. Luby, "Raptor Forward

Error Correction (FEC) Schemes for FECFRAME", RFC 6681, 

DOI 10.17487/RFC6681, August 2012, <https://www.rfc-

editor.org/info/rfc6681>. 

Roca, V., Cunche, M., and J. Lacan, "Simple Low-Density

Parity Check (LDPC) Staircase Forward Error Correction

(FEC) Scheme for FECFRAME", RFC 6816, DOI 10.17487/

RFC6816, December 2012, <https://www.rfc-editor.org/info/

rfc6816>. 

Roca, V., Cunche, M., Lacan, J., Bouabdallah, A., and K.

Matsuzono, "Simple Reed- Solomon Forward Error Correction

(FEC) Scheme for FECFRAME", RFC 6865, DOI 10.17487/

RFC6865, February 2013, <https://www.rfc-editor.org/info/

rfc6865>. 

Adamson, B., Adjih, C., Bilbao, J., Firoiu, V., Fitzek,

F., Ghanem, S., Lochin, E., Masucci, A., Montpetit, M-J.,

Pedersen, M., Peralta, G., Roca, V., Saxena, P., and S.

Sivakumar, "Taxonomy of Coding Techniques for Efficient

Network Communications", RFC 8406, DOI 10.17487/RFC8406, 

June 2018, <https://www.rfc-editor.org/info/rfc8406>. 

Roca, V. and B. Teibi, "Sliding Window Random Linear Code

(RLC) Forward Erasure Correction (FEC) Schemes for

FECFRAME", RFC 8681, DOI 10.17487/RFC8681, February 2020,

<https://www.rfc-editor.org/info/rfc8681>. 

Wang, R., Si, L., and B. He, "Sliding-Window Forward

Error Correction Based on Reference Order for Real-Time

Video Streaming", DOI 10.1109/ACCESS.2022.3162217, March

2022, <https://ieeexplore.ieee.org/document/9741773/>. 

Authors' Addresses

Ray Wang

Agora Lab

China

https://www.rfc-editor.org/info/rfc5170
https://www.rfc-editor.org/info/rfc5170
https://www.rfc-editor.org/info/rfc5510
https://www.rfc-editor.org/info/rfc5510
https://www.rfc-editor.org/info/rfc6681
https://www.rfc-editor.org/info/rfc6681
https://www.rfc-editor.org/info/rfc6816
https://www.rfc-editor.org/info/rfc6816
https://www.rfc-editor.org/info/rfc6865
https://www.rfc-editor.org/info/rfc6865
https://www.rfc-editor.org/info/rfc8406
https://www.rfc-editor.org/info/rfc8681
https://ieeexplore.ieee.org/document/9741773/


Email: wangrui@agora.io

Liang Si

Agora Lab

China

Email: siliang@agora.io

Bifeng He

Agora Lab

China

Email: hebifeng@agora.io

mailto:wangrui@agora.io
mailto:siliang@agora.io
mailto:hebifeng@agora.io

	Sliding Window Selective Linear Code (SLC) Forward Error Correction (FEC) Scheme for FECFRAME
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Definitions Notations and Abbreviations
	3.1. Definitions
	3.2. Notations
	3.3. Abbreviations

	4. Formats and Codes
	4.1. FEC Framework Configuration Information
	4.1.1. Mandatory
	4.1.2. FEC Scheme-Specific Information

	4.2. FEC Payload IDs
	4.2.1. Explicit Source FEC Payload ID
	4.2.2. Repair FEC Payload ID


	5. Procedures
	5.1. Restrictions
	5.2. ADU, ADUI, and Source Symbols Mappings

	5. Encoding Window Management
	5.4. Coding Matrix Generation
	5.5. Linear Operation on encoding side and decoding side
	5.5.1. Encoding Side
	5.5.2. Decoding Side


	6. FEC Code Specification
	6.1. Encoding Side
	6.2. Decoding Side

	7. Security Considerations
	7.1. Attacks Against the Data Flow
	7.1.1. Access to Confidential Content
	7.1.2. Content Corruption

	7.2. Attacks Against the FEC Parameters
	7.3. When Several Source Flows Are to Be Protected Together
	7.4. Baseline Secure FECFRAME Operation

	8. Operations and Management Considerations
	8.1. Operational Recommendations: gc_max

	9. IANA Considerations
	10. Acknowledgments
	11. References
	11.1. Normative References
	11.2. Informative References

	Authors' Addresses


