
Network Working Group S. Li
Internet-Draft EFF
Intended status: Experimental C. Man
Expires: January 3, 2019 J. Watson
 Stanford University
 July 02, 2018

Delegated Distributed Mappings
draft-watson-dinrg-delmap-00

Abstract

 Delegated namespaces (domain names, IP address allocation, etc.)
 underpin almost every Internet entity but are centrally managed,
 unilaterally revokable, and lack a common interface. This draft
 specifies a generalized scheme for delegation with a structure that
 supports explicit delegation guarantees. The resulting data may be
 secured by any general purpose distributed consensus protocol;
 clients can query the local state of any number of participants and
 receive the correct result barring a compromise at the consensus
 layer.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 3, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of

Li, et al. Expires January 3, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Delegated Mappings July 2018

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Structure . 3
2.1. Cells . 4
2.2. Tables . 5
2.3. Root Key Listing . 6
2.4. Data Structure . 7

3. Consensus . 8
3.1. Validation . 8
3.2. SCP . 9

4. Security Considerations 9
5. References . 10
5.1. Normative References 10
5.2. Informative References 10

 Acknowledgments . 10
 Authors' Addresses . 10

1. Introduction

 Internet entities rely heavily on delegated namespaces to function
 properly. Typical web services might have been delegated a domain
 name under which they host the entirety of their public-facing
 content, or obtain a public IP range from their ISP, acquiring a
 portion of a namespace originally assigned by an Internet Numbers
 Registry [RFC7249]. An enormous amount of economic value is
 therefore placed in these assignments, or mappings, yet they are
 dangerously ephemeral. Delgating authorities can unilateraly revoke
 and replace the assignments they've made (maliciously or
 accidentally), compromising infrastructure security.

 Presented in this draft is a generalized mechanism for delegating and
 managing such mappings. Specifically, we describe the structure for
 a distributed directory with support for delegation "commitments"
 that have an explicit duration. Certain known entities are assigned
 namespaces, loosely associated with a service provided by that entity
 (i.e domain prefixes for DNS Authorities). Under that namespace, are
 authorized to create mapping records, or _cells_, a unit of ownership
 in the service. A namespace's cells are grouped into a logical unit
 we term a _table_.

https://datatracker.ietf.org/doc/html/rfc7249

Li, et al. Expires January 3, 2019 [Page 2]

Internet-Draft Delegated Mappings July 2018

 Table cells may also explicitly document the delegation of a portion
 of the authority's namespace to another entity with a given public
 key, along with a guarantee on that delegation's lifetime. Each
 delegation forms a new table, for which the delegee is the sole
 authority. Thus, the delegating entity may not make modifications to
 a delegated table and need not be trusted by the delegee. The
 namespace segment may be further delegated to others.

 The delegation tables maintain security and consistency through a
 distributed consensus algorithm. When a participant receives an
 update, they verify and submit it to the consensus layer, after
 which, if successful, the change is applied to its associated table.
 Clients may query any number of trusted servers and expect the result
 to be correct barring widespread collusion.

 The risk of successful attacks on this system vary based on the
 consensus scheme used. Detailed descriptions of specific protocol
 implementations are out of scope for this draft, but at a minimum,
 the consensus algorithm must apply mapping updates in a consistent
 order, prevent equivocation or unauthorized modification, and enforce
 the semantic rules associated with each table. We find that
 federated protocols such as the Stellar Consensus Protocol
 [I-D.mazieres-dinrg-scp] are promising given their capability for
 open participation, broad diversity of interests among consensus
 participants, and a measure of accountability for submitting
 deceptive updates.

 This document specifies the structure for authenticated mapping
 management and its interface with a consensus protocol
 implementation.

2. Structure

 Trust within the delegation structure is solely based on public key
 signatures. Namespace authorities must sign any mapping additions,
 modifications, delegations, and revocations as proof to the other
 consensus participants that such changes are legitimate. For the
 sake of completeness, the public key and signature types are detailed
 below. All types in this draft are described in XDR [RFC4506].

 typedef publickey opaque<>; /* Typically a 256 byte RSA signature */

 struct signature {
 publickey pk;
 opaque data<>;
 };

https://datatracker.ietf.org/doc/html/rfc4506

Li, et al. Expires January 3, 2019 [Page 3]

Internet-Draft Delegated Mappings July 2018

2.1. Cells

 Cells are the basic unit of the delegation structure. In general,
 they define an authenticated mapping record that may be queried by
 clients. We describe two types of cells:

 enum celltype {
 VALUE = 0,
 DELEGATE = 1
 };

 Value cells store individual mapping entries. They resolve a lookup
 key to an arbitrary value, for example, an encryption key associated
 with an email address or a the address of an authoritative nameserver
 for a given DNS zone. The public key of the cell's owner (e.g. the
 email account holder, the zone manager) is also included, as well as
 a signature authenticating the current version of the cell. The cell
 must be signed either by the "owner_key", or in some cases, the
 authority of the table containing the cell, as is described below.
 The cell owner may rotate their public key at any time by signing the
 transition with the old key.

 struct valuecell {
 opaque value<>;
 publickey owner_key;
 signature transition_sig; /* Owner or table authority */
 };

 Delegate cells have a similar structure but different semantics.
 Rather than resolving an individual mapping, they authorize the
 delegee to create arbitrary value cells within an assigned namespace.
 This namespace must be a subset of the _delegator_'s own namespace
 range. The delegee is identified by their public key. Finally, each
 delegate cell and subsequent updates to the cell are signed by the
 delegator - this ensures that the delegee cannot unilaterally modify
 its namespace, which limits the range of mappings they can
 legitimately create.

 struct delegatecell {
 opaque namespace<>;
 publickey delegee;
 signature authority_sig; /* Delegator only */
 };

 Both cell types share a set of common data members, namely a set of
 UNIX timestamps recording the creation time and, if applicable, the
 time of last modification. They are useful indicators and will
 likely be useful in updating consensus nodes that have fallen behind.

Li, et al. Expires January 3, 2019 [Page 4]

Internet-Draft Delegated Mappings July 2018

 An additional "commitment" timestamp must be present in every
 mapping. It is an explicit guarantee on behalf of the authority
 creating the cell that the mapping will remain valid until at least
 the specified time. Therefore, while value cell owners may modify
 their cell at any moment, the authority cannot successfully change
 (or remove) the cell until its commitment expires. Similarly,
 delegated namespaces are guaranteed to be valid until the commitment
 timestamp. This creates a tradeoff between protecting delegees from
 arbitrary delegator action and allowing simple reconfiguration that
 can be customized for the use case.

 union innercell switch (celltype type) {
 case VALUE:
 valuecell vcell;
 case DELEGATE:
 delegatecell dcell;
 };

 struct cell {
 unsigned hyper create_time; /* 64-bit UNIX timestamps */
 unsigned hyper *revision_time;
 unsigned hyper commitment_time;
 innercell c;
 }

2.2. Tables

 Every cell is stored in a table, which groups all the mappings
 created by a single authority public key for a specific namespace.
 Individual cells are referenced by an application-specific label in a
 lookup table. Below, we allow for a single lookup key to reference a
 list of cells, for the sake of generality. The combination of a
 lookup key and a referenced cell value forms a mapping.

 struct tableentry {
 opaque lookup_key<>;
 cell cells<>;
 }

 Delegating the whole or part of a namespace requires adding a new
 lookup key for the namespace in question and a matching delegate
 cell. Each delegation must be validated in the context of the other
 table entries and the table itself. For example, it should not be
 possible for the owner of a /8 IPv4 block to delegate the same /16
 block to two different delegees. In addition to a collection of
 entries, each table incorporates a "type" that informs each
 participating node of the particular delegation rules to apply to
 table entries.

Li, et al. Expires January 3, 2019 [Page 5]

Internet-Draft Delegated Mappings July 2018

 struct table {
 tabletype type;
 tableentry entries<>;
 };

 While there exist more delegation mechanisms than we could reasonably
 discuss in this draft, we initially propose three general-purpose
 schemes that cover the majority of use cases:

 enum tabletype {
 PREFIX = 0,
 SUFFIX = 1,
 FLAT = 2
 };

 The table type informs the validation procedure when performing
 consensus; all new or updated delegated namespaces must follow the
 proper format for their table. Prefix-based delegation, such as in
 an IP delegation use case, requires every table cell value to be
 prefixed by the table namespace, and no cell value be a prefix of
 another cell value. Similar rules apply to suffix-based delegation.
 In cases where arbitrary values may be mapped (e.g. account names for
 an email service provider), "flat" delegation rules are used.

 The delegation rule for a table also determine valid lookup behavior.
 Given a particular lookup key, "PREFIX"-type tables should have at
 most one entry whose key is a prefix of the query. Likewise,
 "SUFFIX" tables have at most one entry whose key is a suffix of the
 query. As an example, lookup on "irtf.org" in a table of domain
 names with suffix-based delegation rules may return entries with keys
 "irtf.org", "tf.org", ".org", etc., but the presence of more than one
 of these indicates two faulty delegations that control the same
 namespace.

2.3. Root Key Listing

 Each linked group of delegation tables for a particular namespace is
 rooted by a public key stored in a flat root key listing, which is
 the entry point for lookup operations. Well-known application
 identifier strings denote the namespace they control. We describe
 below how lookups can be accomplished on the mappings.

Li, et al. Expires January 3, 2019 [Page 6]

Internet-Draft Delegated Mappings July 2018

 struct rootentry {
 publickey namespace_root_key;
 string application_identifier<>;
 signature listing_sig;
 }

 struct rootlisting {
 rootentry roots<>;
 }

 A significant open question is how to properly administer entries in
 this listing, since a strong authority, such as a single root key,
 can easily protect the listing from spam and malicious changes, but
 raises important concerns about censorship resilience and potential
 compromise. A federated approach to management is more in line with
 the spirit of this draft but opens the door for counter-productive
 participation. In the "rootentry" description above, we allow for
 either a root signing key to authenticate mappings, or first-come-
 first-served self-signed entries. In either case, no more than one
 key may control the namespace for a specific application identifier.

2.4. Data Structure

 Delegation tables are stored in a Merkle hash tree, described in
 detail in [RFC6962]. In particular, it enables efficient lookups and
 logarithmic proofs of existence in the tree, and prevents
 equivocation between different participants. Specifically, we can
 leverage Google's [Trillian] Merkle tree implementation which
 generalizes the datastructures used in Certificate Transparency. In
 map mode, the tree can manages arbitrary key-value pairs at scale.
 This requires flattening the delegation links such that each table
 may be queried, while ensuring that a full lookup from the
 application root be made for each mapping. Given a "rootentry", the
 corresponding table in the Merkle tree can be found with this
 concatenation:

 root_table_name = app_id || namespace_root_key

 Similarly, tables for delegated namespaces are found at:

 root_table_name || delegee_key_1 || ... || delegee_key_n

 Consensus is performed on the Merkle tree containing the flattened
 collection of tables. While it is possible to reach consensus on
 entire tables when a cell is modified, this approach does not scale
 well with the size of the table. Therefore, each table should
 maintain its entries in its own internal Merkle tree and perform
 consensus on Merkle proofs for the modified cell.

https://datatracker.ietf.org/doc/html/rfc6962

Li, et al. Expires January 3, 2019 [Page 7]

Internet-Draft Delegated Mappings July 2018

3. Consensus

 Safety is ensured by reaching distributed consensus on the state of
 the tree. The general nature of a Merkle tree as discussed in the
 previous section enables almost any consensus protocol to support
 delegated mappings, with varying guarantees on the conditions under
 which safety is maintained and different trust implications. For
 example, a deployment on a cluster of nodes running a classic
 Byzantine Fault Tolerant consensus protocol such as [PBFT] requires a
 limited, static membership and can tolerate compromises in up to a
 third of its nodes. In comparison, proof-of-work schemes including
 many cryptocurrencies have open membership but rely on economic
 incentives and distributed control of hashing power to provide
 safety, and federated consensus algorithms like the Stellar Consensus
 Protocol (SCP) [I-D.mazieres-dinrg-scp] combine dynamic members with
 real-world trust relationships but require careful configuration.
 Determining which scheme, if any, is the "correct" protocol to
 support authenticated delegation is an open question.

3.1. Validation

 Incorrect (potentially malicious) updates to the Merkle tree should
 be rejected by nodes participating in consensus. Given the limited
 set of delegation schemes presented in the previous section, each
 node can apply the same validation procedure without requiring
 application-specific knowledge. Upon any modification to the tree -
 addition of a new root entry, table or cell, or modification of an
 existing cell - the submitted change to the consensus layer should
 contain:

 (1) the updated or newly-created table, and

 (2) a Merkle proof containing all the hashes necessary to validate
 the new root tree hash.

 Finally, each node participating in consensus must confirm before
 voting for the update that:

 (1) the Merkle proof is correct, and

 (2) an addition to the root key listing is correctly signed by an
 authorized party, or

 (3) for delegate cells:

 (3a) a new delegation is correctly authenticated, (3b) the cell
 contains a valid namespace owned by the delegator, (3c) the

Li, et al. Expires January 3, 2019 [Page 8]

Internet-Draft Delegated Mappings July 2018

 delegation follows the table-specified delegation rules, and (3d) the
 delegated table is mapped in the Merkle map by the proper key

 (4) for value cells:

 (4a) a new mapping is correctly authenticated, (4b) the value belongs
 to the signing authority's namespace, and (4c) does not conflict with
 other cells in its table

 (5) and for all updates, if proposed by the table authority, the cell
 contains an expired commitment timestamp.

 Only after a round of the consensus protocol is successful are the
 changes exposed to client lookups.

3.2. SCP

 While consensus can be reached with many protocols, this section
 describes how the delegation tables can interface with an SCP
 implementation.

 As discussed above, updates to the delegation tables take the form of
 Merkle proofs along with the table change itself. Since SCP does not
 need specific knowledge of the format of these proofs, they directly
 form the opaque values submitted to the consensus layer. Once a
 combination of proofs are agreed to as outputs for a given slot, they
 are applied to the local tables state.

 Finally, [I-D.mazieres-dinrg-scp] requires the delegation layer to
 provide a _validity_ function that is applied to each input value,
 and a _combining function_ to compose multiple candidate values. For
 this application, the validity function must implement the logic
 contained in the previous section. The combining function can simply
 take the union of the valid proofs proposed by the consensus nodes,
 rejecting valid, duplicate updates to the same cell in favor of the
 most up-to-date timestamp.

4. Security Considerations

 The security of the delegation tables is primarily tied to the safety
 properties of the underlying consensus layer. Further, incorrect use
 of the public key infrastructure authenticating each mapping or
 compromise of a namespace root key can endanger mappings delegated by
 the key after their commitments expire.

Li, et al. Expires January 3, 2019 [Page 9]

Internet-Draft Delegated Mappings July 2018

5. References

5.1. Normative References

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <https://www.rfc-editor.org/info/rfc4506>.

 [Trillian]
 Google, "Trillian: General Transparency", n.d.,
 <https://github.com/google/trillian>.

5.2. Informative References

 [I-D.mazieres-dinrg-scp]
 Barry, N., Losa, G., Mazieres, D., McCaleb, J., and S.
 Polu, "The Stellar Consensus Protocol (SCP)", draft-

mazieres-dinrg-scp-04 (work in progress), June 2018.

 [PBFT] Castro, M. and B. Liskov, "Practical Byzantine Fault
 Tolerance", 1999,
 <http://pmg.csail.mit.edu/papers/osdi99.pdf>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

 [RFC7249] Housley, R., "Internet Numbers Registries", RFC 7249,
 DOI 10.17487/RFC7249, May 2014,
 <https://www.rfc-editor.org/info/rfc7249>.

Acknowledgments

 We are grateful for the contributions and feedback on design and
 applicability by David Mazieres, as well as help and feedback from
 the IRTF DIN research group, including Dirk Kutscher and Melinda
 Shore.

 This work was supported by The Stanford Center For Blockchain
 Research.

Authors' Addresses

https://datatracker.ietf.org/doc/html/rfc4506
https://www.rfc-editor.org/info/rfc4506
https://github.com/google/trillian
https://datatracker.ietf.org/doc/html/draft-mazieres-dinrg-scp-04
https://datatracker.ietf.org/doc/html/draft-mazieres-dinrg-scp-04
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://datatracker.ietf.org/doc/html/rfc6962
https://www.rfc-editor.org/info/rfc6962
https://datatracker.ietf.org/doc/html/rfc7249
https://www.rfc-editor.org/info/rfc7249

Li, et al. Expires January 3, 2019 [Page 10]

Internet-Draft Delegated Mappings July 2018

 Sydney Li
 Electronic Frontier Foundation
 815 Eddy Street
 San Francisco, CA 94109
 US

 Email: sydney@eff.org

 Colin Man
 Stanford University
 353 Serra Mall
 Stanford, CA 94305
 US

 Email: colinman@cs.stanford.edu

 Jean-Luc Watson
 Stanford University
 353 Serra Mall
 Stanford, CA 94305
 US

 Email: jlwatson@cs.stanford.edu

Li, et al. Expires January 3, 2019 [Page 11]

