
Network Working Group J. Watson
Internet-Draft UC Berkeley
Intended status: Experimental S. Li
Expires: April 26, 2019 EFF
 C. Man
 Stanford University
 October 23, 2018

Delegated Distributed Mappings
draft-watson-dinrg-delmap-01

Abstract

 Delegated namespaces underpin almost every Internet-scale system -
 domain name management, IP address allocation, Public Key
 Infrastructure, etc. - but are centrally managed by entities with
 unilateral revocation abilities and no common interface. This draft
 specifies a generalized scheme for delegation that supports explicit
 time-bound guarantees and limits misuse. Mappings may be secured by
 any general purpose distributed consensus protocol; clients can query
 the local state of any number of participants and receive the correct
 result barring a compromise at the consensus layer.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 26, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents

Watson, et al. Expires April 26, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78

Internet-Draft Delegated Mappings October 2018

 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Structure . 4
2.1. Cells . 4
2.2. Tables . 6
2.3. Root Key Listing . 7

3. Interacting with a Consensus Node 7
3.1. Storage Format . 7
3.2. Client Interface . 8

4. Consensus-layer requirements 10
4.1. Interface . 11
4.2. Validation . 11

5. Security Considerations 12
5.1. DoS mitigation . 13
5.2. Consensus node compromise 13
5.3. Upstream compromise 14
5.4. Root listing governance 14

6. References . 15
6.1. Normative References 15
6.2. Informative References 15

 Acknowledgments . 16
 Authors' Addresses . 16

1. Introduction

 Internet entities rely heavily on delegated namespaces to function
 properly. Typical web services have been delegated a domain name
 (after negotitation with an appropriate registrar) under which they
 host the entirety of their public-facing content, or obtain a public
 IP range from their ISP, which itself has been delegated through
 intermediary registries by the Internet Numbers Registry [RFC7249].
 An enormous amount of value and trust is therefore placed in these
 assignments (in this draft, _mappings_) yet they are dangerously
 ephemeral. Delegating authorities, either maliciously or
 accidentally, can unilaterally revoke or replace mappings they've
 made, compromising infrastructure security. Presented in this draft
 is a generalized mechanism for securely managing such mappings and
 their delegations by publishing authenticated time-locked commitments
 to namespace ownership entries. Known entities identified by public

https://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7249

Watson, et al. Expires April 26, 2019 [Page 2]

Internet-Draft Delegated Mappings October 2018

 key are assigned namespaces (e.g. domain prefixes) under which they
 are authorized to create mapping records, or _cells_. A namespace's
 cells are grouped into logical units we term _tables_.

 Alone, this structure does not ensure security, given that any
 hosting server could arbitrarily modify cells or service clients with
 bogus entries. We maintain security and consistency through a
 distributed consensus algorithm. While detailed descriptions of
 varying consensus protocols are out of scope for this draft, we
 provide for a general-purpose interface between the delegation
 structure and a consensus layer. At a minimum, the consensus layer
 must apply mapping updates in a consistent order, prevent
 equivocation, disallow unauthorized modification, and grant consensus
 nodes the ability to enforce high-level rules associated with the
 tables. We find that federated protocols such as the Stellar
 Consensus Protocol [I-D.mazieres-dinrg-scp] are promising given their
 capability for open participation, broad diversity of interests among
 consensus participants, and providing accountability for malicious
 behavior. Clients may query any number of trusted servers to
 retrieve a correct result barring widespread collusion.

 The ability to impose consistency yields several useful properties.
 The foremost is enforcing delegation semantics: a table's authority
 may choose to delegate a portion of its own namespace recursively,
 but must document the specific range and delegee in on of the table's
 cells. Since each delegation forms a new table, for which a delegee
 is the sole authority, assigned namespace ranges must be unique.
 Consensus can also enforce that the delegating authority not make
 modifications to any delegated table and thus need not be trusted by
 the delegee.

 In addition, we provide explicit support for "commitments" that
 enforce an explicit lower-bound on the duration of delegations.
 Otherwise valid changes to cells that have a valid commitment are
 disallowed, including revoking delegations. Upon expiration,
 however, the same namespace may be delegated to another party.

 Finally, decentralized infrastructure is highly visible and commonly
 misused. As mappings are replicated among consensus nodes, of
 primary concern is resource exhaustion. We limit undesired abuse of
 the structure by embedding recursive scale restrictions inside
 mappings, verified and ratified at consensus. Combined with time-
 bounded delegations, this ensures that the system is resistant to
 spam in the short-term and can remove misbehaving hierarchies in the
 long-term.

Watson, et al. Expires April 26, 2019 [Page 3]

Internet-Draft Delegated Mappings October 2018

 The remainder of this draft specifies the structure for authenticated
 mapping management as well as its interfaces to consensus protocol
 implementations and users.

2. Structure

 Trust within the delegation structure is based on public key
 signatures. Namespace authorities must sign mapping additions,
 modifications, delegations, and revocations to their table as proof
 to the consensus participants that such changes are legitimate. For
 the sake of completeness, the public key and signature types are
 detailed below. All types in this draft are described in XDR
 [RFC4506].

 typedef publickey opaque<>; /* Typically a 256 byte RSA signature */

 struct signature {
 publickey pk;
 opaque data<>;
 };

2.1. Cells

 Cells are the basic unit of the delegation structure. In general,
 they compose an authenticated record of a mapping that may be queried
 by clients. We describe two types of cells:

 enum celltype {
 VALUE = 0,
 DELEGATE = 1
 };

 Value cells store individual mapping entries. They resolve a lookup
 key to an arbitrary value, for example, an encryption key associated
 with an email address or the zone files associated with a particular
 domain. The public key of the cell's owner (e.g. the email account
 holder, the domain owner) is also included, as well as a signature
 authenticating the current version of the cell. The cell's
 "update_sig" must be made by either the "owner_key", or when created,
 the authority of the table containing the cell, as is described
 below. The cell owner may rotate their public key at any time by
 signing the update with the old key.

https://datatracker.ietf.org/doc/html/rfc4506

Watson, et al. Expires April 26, 2019 [Page 4]

Internet-Draft Delegated Mappings October 2018

 struct valuecell {
 opaque value<>;
 publickey owner_key;

 signature update_sig; /* Table signs cell creation, owner signs updates
*/
 };

 Delegate cells have a similar structure but different semantics.
 Rather than resolving to an individual mapping, they authorize the
 delegee to create arbitrary value cells within an assigned
 namespace. This namespace must be a subset of the _delegator_'s own
 namespace range. Like the table authority, the delegee is uniquely
 identified by their public key. Each delegate cell and subsequent
 updates to the cell are signed by the delegator - this ensures that
 the delegee cannot unilaterally modify its namespace, which limits
 the range of legitimate mappings they can create. Finally, an
 allowance must be provided to limit the upper-bound size of a
 delegated table. Negative allowance values indicates no limit is
 placed on the table. Given that the delegee has complete control
 over the contents of their table, it is emphatically not recommended
 to grant a "delegatecell" an unlimited allowance to limit the storage
 burden on consensus nodes. A table with a non-negative allowance may
 not grant a delegee a negative one. This limit is recursive along
 delegations - the total number of cells in a table plus the sum of
 allowances among its "delegatecells" must be less than or equal to
 the table's allowance, if non-negative. This must be validated
 during consensus before adding new cells to a table, which can be
 done at every consensus node because table entry counts are visible
 publicly.

 struct delegatecell {
 opaque namespace<>;
 publickey delegee;
 signature authority_sig; /* Delegator solely controls inclusion in
table */
 int allowance;
 };

 Both cell types share a set of common data members, namely a set of
 UNIX timestamps recording the creation time and, if applicable, the
 time of last modification. An additional "commitment" timestamp must
 be present in every mapping. It is an explicit guarantee on behalf
 of the table's authority that the mapping will remain valid until at
 least the specified time. Therefore, while value cell owners may
 modify their cell at any time (e.g. key rotation), the authority
 cannot change (or remove) the cell until its commitment expires, as
 enforced by the consensus nodes. Similarly, delegated namespaces are

 guaranteed to be valid until the commitment timestamp expiration,
 although after expiration, they can be reassigned to other parties.

Watson, et al. Expires April 26, 2019 [Page 5]

Internet-Draft Delegated Mappings October 2018

 Likely, most long-term delegations will be renewed (with a new
 commitment timestamp) before the expiration of the current period.
 The tradeoff between protecting delegees from arbitrary authority
 action and allowing quick reconfiguration is customizable to the use
 case. Larger services should use longer delegation periods for
 stability whereas small namespaces with a smaller number of users
 should use shorter delegations.

 union innercell switch (celltype type) {
 case VALUE:
 valuecell vcell;
 case DELEGATE:
 delegatecell dcell;
 };

 struct cell {
 unsigned hyper create_time; /* 64-bit UNIX timestamps */
 unsigned hyper *revision_time;
 unsigned hyper commitment_time;
 innercell c;
 }

2.2. Tables

 Every cell is stored in a table, which groups all the mappings
 created by a single authority public key for a specific namespace.
 Individual cells are referenced by an application-specific label in a
 lookup table. _The combination of a lookup key and a referenced cell
 value forms a mapping_.

 struct tableentry {
 opaque lookup_key<>;
 cell c;
 }

 Delegating the whole or part of a namespace requires adding a new
 lookup key for the namespace and a matching delegate cell. Each
 delegation must be validated in the context of the other table
 entries and the table itself. For example, the owner of a table
 delegated an /8 IPv4 block must not to delegate the same /16 block to
 two different tables.

 struct table {
 tableentry entries<>;
 };

 To generalize correctness, each table must conform with a prefix-
 based rule: for every cell "c" in a table controlling namespace "x",

Watson, et al. Expires April 26, 2019 [Page 6]

Internet-Draft Delegated Mappings October 2018

 "x" must be a prefix of "c" and there cannot exist another cell "c'"
 such that "c" is a prefix of "c'". While there exist many more
 hierarchical delegation mechanisms, many can be simply represented in
 a prefix scheme. For example, suffix-based delegations including
 domain name hierarchies can use reversed keys internally and perform
 a swap in the application layer before displaying any results to
 clients. Likewise, 'flat' delegation schemes where there is no
 explicit restriction can use an empty prefix.

2.3. Root Key Listing

 Each linked group of delegation tables for a particular namespace is
 rooted by a public key stored in a flat root key listing, which is
 the entry point for lookup operations. Well-known application
 identifier strings denote the namespace they control. We describe
 below how lookups can be accomplished on the mappings.

 struct rootentry {
 publickey namespace_root_key;
 string application_identifier<>;
 signature listing_sig;
 int allowance;
 }

 struct rootlisting {
 rootentry roots<>;
 }

 A significant question is how to properly administer entries in this
 listing, which we address in Security Considerations.

3. Interacting with a Consensus Node

3.1. Storage Format

 Delegation tables are stored in a Merkle hash tree, described in
 detail in [RFC6962]. In particular, it enables efficient lookups and
 logarithmic proofs of existence in the tree, and prevents
 equivocation between different participants. Among others, we can
 leverage Google's [Trillian] Merkle tree implementation which
 generalizes the datastructures used in Certificate Transparency. In
 map mode, the tree can manage arbitrary key-value pairs at scale, but
 critically, this requires flattening the delegation links such that
 each table may be queried, while ensuring that a full lookup from the
 application root is made for each mapping.

 Given a "rootentry", the corresponding table in the Merkle tree can
 be queried at the following key (where || refers to concatenation):

https://datatracker.ietf.org/doc/html/rfc6962

Watson, et al. Expires April 26, 2019 [Page 7]

Internet-Draft Delegated Mappings October 2018

 root_table_name = app_id || namespace_root_key

 It follows that tables for delegated namespaces are found at:

 table = root_table_name || delegee_key_1 || ... || delegee_key_n

 And finally, individual entries are identified by the namespace
 lookup key:

 cell = table || desired_lookup_key

 Once an entry is found in the tree, a logarithmic proof can be
 constructed with the hashes of the siblings of each node in the
 tree's path to the entry.

 struct merkleproof {
 opaque sibling_hashes[32]<>;
 cell entry_cell;
 signature tree_sig;
 }

 The entry is hashed together with each "sibling_hash" - if the total
 matches the known tree root hash, then the entry must have been in
 the tree.

3.2. Client Interface

 The presence of a natural mapping structure motivates an external
 client interface similar to a key-value store.

 struct MerkleRootOperation { }

 struct MerkleRootReturn {
 opaque root_hash[32];
 signature tree_sig;
 }

 It is important to note that the client should not rely on a root
 hash that has been provided by a single server to verify a
 "merkleproof", instead querying multiple consensus nodes using this
 interface. Upon discovering that different servers are advertising
 non-matching hashes, the signed proof should be used to prove to
 other clients/nodes that one or more malicious trees are
 equivocating.

Watson, et al. Expires April 26, 2019 [Page 8]

Internet-Draft Delegated Mappings October 2018

 enum ReturnCode {
 CELL = 0,
 TABLE = 1,
 ERROR = 2
 }

 struct GetOperation {
 string application_identifier;
 opaque full_lookup_key<>;
 }

 union GetReturn switch (ReturnCode ret) {
 case CELL:
 cell value;
 merkleproof p;
 case TABLE:
 table t;
 merkleproof p;
 case ERROR:
 string reason;
 }

 Given an application identifier and the fully-qualified lookup key,
 the map described in the previous section can be searched
 recursively. At each table, we find the cell whose name matches a
 prefix of the desired lookup key. If the cell contains a
 "valuecell", it is returned if the cell's key matches the lookup key
 exactly, else an "ERROR" is returned. If the cell contains a
 "delegatecell", it must contain the key for the next table, on which
 the process is repeated. If no cell is found by prefix-matching, the
 node should return "ERROR" if the key has not been fully found, else
 the table itself (containing all of the current cells) is provided to
 the client. As in every interaction with the delegated mapping
 structure, users should verify the attached proof. Verifying
 existence of an entry follows from the same method.

Watson, et al. Expires April 26, 2019 [Page 9]

Internet-Draft Delegated Mappings October 2018

 struct SetOperation {
 string application_identifier;
 opaque full_lookup_key<>;
 cell c;
 }

 struct SetRootOperation {
 rootentry e;
 bool remove;
 }

 union SetReturn switch (ReturnCode ret) {
 case SUCCESS:
 opaque empty;
 case ERROR:
 string reason;
 }

 Creating or updating a cell at a specified path requires once again
 the full lookup key, as well as the new version of the cell to place.
 The new cell must be well-formed under the validation checks
 described in the previous section, else an "ERROR" is returned. For
 example, updating a cell's owner without a signature by the previous
 owning key should not succeed. Both value cells and new/updated
 delegations may be created through this method. Removing cells from
 tables (after their commitment timestamps have expired) can be
 accomplished by replacing the value or delegated namespace with an
 empty value and setting the owner's key to that of the table
 authority. Asking the consensus layer to approve a new root entry
 follows a similar process, although the application identifier and
 lookup key is unnecessary (see "SetRootOperation"). Nodes can also
 trigger votes to remove entries from the root key listing to redress
 misbehaving applications.

4. Consensus-layer requirements

 Safety is ensured by reaching distributed consensus on the state of
 the tree. The general nature of a Merkle tree as discussed in the
 previous section enables almost any consensus protocol to support
 delegated mappings, with varying guarantees on the conditions under
 which safety is maintained and different trust implications. For
 example, a deployment on a cluster of nodes running a classic
 Byzantine Fault Tolerant consensus protocol such as [PBFT] requires a
 limited, static membership and can tolerate compromises in up to a
 third of its nodes. In comparison, proof-of-work schemes including
 many cryptocurrencies have open membership but rely on economic
 incentives and distributed control of hashing power to provide
 safety, and federated consensus algorithms like the Stellar Consensus

Watson, et al. Expires April 26, 2019 [Page 10]

Internet-Draft Delegated Mappings October 2018

 Protocol (SCP) [I-D.mazieres-dinrg-scp] combine dynamic members with
 real-world trust relationships but require careful configuration.
 Determining which scheme, if any, is the best protocol to support
 authenticated delegation is an open question.

4.1. Interface

 At a minimum, the consensus layer is expected to provide mechanisms
 for nodes to

 1. Submit new values (commonly cell, but also root listing, updates)
 for consensus

 2. Receive externalized values to which the protocol has committed

 3. Validate values received from other nodes for each iteration of
 the protocol, as specified below

 Most input values to the consensus layer will consist of cell
 updates, but the same mechanism is ideally suited for updates to the
 root key listing, as previously discussed. Specific protocols may
 require additional functionality from the delegated mapping layer,
 which should be implemented to ensure that valid updates are
 eventually applied (assuming a working consensus layer).

4.2. Validation

 Incorrect (potentially malicious) updates to the Merkle tree should
 be rejected by nodes participating in consensus. Given the known
 prefix-delegation scheme, each node can apply the same validation
 procedure without requiring table-specific knowledge. Validation
 also provides a simple mechanism for rate-limiting actors attempting
 to perform DoS attacks, as only the most recent change to a
 particular cell need be retained, and the total number of updates to
 any particular table or overall can be capped. Upon any modification
 to the delegation tables, a "SetOperation" or "SetRootOperation" as
 defined in the previous section, the submitted change to the
 consensus layer should:

 1. Reference an existing application identifier in the root key
 listing and a valid table if applicable.

 2. For updates to all cells:

 * contain an unmodified "create_time" or a current timestamp if
 a new cell

 * contain a current "revision_time" in the case of an update

Watson, et al. Expires April 26, 2019 [Page 11]

Internet-Draft Delegated Mappings October 2018

 * set a "commitment_time" greater than or equal to the previous
 commitment

 * result in a total table size ("valuecell" count +
 "delegatecell" allowances) less than or equal to the table
 allowance, if not unlimited

 3. For updates to value cells:

 * be signed with the table authority's public key for new
 mappings

 * be signed only by the current "owner_key" if the cell
 commitment has not yet expired, or by either the owner or
 table authority upon expiration for updates to the value or
 owner keys

 * have a lookup key in the table that belongs to the authority's
 namespace

 * not conflict with other cells in its table, breaking the
 prefix-delegation property

 4. For updates to delegate cells:

 * be signed by the table authority's public key for new
 delegations or updates

 * retain the same "namespace" and "delegee" value unless the
 "commitment_time" is expired

 * contain a valid namespace owned by the authority delegating
 the cell

 * not conflict with other values or delegations in the same
 table, breaking the prefix-delegation property

 * not grant unlimited (negative) allowance unless the delegating
 table also has an unlimited allowance

 Only after a round of the consensus protocol is successful are the
 changes exposed to client lookups.

5. Security Considerations

Watson, et al. Expires April 26, 2019 [Page 12]

Internet-Draft Delegated Mappings October 2018

5.1. DoS mitigation

 Full consensus nodes must maintain complete, up-to-date table state
 in order to correctly validate and apply updates. A significant
 concern is limiting computation and storage resources expended as the
 result of malicious entities operating in the delegation structure.
 This is doubly important because of the explicit lack of trust from a
 delegee to its delegating namespace. While this prevents higher-
 level organizations from making arbitrary changes to delegated
 namespaces (as is currently possible in the CA hierarchy), a delegee
 may choose to incur unreasonable storage costs by filling their table
 with millions of garbage cells. Of course, since the delegee has a
 commitment to controlling the specific namespace for a certain time
 period, these cells cannot be removed. We recognize that this
 requires the provider to place some amount of trust in their users to
 consume resources responsibly, and attempt to limit misuse.

 The allowances included in each delegation work to address this,
 since it explicitly defines an agreement between the delegator and
 delegee as to the expected size required for correct operation.
 Since allowances are provided at the root level as well (ignoring
 unlimited allowances) there exists an upper bound on the total number
 of cells that consensus nodes should expect to be required to
 maintain. Importantly, the ability to unlimit the table size (as
 well as further delegations) increases the risk of misuse but
 provides significant flexibility for well-known systems like DNS and
 IP allocation. This can be mitigated by assigning unlimited
 allowances only to well-known entities where real-world
 accountability limits the urge to misbehave. Consensus nodes are
 also encouraged to rate-limit excessive "SetOperation"s from clients
 to further limit this issue.

5.2. Consensus node compromise

 We rely on the safety properties of the underlying consensus layer to
 provide a consistent view of the delegated mapping tables. This
 ensures that no honest node will serve mappings to clients that have
 not succeeded at reaching consensus. There is nothing directly
 preventing compromised consensus nodes from maliciously serving
 entries (e.g. incorrect DNS zone records) to clients as they see fit,
 however, they must also provide an inclusion proof and expose their
 Merkle root hash. As noted previously, clients and other auditing
 parties may compare roots and discover misbehavior. The proof
 associated with a query is unequivocal proof that is sufficient to
 ignore the compromised node in further consensus rounds. Past
 individual compromise, the exact point at which a network of
 consensus nodes can completely violate safety varies from protocol to
 protocol (majority hashing power attack in Bitcoin, no quorum

Watson, et al. Expires April 26, 2019 [Page 13]

Internet-Draft Delegated Mappings October 2018

 intersection of well-behaved nodess in SCP, etc.). Thus, it is not
 secure to rely only on a small group of nodes hosted by one or two
 distinct entities for consensus, as they are easily targeted. The
 generalized delegated mappings mechanism described in this draft
 allows parties from radically different sectors to collectively
 provide security, limiting the impact of a small number of malicious
 nodes. Finally, in the case of an extremely large-scale compromise,
 mappings stored in prior trees with known root hashes are still valid
 - they cannot be modified without forging the inclusion proof whose
 root hash the client will verify.

5.3. Upstream compromise

 As in any hierarchical delegation system, some amount of trust must
 be placed in the upstream provider. With this work, we strive to
 minimize the amount and nature of trust that any entity has to place
 in their upstream dependencies.

 In a regular authenticated delegation system, the network must
 unilaterally trust a particular namespace operator to not equivocate
 (i.e. not present different states of the database to different
 entities) and to not hijack control of a particular delegated entry.
 Under consensus, nodes can trust that a single entity cannot force
 the network to equivocate, and entities can audit the database for
 any misbehavior. The time-bound commitments to namespace delegations
 limit misuse to the brief renewal window, during which end-entities
 can monitor the network for misbehavior.

 Although an upstream entity can still unilaterally censor and deny
 service to a particular entity for the namespace that they control,
 their ability to hijack an existing delegee's entries is both limited
 and auditable.

5.4. Root listing governance

 Relying on a centralized party in the long term to reliably and
 consistently manage the root key listing would create a centralized
 point of failure, so we consider alternative mechanisms of governing
 the root of the structure presented in this draft. Concurrent work
 on IP address allocation [IP-blockchain] explores using a
 Decentralized Autonomous Organization built on the Ethereum
 blockchain to manage all delegations where proper behavior is
 economically motivated. We identify similar challenges: controlling
 spam and misuse, while operating in a decentralized manner.

 In this draft, we focus on enabling governance through consensus
 operations. For that reason, potential root entries are nominated
 with a proposed allowance, which will restrict the total number of

Watson, et al. Expires April 26, 2019 [Page 14]

Internet-Draft Delegated Mappings October 2018

 cells currently supported by an application. For large systems such
 as IP delegation or well-known entities like the IETF, the limit can
 be disabled as discussed earlier. It is important that decisions
 regarding root listing membership be made by the consensus nodes
 themselves, since they bear the largest burden to store tables,
 communicate with other nodes, and service client queries. If an
 application begins to run out of allowance (too many cells or large
 delegations), it can sign and nominate a new "rootentry" for the same
 application identifier with a larger value, at which point the other
 nodes can (given global knowledge of table sizes and growth rates,
 along with potential real-world information) determine whether or not
 to accept the change. Note that if the consensus layer is
 compromised as discussed above, the governance of the root listing
 also becomes insecure.

6. References

6.1. Normative References

 [RFC4506] Eisler, M., Ed., "XDR: External Data Representation
 Standard", STD 67, RFC 4506, DOI 10.17487/RFC4506, May
 2006, <https://www.rfc-editor.org/info/rfc4506>.

 [Trillian]
 Google, "Trillian: General Transparency", n.d.,
 <https://github.com/google/trillian>.

6.2. Informative References

 [I-D.mazieres-dinrg-scp]
 Barry, N., Losa, G., Mazieres, D., McCaleb, J., and S.
 Polu, "The Stellar Consensus Protocol (SCP)", draft-

mazieres-dinrg-scp-04 (work in progress), June 2018.

 [IP-blockchain]
 Angieri, S., Garcia-Martinez, A., Liu, B., Yan, Z., Wang,
 C., and M. Bagnulo, "An experiment in distributed Internet
 address management using blockchains", 2018,
 <https://arxiv.org/pdf/1807.10528.pdf>.

 [PBFT] Castro, M. and B. Liskov, "Practical Byzantine Fault
 Tolerance", 1999,
 <http://pmg.csail.mit.edu/papers/osdi99.pdf>.

 [RFC6962] Laurie, B., Langley, A., and E. Kasper, "Certificate
 Transparency", RFC 6962, DOI 10.17487/RFC6962, June 2013,
 <https://www.rfc-editor.org/info/rfc6962>.

https://datatracker.ietf.org/doc/html/rfc4506
https://www.rfc-editor.org/info/rfc4506
https://github.com/google/trillian
https://datatracker.ietf.org/doc/html/draft-mazieres-dinrg-scp-04
https://datatracker.ietf.org/doc/html/draft-mazieres-dinrg-scp-04
https://arxiv.org/pdf/1807.10528.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://datatracker.ietf.org/doc/html/rfc6962
https://www.rfc-editor.org/info/rfc6962

Watson, et al. Expires April 26, 2019 [Page 15]

Internet-Draft Delegated Mappings October 2018

 [RFC7249] Housley, R., "Internet Numbers Registries", RFC 7249,
 DOI 10.17487/RFC7249, May 2014,
 <https://www.rfc-editor.org/info/rfc7249>.

Acknowledgments

 We are grateful for the contributions and feedback on design and
 applicability by David Mazieres, as well as help and feedback from
 many members of the IRTF DIN research group, including Dirk Kutscher
 and Melinda Shore.

 This work was supported by The Stanford Center For Blockchain
 Research.

Authors' Addresses

 Jean-Luc Watson
 UC Berkeley
 Cory Hall, 545W
 Berkeley, CA 94720
 US

 Email: jlwatson@eecs.berkeley.edu

 Sydney Li
 Electronic Frontier Foundation
 815 Eddy Street
 San Francisco, CA 94109
 US

 Email: sydney@eff.org

 Colin Man
 Stanford University
 353 Serra Mall
 Stanford, CA 94305
 US

 Email: colinman@cs.stanford.edu

https://datatracker.ietf.org/doc/html/rfc7249
https://www.rfc-editor.org/info/rfc7249

Watson, et al. Expires April 26, 2019 [Page 16]

