
Network Working Group Rosanna Lee
INTERNET-DRAFT Sun Microsystems
Intended Category: Standards Track Rob Weltman
 Coscend Corp.
 May, 2001

The Java SASL Application Program Interface
draft-weltman-java-sasl-05.txt

Status of this Memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Task Force
 (IETF), its areas, and its working groups. Note that other groups
 may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document defines a client-side and a server-side Java language
 interface for using the Simple Authentication and Security Layer
 (SASL) mechanisms for adding authentication support to connection-
 based protocols. The interface promotes sharing of SASL Mechanism
 Drivers and security layers between applications using different
 protocols. It complements but does not replace [SASL], which defines
 and exemplifies use of the SASL protocol in a language-independent
 way.

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Expires November 2001 [Page 1]

JAVA SASL API May, 2001

1. Introduction..4
2. Overview of the SASL classes....................................6
2.1 Interfaces...6
2.2 Classes..7
3. Overview of SASL API Use..7
4. The Java SASL classes...9
4.1 public class Sasl..9
4.1.1 createSaslClient...9
4.1.2 setSaslClientFactory..11
4.1.3 createSaslServer..11
4.1.4 setSaslServerFactory..12
4.1.5 getSaslClientFactories..13
4.1.6 getSaslServerFactories..13
4.1.7 Standard Properties...14
4.2 public interface SaslClient...................................16
4.2.1 evaluateChallenge...16
4.2.2 hasInitialResponse..17
4.2.3 isComplete..17
4.2.4 unwrap..17
4.2.5 wrap..18
4.2.6 getMechanismName..18
4.2.7 getNegotiatedProperty...18
4.2.8 dispose...19
4.3 public interface SaslClientFactory............................19
4.3.1 createSaslClient..19
4.3.2 getMechanismNames...20
4.4 public interface SaslServer...................................21
4.4.1 evaluateResponse..21
4.4.2 isComplete..21
4.4.3 unwrap..22
4.4.4 wrap..22
4.4.5 getMechanismName..23
4.4.6 getAuthorizationID..23
4.4.7 getNegotiatedProperty...23
4.4.8 dispose...24
4.5 public interface SaslServerFactory............................24
4.5.1 createSaslServer..24
4.5.2 getMechanismNames...25
4.6 public class AuthorizeCallback................................25
4.6.1 Constructors..26
4.6.2 getAuthenticationID...26
4.6.3 getAuthorizationID..26
4.6.4 isAuthorized..26
4.6.5 setAuthorized...26
4.6.6 getAuthorizedID...26
4.6.7 setAuthorizedID...27
4.7 public class RealmCallback....................................27
4.7.1 Constructors..27

4.8 public class RealmChoiceCallback..............................27
4.8.1 Constructors..28
4.9 public class SaslException extends IOException................28
4.9.1 Constructors..28

Expires November 2001 [Page 2

JAVA SASL API May, 2001

4.9.2 getCause..29
4.9.3 printStackTrace...29
5. Security Considerations..30
6. Copyright..30
7. Bibliography...30
8. Authors' Addresses...31
9. Acknowledgements...31
10. Changes from draft-weltman-java-sasl-04.txt....................31
11. Changes from draft-weltman-java-sasl-03.txt....................32
12. Changes from draft-weltman-java-sasl-02.txt....................32
13. Appendix A - Sample Java LDAP program using SASL...............34

https://datatracker.ietf.org/doc/html/draft-weltman-java-sasl-04.txt
https://datatracker.ietf.org/doc/html/draft-weltman-java-sasl-03.txt
https://datatracker.ietf.org/doc/html/draft-weltman-java-sasl-02.txt

Expires November 2001 [Page 3

JAVA SASL API May, 2001

1. Introduction

 See [SASL], section 3, for an introduction to and overview of the
 SASL framework for authentication and negotiation of a security
 layer. The following presents an outline of the concepts.

 --------------- ------------------- -----------------
 | Application |-----| Protocol Driver |------| MD5 |
 --------------- ------------------- | -----------------
 |
 | -----------------
 |--| Kerberos v5 |
 | -----------------
 |
 | -----------------
 |--| PKCS-11 |
 | -----------------
 |
 |
 |
 | - - - - - - - - -
 |--| xxxYYYxxx |
 - - - - - - - - -

 An application chooses a Protocol Driver specific to the protocol it
 wants to use, and specifies one or more acceptable mechanisms. The
 Protocol Driver controls the socket, and knows the format/packaging
 of bytes sent down and received from the socket, but does not know
 how to authenticate or to encrypt/ decrypt the bytes. It uses one of
 the Mechanism Drivers to help it perform authentication. The Protocol
 Driver examines each byte string received from the server during the
 authentication in a protocol-specific way to determine if the
 authentication process has been completed. If not, the byte string is
 passed to the Mechanism Driver to be interpreted as a server
 challenge; the Mechanism Driver returns an appropriate response,
 which the Protocol Driver can encode in a protocol-specific way and
 return to the server.

 If the Protocol Driver concludes from the byte string received from
 the server that authentication is complete, it may query the
 Mechanism Driver if it considers the authentication process complete,
 in order to thwart early completion messages inserted by an intruder.

 On completed authentication, the Protocol Driver may use the
 Mechanism Driver to encode and decode any data exchanged through the
 socket if a security layer was negotiated.

 A complication here is that some authentication methods may require
 additional user/application input. That means that a Mechanism
 Driver may need to call up to an application during the
 authentication process. To satisfy this requirement, the application
 can supply a javax.security.auth.callback.CallbackHandler instance

Expires November 2001 [Page 4

JAVA SASL API May, 2001

 [JAAS] that can be used by the Mechanism Driver to prompt the user
 for additional input.

 Protocol Drivers are protocol-dependent and may be built in to a
 protocol package or an application. There is a generalized framework
 for registering and finding Mechanism Drivers. The framework uses a
 factory to produce an appropriate Mechanism Driver. The factory may
 be preconfigured, explicitly specified by the caller, specified as a
 list of packages by the caller, or be identified based on a list of
 packages in the System properties.

 The Mechanism Drivers are protocol-independent, and don't deal
 directly with network connections, just byte arrays, so they can be
 implemented in a generalizable way for all protocols.

 The negotiated security layer is implemented by encoding and decoding
 routines in the Mechanism Driver, using parameters and resolutions
 reached during authentication.

 Different Mechanism Drivers may require different parameters to carry
 out the authentication process. This is handled by passing a
 java.util.Hashtable object as an argument to instantiation methods.

 In the following discussion, 'client' refers to the client-side
 Protocol Driver that is using the SASL mechanism while 'server'
 refers to the server-side Protocol Driver that is using the SASL
 mechanism.

Expires November 2001 [Page 5

JAVA SASL API May, 2001

 In the Java SASL environment, the SaslClient interface represents the
 client's view of the Mechanism Driver, while the SaslServer interface
 represents the server's view.

 --------------- ---------------
 | Application |--+ +--| Server |
 --------------- | | ---------------
 | |
 ------------------- -------------------
 | Protocol Driver |--+ <- - - - -> +--| Protocol Driver |
 ------------------- | | -------------------
 | |
 ------------------- -------------------
 | SaslClient | | SaslServer |
 ------------------- -------------------
 | |
 ----------------- | | -----------------
 | MD5 |----| |---| MD5 |
 ----------------- | | -----------------
 | |
 ----------------- | | -----------------
 | Kerberos v5 |----| |---| Kerberos v5 |
 ----------------- | | -----------------
 | |

 ----------------- | | -----------------
 | PKCS-11 |----| |---| PKCS-11 |
 ----------------- | | -----------------
 | |
 - - - - - - - - - | | - - - - - - - - -
 | xxxYYYxxx |----+ +---| xxxYYYxxx |
 - - - - - - - - - - - - - - - - - -

 A client using the Java SASL API may communicate with any server
 implementing the SASL protocol, and a server may use the API to
 process authentication requests from any client using the SASL
 protocol. It is not required that both sides use the same language
 bindings.

2. Overview of the SASL classes

2.1 Interfaces

 SaslClient Performs SASL authentication as a
 client.

 SaslClientFactory An interface for creating instances of
 SaslClient. It is not normally accessed
 directly by a client, which will use the
 Sasl static methods instead. However, a
 particular environment may provide and

Expires November 2001 [Page 6

JAVA SASL API May, 2001

 install a new or different
 SaslClientFactory.

 SaslServer Performs SASL authentication as a
 server.

 SaslServerFactory An interface for creating instances of
 SaslServer. It is not normally accessed
 directly by a server, which will use the
 Sasl static methods instead. However, a
 particular environment may provide and
 install a new or different
 SaslServerFactory.

2.2 Classes

 Sasl A static class for creating SASL clients
 and servers. It transparently locates
 and uses any available
 SaslClientFactory/SaslServerFactory
 instances.

 AuthorizeCallback This callback is used by SaslServer to
 determine whether one entity (identified
 by an authenticated authentication id)
 can act on behalf of another entity
 (identified by an authorization id).

 RealmCallback This callback is used by SaslClient and
 SaslServer to retrieve realm information.

 RealmChoiceCallback This callback is used by SaslClient and
 SaslServer to obtain one or more realms
 given a list of realm choices.

 SaslException Exception thrown on errors and failures
 in the authentication process.

3. Overview of SASL API Use

 An application generally uses the SASL API as follows:

 - Create an object implementing the client authentication
 callback interfaces, which can provide credentials when
 required by the SaslClient.

 - Pass a list of acceptable or known Mechanisms and a callback
 handler to Sasl.createSaslClient. The method returns an object
 implementing SaslClient on success.

Expires November 2001 [Page 7

JAVA SASL API May, 2001

 - Have the SaslClient object begin the authentication process by
 providing an initial server response, if the protocol supports
 an initial response.

 - Responses/challenges are exchanged with the server. If a
 response indicates authentication has completed, SaslClient is
 queried for validation, and methods for encoding and decoding
 data according to the negotiated security layer may be invoked
 on it. If not, the SaslClient is queried for an appropriate
 next response to the server. This continues until

 authentication has completed.

 - If a security layer has been negotiated, for the rest of the
 session, messages to the server are first encoded by using
 SaslClient before being written, and messages from the server
 are first decoded by using SaslClient before being processed in
 the application.

 A server generally uses the SASL API as follows:

 - It receives a request from the client requesting authentication
 for a particular SASL mechanism, accompanied by an optional
 initial response.

 - It processes the initial response and generates a challenge
 specific to the SASL mechanism to be sent back to the client if
 the response is processed successfully. If the response is
 not processed successfully, it sends an error to the client and
 terminates the authentication session.

 - Responses/challenges are exchanged with the client. If the
 server cannot successfully process a response, the server sends
 an error to the client and terminates the authentication. If
 the server has completed the authentication and has no more
 challenges to send, it sends a success indication to the
 client.

 - If the authentication has completed successfully, the server
 extracts the authorization ID of the client from the SaslServer
 instance (if appropriate) to be used for subsequent access
 control checks.

 - For the rest of the session, messages to and from the client are
 encoded and decoded by using SaslServer to implement the
 negotiated security layer (if any).

 The following sections describe the SASL classes in more detail.

Expires November 2001 [Page 8

JAVA SASL API May, 2001

4. The Java SASL classes

4.1 public class Sasl

A class capable of providing a SaslClient or SaslServer.

4.1.1 createSaslClient

 public static SaslClient
 createSaslClient(String[] mechanisms,
 String authorizationID,
 String protocol,
 String serverName,
 Hashtable props,
 javax.security.auth.callback.CallbackHandler cbh)
 throws SaslException

 Creates a SaslClient using the parameters supplied. It returns null
 if no SaslClient can be created using the parameters supplied. Throws
 SaslException if it cannot create a SaslClient because of an error.

 The algorithm for selection is as follows:

 1. If a factory has been installed via setSaslClientFactory(),
 invoke createSaslClient() on it. If the method invocation returns
 a non-null SaslClient instance, return the SaslClient instance;
 otherwise continue.
 2. Create a list of fully qualified class names using the package
 names listed in the CLIENT_PKGS
 ("javax.security.sasl.client.pkgs") property in props and the
 class name ClientFactory. Each class name in this list identifies
 a SaslClientFactory implementation. Starting with the first class
 on the list, create an instance of SaslClientFactory using the
 class' public no-argument constructor and invoke
 createSaslClient() on it. If the method invocation returns a non-
 null SaslClient instance, return it; otherwise repeat using the
 next class on the list until a non-null SaslClient is produced or
 the list is exhausted.
 3. Repeat the previous step using the CLIENT_PKGS
 ("javax.security.sasl.client.pkgs") System property instead of
 the property in props.
 4. As per the Java 2 Standard Edition version 1.3 service provider
 guidelines, check for the existence of one of more files named
 META-INF/services/javax.security.sasl.SaslClientFactory in the
 classpath and installed JAR files. Each file lists the fully
 qualified class names of the factories (i.e. implementations of
 SaslClientFactory) found in the JAR files or classpath. Construct
 a merged list of class names using these files and repeat Step 2
 using this list. If there are more than one of these files, the

Expires November 2001 [Page 9

JAVA SASL API May, 2001

 order in which they are processed is undefined. If no non-null
 SaslClient instance is produced, return null.

 Parameters are:

 mechanisms The non-null list of mechanism names to try. Each
 is the IANA-registered name of a SASL mechanism
 (e.g. "GSSAPI", "CRAM-MD5").

 authorizationID The possibly null protocol-dependent
 identification to be used for authorization. If
 null or empty, the server derives an
 authorization ID from the client's authentication
 credentials. When the SASL authentication
 completes successfully, the specified entity is
 granted access.

 protocol The non-null string name of the protocol for
 which the authentication is being performed, e.g
 "pop", "ldap".

 serverName The non-null fully qualified host name of the
 server to authenticate to.

 props The possibly null set of properties used to
 select the SASL mechanism and to configure the
 authentication exchange of the selected
 mechanism. For example, if props includes the
 Sasl.POLICY_NOPLAINTEXT property with the value
 "true", then the selected SASL mechanism must not
 be susceptible to simple plain passive attacks.

 In addition to the standard properties of this
 class, other, possibly mechanism-specific,
 properties can be included.
 Properties not relevant to the selected mechanism
 are ignored.
 See Standard Properties for a list of standard
 properties.

 cbh The possibly null callback handler to be used by
 the SASL mechanisms to get further information
 from the application/library to complete the
 authentication. For example, a SASL mechanism
 might require the authentication ID, password and
 realm from the caller. The authentication ID is
 requested by using a NameCallback. The password
 is requested by using a PasswordCallback. The
 realm is requested by using a RealmChoiceCallback
 if there is a list of realms to choose from, and

 by using a RealmCallback if the realm must be
 entered.

Expires November 2001 [Page 10

JAVA SASL API May, 2001

4.1.2 setSaslClientFactory

 public static void
 setSaslClientFactory(SaslClientFactory fac)

 Sets the default SaslClientFactory to use. This method sets fac to be
 the default factory. It can only be called with a non-null value once
 per VM. If a factory has been set already, this method throws
 IllegalStateException. The method throws java.lang.SecurityException
 if the caller does not have the necessary permission to set the
 factory.

 Parameters are:

 fac The possibly null factory to set. If null, it
 doesn't do anything.

4.1.3 createSaslServer

 public static SaslServer
 createSaslServer(String mechanism,
 String protocol,
 String serverName,
 Hashtable props,
 javax.security.auth.callback.CallbackHandler cbh)
 throws SaslException

 This method creates a SaslServer for the specified mechanism. It
 returns null if no SaslServer can be created for the specified
 mechanism.

 The algorithm for selection is as follows:

 1. If a factory has been installed via setSaslServerFactory(),
 invoke createSaslServer() on it. If the method invocation returns
 a non-null SaslServer instance, return the SaslServer instance;
 otherwise continue.
 2. Create a list of fully qualified class names using the package
 names listed in the SERVER_PKGS
 ("javax.security.sasl.server.pkgs") property in props and the
 class name ServerFactory. Each class name in this list identifies
 a SaslServerFactory implementation. Starting with the first class

 on the list, create an instance of SaslServerFactory using the
 class' public no-argument constructor and invoke
 createSaslServer() on it. If the method invocation returns a non-
 null SaslServer instance, return it; otherwise repeat using the
 next class on the list until a non-null SaslServer is produced or
 the list is exhausted.
 3. Repeat the previous step using the SERVER_PKGS
 ("javax.security.sasl.server.pkgs") System property instead of
 the property in props.

Expires November 2001 [Page 11

JAVA SASL API May, 2001

 4. As per the Java 2 Standard Edition version 1.3 service provider
 guidelines, check for the existence of one of more files named
 META-INF/services/javax.security.sasl.SaslServerFactory in the
 classpath and installed JAR files. Each file lists the fully
 qualified class names of the factories (i.e. implementations of
 SaslServerFactory) found in the JAR files or classpath. Construct
 a merged list of class names using these files and repeat Step 2
 using this list. If there are more than one of these files, the
 order in which they are processed is undefined. If no non-null
 SaslServer instance is produced, return null.

 Parameters are:

 mechanism A non-null IANA-registered name of a SASL
 mechanism (e.g. "GSSAPI", "CRAM-MD5").

 protocol The non-null string name of the protocol for
 which the authentication is being performed, e.g
 "pop", "ldap".

 serverName The non-null fully qualified host name of the
 server.

 props The possibly null set of properties used to
 select the SASL mechanism and to configure the
 authentication exchange of the selected
 mechanism. For example, if props includes the
 Sasl.POLICY_NOPLAINTEXT property with the value
 "true", then the selected SASL mechanism must not
 be susceptible to simple plain passive attacks.

 In addition to the standard properties defined in
 this class, other, possibly mechanism-specific,
 properties can be included.
 Properties not relevant to the selected mechanism
 are ignored.
 See section 4.1.7 Standard Properties for a list

 of standard properties.

 cbh The possibly null callback handler to be used by
 the SASL mechanism to get further information
 from the application/library to complete the
 authentication. For example, a SASL mechanism
 might require the authentication ID and password
 from the caller. The authentication ID is
 requested with a NameCallback, and the password
 with a PasswordCallback.

4.1.4 setSaslServerFactory

 public static void

Expires November 2001 [Page 12

JAVA SASL API May, 2001

 setSaslServerFactory(SaslServerFactory fac)

 Sets the default SaslServerFactory to use. This method sets fac to
 be the default factory. It can only be called with a non-null value
 once per VM. If a factory has been set already, this method throws
 IllegalStateException. The method throws java.lang.SecurityException
 if the caller does not have the necessary permission to set the
 factory.

 Parameters are:

 fac The possibly null factory to set. If null, it
 doesn't do anything.

4.1.5 getSaslClientFactories

 public java.util.Enumeration
 getSaslClientFactories(java.util.Hashtable props)

 Gets an enumeration of known factories for producing SaslClient. This
 method uses the same sources for locating factories as
 createSaslClient().

 Parameters are:

 props A possibly null set of properties that may
 contain policy properties and the property
 CLIENT_PKGS ("javax.security.sasl.client.pkgs")
 for specifying a list of SaslClientFactory
 implementation package names.

4.1.6 getSaslServerFactories

 public java.util.Enumeration
 getSaslServerFactories(java.util.Hashtable props)

 Gets an enumeration of known factories for producing SaslServer. This
 method uses the same sources for locating factories as
 createSaslServer().

 Parameters are:

 props A possibly null set of properties that may
 contain policy properties and the property
 SERVER_PKGS ("javax.security.sasl.server.pkgs")
 for specifying a list of SaslServerFactory
 implementation package names.

Expires November 2001 [Page 13

JAVA SASL API May, 2001

4.1.7 Standard Properties

 There are a number of properties that may be specified in a Hashtable
 parameter when creating a SASL client or server. The standard
 properties and descriptions of their values are as follows (with the
 Sasl constant name followed by the literal value in parentheses):

 QOP ("javax.security.sasl.qop")

 A comma-separated, ordered list of quality-of-protection
 values that the client or server is willing to support. A
 qop value is one of

 "auth" authentication only

 "auth-int" authentication plus integrity protection

 "auth-conf" authentication plus integrity and
 confidentiality protection

 The order of the list specifies the preference order of
 the client or server. If this property is absent, the
 default qop is "auth".

 STRENGTH ("javax.security.sasl.strength")

 A comma-separated, ordered list of cipher strength values
 that the client or server is willing to support. A
 strength value is one of

 "low"

 "medium"

 "high"

 The order of the list specifies the preference order of
 the client or server. An implementation SHOULD allow
 configuration of the meaning of these values.

 An application MAY use the Java Cryptography Extension
 (JCE) with JCE-aware mechanisms to control the selection
 of cipher suites that match the strength values.

 If this property is absent, the default strength is
 "high,medium,low".

 SERVER_AUTH ("javax.security.sasl.server.authentication")

 "true" if server must authenticate to client; default
 "false"

Expires November 2001 [Page 14

JAVA SASL API May, 2001

 MAX_BUFFER ("javax.security.sasl.maxbuffer")

 Maximum size of receive buffer in bytes of
 SaslClient/SaslServer; the default is defined by the
 mechanism. The property value is the string
 representation of an integer.

 CLIENT_PKGS ("javax.security.sasl.client.pkgs")

 A |-separated list of package names to use when locating
 a SaslClientFactory. Each package MUST contain a class
 named ClientFactory that implements the SaslClientFactory
 interface.

 SERVER_PKGS ("javax.security.sasl.server.pkgs")

 A |-separated list of package names to use when locating
 a SaslServerFactory. Each package MUST contain a class
 named ServerFactory that implements the SaslServerFactory

 interface.

 RAW_SEND_SIZE ("javax.security.sasl.rawsendsize")

 Maximum size of the raw send buffer in bytes of
 SaslClient/SaslServer. The property value is the string
 representation of an integer and is negotiated between
 the client and server during the authentication exchange.

 The following properties are for defining a security policy for a
 server or client. Absence of the property is interpreted as "false".

 POLICY_NOPLAINTEXT ("javax.security.sasl.policy.noplaintext")

 "true" if mechanisms susceptible to simple
 plain passive attacks (e.g. "PLAIN") are
 not permitted

 "false" if such mechanisms are permitted

 POLICY_NOACTIVE ("javax.security.sasl.policy.noactive")

 "true" if mechanisms susceptible to active
 (non-dictionary) attacks are not
 permitted

 "false" if such mechanisms are permitted.

 POLICY_NODICTIONARY ("javax.security.sasl.policy.nodictionary")

 "true" if mechanisms susceptible to passive
 dictionary attacks are not permitted

Expires November 2001 [Page 15

JAVA SASL API May, 2001

 "false" if such mechanisms are permitted

 POLICY_NOANONYMOUS ("javax.security.sasl.policy.noanonymous")

 "true" if mechanisms that accept anonymous
 login are not permitted

 "false" if such mechanisms are permitted

 POLICY_FORWARD_SECRECY ("javax.security.sasl.policy.forward")

 Forward secrecy means that breaking into one session will not
 automatically provide information for breaking into future sessions.

 "true" if mechanisms that implement forward
 secrecy between sessions are required

 "false" if such mechanisms are not required

 POLICY_PASS_CREDENTIALS ("javax.security.sasl.policy.credentials")

 "true" if mechanisms that pass client
 credentials are required

 "false" if such mechanisms are not required

4.2 public interface SaslClient

An object implementing this interface can negotiate authentication as a
client using one of the IANA-registered mechanisms.

4.2.1 evaluateChallenge

 public byte[]
 evaluateChallenge(byte[] challenge)
 throws SaslException

 If a challenge is received from the server during the authentication
 process, this method is called to prepare an appropriate next
 response to submit to the server. The response is null if the
 challenge accompanied a "SUCCESS" status and the challenge only
 contains data for the client to update its state and no response
 needs to be sent to the server. The response is a zero-length byte
 array if the client is to send a response with no data. A
 SaslException is thrown if an error occurred while processing the
 challenge or generating a response.

 Parameters are:

Expires November 2001 [Page 16

JAVA SASL API May, 2001

 challenge The non-null challenge received from the server.
 The challenge array may have zero length.

4.2.2 hasInitialResponse

 public boolean hasInitialResponse()

 Determines whether this mechanism has an optional initial response.
 If true, caller should call evaluateChallenge() with an empty array
 to get the initial response.

4.2.3 isComplete

 public boolean
 isComplete()

 This method may be called at any time to determine if the
 authentication process is finished. Typically, the Protocol Driver
 will not do this until it has received indication from the server (in
 a protocol-specific manner) that the process has completed.

4.2.4 unwrap

 public byte[] unwrap(byte[] incoming, int offset, int len)
 throws SaslException

 Unwraps a byte array received from the server to return the
 corresponding decoded bytes in a byte array.

 This method can be called only after the authentication process has
 completed (i.e., when isComplete() returns true) and only if the
 authentication process has negotiated integrity and/or privacy as the
 quality of protection; otherwise, a SaslException is thrown. A
 SaslException is thrown also if incoming cannot be successfully
 unwrapped.

 incoming is the contents of the SASL buffer as defined in [SASL]
 without the leading four octet field that represents the length.
 offset and len specify the portion of incoming to use.

 Parameters are:

 incoming A non-null byte array containing the encoded
 bytes from the server.

 offset The starting position at incoming of the bytes to
 use.

Expires November 2001 [Page 17

JAVA SASL API May, 2001

 len The number of bytes from incoming to use.

4.2.5 wrap

 public byte[] wrap(byte[] outgoing, int offset, int len)
 throws SaslException

 Wraps a byte array to be sent to the server to return the
 corresponding encoded bytes in a byte array.

 This method can be called only after the authentication exchange has
 completed (i.e., when isComplete() returns true) and only if the
 authentication exchange has negotiated integrity and/or privacy as
 the quality of protection; otherwise, a SaslException is thrown. A
 SaslException is thrown also if outgoing cannot be successfully
 wrapped.

 The result of this method will make up the contents of the SASL
 buffer as defined in [SASL] without the leading four octet field that
 represents the length.

 offset and len specify the portion of outgoing to use.

 Parameters are:

 outgoing A non-null byte array containing the bytes to
 encode.

 offset The starting position at outgoing of the bytes to
 use.

 len The number of bytes from outgoing to use.

4.2.6 getMechanismName

 public String
 getMechanismName()

 Reports the IANA-registered name of the mechanism used by this
 client, e.g. "GSSAPI" or "CRAM-MD5".

4.2.7 getNegotiatedProperty

 public String getNegotiatedProperty(String propName)
 throws SaslException

Expires November 2001 [Page 18

JAVA SASL API May, 2001

 Retrieves the negotiated property. This method can be called only
 after the authentication exchange has completed (i.e., when
 isComplete() returns true); otherwise, a SaslException is thrown.

 For example, this method may be used to obtained the negotiated raw
 send buffer size, quality-of-protection, and cipher strength. See

Section 4.1.7 for a list of standard properties.

 This method returns null when the specified property was
 not negotiated or is not applicable to this mechanism.

 Parameters:

 propName The non-null property name.

4.2.8 dispose

 public abstract void dispose() throws SaslException

 Disposes of any system resources or security-sensitive information
 the SaslClient might be using. Invoking this method invalidates the
 SaslClient instance. This method is idempotent.

4.3 public interface SaslClientFactory

An object implementing this interface can provide a SaslClient. The
implementation must be thread-safe and handle multiple simultaneous
requests. It must also have a public constructor that accepts no
argument.

4.3.1 createSaslClient

 public SaslClient
 createSaslClient(String[] mechanisms,
 String authorizationID,
 String protocol,
 String serverName,
 Hashtable props,
 javax.security.auth.callback.CallbackHandler cbh)
 throws SaslException

 Creates a SaslClient using the parameters supplied. It returns null
 if no SaslClient can be created using the parameters supplied. Throws
 SaslException if it cannot create a SaslClient because of an error.

 Parameters are:

Expires November 2001 [Page 19

JAVA SASL API May, 2001

 mechanisms The non-null list of mechanism names to try. Each
 is the IANA-registered name of a SASL mechanism
 (e.g. "GSSAPI", "CRAM-MD5").

 authorizationID The possibly null protocol-dependent
 identification to be used for authorization. If
 null or empty, the server derives an
 authorization ID from the client's authentication
 credentials. When the SASL authentication
 completes successfully, the specified entity is
 granted access.

 protocol The non-null string name of the protocol for
 which the authentication is being performed, e.g
 "pop", "ldap".

 serverName The non-null fully qualified host name of the
 server to authenticate to.

 props The possibly null set of properties used to
 select the SASL mechanism and to configure the
 authentication exchange of the selected
 mechanism. See the Sasl class for a list of
 standard properties. Other, possibly mechanism-
 specific, properties can be included. Properties
 not relevant to the selected mechanism are
 ignored.

 cbh The possibly null callback handler to be used by
 the SASL mechanisms to get further information
 from the application/library to complete the
 authentication. For example, a SASL mechanism
 might require the authentication ID, password and
 realm from the caller. The authentication ID is
 requested by using a NameCallback. The password
 is requested by using a PasswordCallback. The
 realm is requested by using a RealmChoiceCallback
 if there is a list of realms to choose from, and
 by using a RealmCallback if the realm must be
 entered.

4.3.2 getMechanismNames

 public String[]

 getMechanismNames(Hashtable props)

 Returns a non-null array of names of mechanisms supported by this
 factory that match the specified mechanism selection policies.

 Parameters are:

Expires November 2001 [Page 20

JAVA SASL API May, 2001

 props The possibly null set of properties used to
 specify the security policy of the SASL
 mechanisms. For example, if props contains the
 Sasl.POLICY_NOPLAINTEXT property with the value
 "true", then the factory must not return any SASL
 mechanisms that are susceptible to simple plain
 passive attacks. See the Sasl class for a
 complete list of policy properties. Non-policy
 related properties, if present in props, are
 ignored.

4.4 public interface SaslServer

An object implementing this interface can negotiate authentication as a
server using one of the IANA-registered mechanisms.

4.4.1 evaluateResponse

 public byte[]
 evaluateResponse(byte[] response)
 throws SaslException

 If a response is received from the client during the authentication
 process, this method is called to prepare an appropriate next
 challenge to submit to the client. The challenge is null if the
 authentication has succeeded and no more challenge data is to be sent
 to the client. It is non-null if the authentication must be continued
 by sending a challenge to the client, or if the authentication has
 succeeded but challenge data needs to be processed by the client. A
 SaslException is thrown if an error occurred while processing the
 response or generating a challenge. isComplete() should be called
 after each call to evaluateResponse() to determine if any further
 response is needed from the client. The Protocol Driver will send an
 indication (in a protocol-specific manner) as to whether the
 authentication has succeeded, failed, or should be continued, and any
 accompanying challenge data.

 Parameters are:

 response Non-null response received from client.

4.4.2 isComplete

 public boolean
 isComplete()

 This method may be called at any time to determine if the
 authentication process is finished. This method is typically called

Expires November 2001 [Page 21

JAVA SASL API May, 2001

 after each invocation of evaluateResponse() to determine whether the
 authentication has completed successfully or should be continued.

4.4.3 unwrap

 public byte[] unwrap(byte[] incoming, int offset, int len)
 throws SaslException

 Unwraps a byte array received from the client to return the
 corresponding decoded bytes in a byte array.

 This method can be called only after the authentication process has
 completed (i.e., when isComplete() returns true) and only if the
 authentication process has negotiated integrity and/or privacy as the
 quality of protection; otherwise, a SaslException is thrown. A
 SaslException is thrown also if incoming cannot be successfully
 unwrapped.

 incoming is the contents of the SASL buffer as defined in [SASL]
 without the leading four octet field that represents the length.
 offset and len specify the portion of incoming to use.

 Parameters are:

 incoming A non-null byte array containing the encoded
 bytes from the client.

 offset The starting position at incoming of the bytes to
 use.

 len The number of bytes from incoming to use.

4.4.4 wrap

 public byte[] wrap(byte[] outgoing, int offset, int len)
 throws SaslException

 Wraps a byte array to be sent to the client to return the
 corresponding encoded bytes in a byte array.

 This method can be called only after the authentication exchange has
 completed (i.e., when isComplete() returns true) and only if the
 authentication exchange has negotiated integrity and/or privacy as
 the quality of protection; otherwise, a SaslException is thrown. A
 SaslException is thrown also if outgoing cannot be successfully
 wrapped.

Expires November 2001 [Page 22

JAVA SASL API May, 2001

 The result of this method will make up the contents of the SASL
 buffer as defined in [SASL] without the leading four octet field that
 represents the length.

 offset and len specify the portion of outgoing to use.

 Parameters are:

 outgoing A non-null byte array containing the bytes to
 encode.

 offset The starting position at outgoing of the bytes to
 use.

 len The number of bytes from outgoing to use.

4.4.5 getMechanismName

 public String
 getMechanismName()

 Returns the non-null IANA-registered name of the mechanism used by
 this server, e.g. "GSSAPI" or "CRAM-MD5".

4.4.6 getAuthorizationID

 public String

 getAuthorizationID() throws SaslException

 Reports the authorization ID in effect for the client of this
 session. Can only be called if isComplete() returns true; throws
 SaslException if called before authentication completes.

4.4.7 getNegotiatedProperty

 public String getNegotiatedProperty(String propName)
 throws SaslException

 Retrieves the negotiated property. This method can be called only
 after the authentication exchange has completed (i.e., when
 isComplete() returns true); otherwise, a SaslException is thrown.

 For example, this method may be used to obtained the negotiated raw
 send buffer size, quality-of-protection, and cipher strength. See

Section 4.1.7 for a list of standard properties.

 This method returns null when the specified property was
 not negotiated or is not applicable to this mechanism.

Expires November 2001 [Page 23

JAVA SASL API May, 2001

 Parameters:

 propName The non-null property name.

4.4.8 dispose

 public abstract void dispose() throws SaslException

 Disposes of any system resources or security-sensitive information
 the SaslServer might be using. Invoking this method invalidates the
 SaslServer instance. This method is idempotent.

4.5 public interface SaslServerFactory

An object implementing this interface can provide a SaslServer. The
implementation must be thread-safe and handle multiple simultaneous
requests. It must also have a public constructor that accepts no
argument.

4.5.1 createSaslServer

 public SaslServer
 createSaslServer(String mechanism,
 String protocol,
 String serverName,
 Hashtable props,
 javax.security.auth.callback.CallbackHandler cbh)
 throws SaslException

 Creates a SaslServer using the mechanism supplied. It returns null if
 no SaslServer can be created using the parameters supplied. Throws
 SaslException if it cannot create a SaslServer because of an error.

 Returns a possibly null SaslServer which supports the specified
 mechanism. If null, this factory cannot produce a SaslServer for the
 specified mechanism.

 Parameters are:

 mechanism The non-null IANA-registered name of a SASL
 mechanism (e.g. "GSSAPI", "CRAM-MD5").

 protocol The non-null string name of the protocol for
 which the authentication is being performed, e.g
 "pop", "ldap".

 serverName The non-null fully qualified host name of the
 server.

Expires November 2001 [Page 24

JAVA SASL API May, 2001

 props The possibly null set of properties to be used to
 select the SASL mechanism and to configure the
 authentication exchange of the selected
 mechanism. See the Sasl class for a list of
 standard properties. Other, possibly mechanism-
 specific, properties can be included. Properties
 not relevant to the selected mechanism are
 ignored.

 cbh The possibly null callback handler to be used
 by the SASL mechanisms to get further information
 from the application/library to complete the
 authentication. For example, a SASL mechanism
 might require the authentication ID, password and
 realm from the caller. The authentication ID is
 requested by using a NameCallback. The password
 is requested by using a PasswordCallback. The
 realm is requested by using a RealmChoiceCallback

 if there is a list of realms to choose from, and
 by using a RealmCallback if the realm must be
 entered.

4.5.2 getMechanismNames

 public String[]
 getMechanismNames(Hashtable props)

 Returns a non-null array of names of mechanisms supported by this
 factory that match the specified mechanism selection policies.

 Parameters are:

 props The possibly null set of properties used to
 specify the security policy of the SASL
 mechanisms. For example, if props includes the
 Sasl.POLICY_NOPLAINTEXT property with the value
 "true", then the factory must not return any SASL
 mechanisms that are susceptible to simple plain
 passive attacks. See the Sasl class for a
 complete list of policy properties. Non-policy
 related properties, if present in props, are
 ignored.

4.6 public class AuthorizeCallback
 implements javax.security.auth.callback.Callback

This callback is used by SaslServer to determine whether one entity
(identified by an authenticated authentication id) can act on behalf of
another entity (identified by an authorization id).

Expires November 2001 [Page 25

JAVA SASL API May, 2001

4.6.1 Constructors

 public AuthorizeCallback(String authnID,
 String authzID)

 Parameters are :

 authnID The authentication id

 authzID The authorization id

4.6.2 getAuthenticationID

 public String getAuthenticationID()

 Returns the authentication id to check.

4.6.3 getAuthorizationID

 public String getAuthorizationID()

 Returns the authorization id to check.

4.6.4 isAuthorized

 public boolean isAuthorized()

 Returns true if authorization is allowed, false otherwise.

4.6.5 setAuthorized

 public void setAuthorized(boolean ok)

 Sets whether authorization is allowed or not.

 Parameters are:

 ok true if authorization is to be allowed, false
 otherwise

4.6.6 getAuthorizedID

 public String getAuthorizedID()

 Returns the id of the authorized user. If null, this means the
 authorization failed.

Expires November 2001 [Page 26

JAVA SASL API May, 2001

4.6.7 setAuthorizedID

 public void setAuthorizedID(String id)

 Sets the id of the authorized entity. The method is called by the
 handler only if the id is different from that returned by
 getAuthorizationID(). For example, the id might need to be

 canonicalized for the environment in which it will be used.

 Parameters are:

 id The id of the authorized user

4.7 public class RealmCallback
 extends javax.security.auth.callback.TextInputCallback

 This callback is used by SaslClient and SaslServer to retrieve realm
 information.

4.7.1 Constructors

 public RealmCallback (String prompt)

 Constructs a RealmCallback with a prompt.

 public RealmCallback (String prompt, String defaultRealm)

 Constructs a RealmCallback with a prompt and a default realm.

 IllegalArgumentException is thrown if prompt is null or the empty
 string, or if defaultRealm is empty or null.

 Parameters are :

 prompt The non-null prompt to use to request the realm
 information

 defaultRealm The non-null default realm to use

4.8 public class RealmChoiceCallback
 extends javax.security.auth.callback.ChoiceCallback

 This callback is used by SaslClient and SaslServer to obtain one or
 more realms given a list of realm choices.

Expires November 2001 [Page 27

JAVA SASL API May, 2001

4.8.1 Constructors

 public RealmChoiceCallback (String prompt,
 String[]choices,
 int defaultChoice,
 boolean multipleSelectionsAllowed)

 Constructs a RealmChoiceCallback with a prompt, a list of choices and
 a default choice.

 IllegalArgumentException is thrown if prompt is null or the empty
 string, or if defaultRealm is empty or null.

 Parameters are :

 prompt The non-null prompt to use to request the realm

 choices The non-null list of realms to choose from

 defaultChoice The choice to use as the default choice when the
 list of choices is displayed. It is an index into
 the choices array.

 multipleSelectionsAllowed Specifies whether or not multiple
 selections can be made from the list of choices.

4.9 public class SaslException extends IOException

Exception thrown on errors and failures that occur when using SASL.

4.9.1 Constructors

 public SaslException()

 Constructs a new instance of SaslException. The root exception and
 the detailed message are null.

 public SaslException(String message)

 Constructs a default exception with a detailed message and no root
 exception.

 public SaslException(String message,
 Throwable ex)

Expires November 2001 [Page 28

JAVA SASL API May, 2001

 Constructs a new instance of SaslException with a detailed message
 and a root exception. For example, a SaslException might result from
 a problem with the callback handler, which might throw a
 NoSuchCallbackException if it does not support the requested
 callback, or throw an IOException if it had problems obtaining data
 for the callback. The SaslException's root exception would then be
 the exception thrown by the callback handler.

 Parameters are:

 message Possibly null additional detail about the
 exception.

 ex A possibly null root exception that caused this
 exception.

4.9.2 getCause

 public Throwable
 getCause()

 Returns the cause of this exception or null if the cause is
 nonexistent or unknown. The cause is the throwable that caused this
 exception to be thrown.

4.9.3 printStackTrace

 public void
 printStackTrace()

 Prints this exception's stack trace to System.err. If this exception
 has a root exception, the stack trace of the root exception is also
 printed to System.err.

 public void
 printStackTrace(PrintStream ps)

 Prints this exception's stack trace to a print stream. If this
 exception has a root exception, the stack trace of the root exception
 is also printed to the print stream.

 public void
 printStackTrace(PrintWriter pw)

 Prints this exception's stack trace to a print writer. If this
 exception has a root exception, the stack trace of the root exception
 is also printed to the print writer.

Expires November 2001 [Page 29

JAVA SASL API May, 2001

 Parameters are:

 ps The non-null print stream to which to print.

 pw The non-null print writer to which to print.

5. Security Considerations

 When SASL authentication is performed over unsecured connections, it
 is possible for an active attacker to spoof the server's protocol-
 specific indication that authentication is complete. Clients should
 protect against this attack by verifying the completion of
 authentication with the Mechanism Driver by calling the driver's
 isComplete() method.

 Additional security considerations are discussed in [SASL].

6. Copyright

 Copyright (C) The Internet Society (2001). All Rights Reserved.

 This document and translations of it may be copied and furnished to
 others, and derivative works that comment on or otherwise explain it
 or assist in its implementation may be prepared, copied, published
 and distributed, in whole or in part, without restriction of any
 kind, provided that the above copyright notice and this paragraph are
 included on all such copies and derivative works. However, this
 document itself may not be modified in any way, such as by removing
 the copyright notice or references to the Internet Society or other
 Internet organizations, except as needed for the purpose of
 developing Internet standards in which case the procedures for
 copyrights defined in the Internet Standards process must be
 followed, or as required to translate it into languages other than
 English.

 The limited permissions granted above are perpetual and will not be
 revoked by the Internet Society or its successors or assigns.

 This document and the information contained herein is provided on an
 "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING
 TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING
 BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
 HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF

 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

7. Bibliography

 [JAAS] Java Software, Sun Microsystems, Inc., "Java Authentication
 and Authorization Service, "http://java.sun.com/products/jaas",
 Jan 2000.

Expires November 2001 [Page 30

JAVA SASL API May, 2001

 [SASL] J. Myers, "Simple Authentication and Security Layer (SASL)",
RFC 2222, October 1997

8. Authors' Addresses

 Rob Weltman
 Coscend Corp.
 3290 W. Bayshore Road
 Palo Alto, CA 94303
 +1 650 461 1708
 robw@coscend.com

 Rosanna Lee
 Sun Microsystems
 Mail Stop UCUP02-206
 901 San Antonio Road
 Palo Alto, CA 94303
 USA
 Email: rosanna.lee@eng.sun.com

9. Acknowledgements

 Rob Earhart, then of Carnegie Mellon University, was a coauthor of an
 earlier draft.

 Scott Seligman of Sun Microsystems, Inc. contributed to the
 architecture and API proposed in this document.

 Joe Salowey of WRQ, Anthony J. Nadalin of IBM, Bob Naugle of
 Bluestone, and Timothy Martin of Carnegie Mellon University
 contributed to the contents of this revision of the draft through
 participation in the expert group for Java Specification Request 28 -

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_028_sasl.html.

https://datatracker.ietf.org/doc/html/rfc2222
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_028_sasl.html

10. Changes from draft-weltman-java-sasl-04.txt

 SaslClient, SaslServer

 Added dispose() to allow security-sensitive information to be purged
 from Mechanism Drivers deterministically.

 Replaced getInputStream() and getOutputStream() with unwrap() and
 wrap(), respectively, to remove dependency on stream-based I/O.

 Replaced getNegotiatedQop() and getNegotiatedStrength() with the more
 generic getNegotiatedProperty() to support access to other negotiated
 properties.

 AuthorizeCallback

Expires November 2001 [Page 31

JAVA SASL API May, 2001

 Changed getAuthenticationId() to getAuthenticationID(),
 getAuthorizationId() to getAuthorizationID(), and getAuthorizedId()
 to getAuthorizedID(). This was to conform to the naming convention
 used in the rest of the API.

11. Changes from draft-weltman-java-sasl-03.txt

 Sasl

 Added getClientFactories() and getServerFactories().
 Updated the list of standard properties.
 Added the use of the J2SE version 1.3 service provider guidelines for
 locating SaslClientFactory and SaslServerFactory implementations.

 SaslClient

 Added getNegotiatedQop() and getNegotiatedStrength()

 SaslClientFactory and SaslServerFactory

 getMechanismNames() takes a properties Hashtable as argument.

 SaslServer

 Added getNegotiatedQop() and getNegotiatedStrength()

https://datatracker.ietf.org/doc/html/draft-weltman-java-sasl-04.txt
https://datatracker.ietf.org/doc/html/draft-weltman-java-sasl-03.txt

 AuthorizeCallback

 New class to allow SaslServer to determine if an identity may be
 authorized as another identity.

 RealmCallback and RealmChoiceCallback

 New classes for obtaining realm information.

 SaslException

 getRootException changed to getCause, in anticipation of a new
 standard Java API for nested exceptions. Also, printStackTrace prints
 both the current and the nested exception.

12. Changes from draft-weltman-java-sasl-02.txt

 SecurityLayer

Expires November 2001 [Page 32

JAVA SASL API May, 2001

 The SecurityLayer interface was removed.

 SaslClient

 createInitialResponse() was removed. evaluateChallenge() accepts an
 empty challenge and can return an initial response.
 hasInitialResponse() was added to determine if the mechanism allows
 for an initial client response.

 SaslClient and SaslServer

 getSecurityLayer() was replaced with getInputStream() and
 getOutputStream().

 Package names are |-delimited, not space-delimited, in the pkgs
 properties.

https://datatracker.ietf.org/doc/html/draft-weltman-java-sasl-02.txt

Expires November 2001 [Page 33

JAVA SASL API May, 2001

13. Appendix A - Sample Java LDAP program using SASL

 /**
 It might look like this in LDAP. The Protocol Driver is
 implemented as part of the authenticate method of
 LDAPConnection. If a security layer is negotiated, the Protocol
 Driver creates new input and output streams that use the
 SaslClient to encode and decode any subsequent messages.
 **/

 public void authenticate(String dn,
 String[] mechs,
 Hashtable props,
 CallbackHandler cbh)
 throws SaslException {

 // Create SASL client to use for authentication
 SaslClient saslClnt = Sasl.createSaslClient(
 mechs, dn, "ldap", getHost(), props, cbh);

 if (saslClnt == null) {

 throw new SaslException("SASL client not available");
 }

 String mechName = saslClnt.getMechanismName();

 // Get initial response, if any
 byte[] response = (saslClnt.hasInitialResponse() ?
 saslClnt.evaluateChallenge(new byte[0]) :
 null);

 // Create a bind request message, including the initial
 // response (if any), and send it off
 writeRequest(new LDAPSASLBindRequest(dn, mechName,
 response));

 // Get the server challenge
 LDAPSASLBindResponse msg =
 (LDAPSASLBindResponse)readResponse();

 // Authentication done?
 while (!saslClnt.isComplete() &&
 (msg.getStatus() == LDAP_SASL_BIND_IN_PROGRESS ||
 msg.getStatus() == LDAP_SUCCESS)) {

 // No, process challenge to get an appropriate next
 // response
 byte[] challenge = msg.getChallenge();
 response = saslClnt.evaluateChallenge(challenge);

 // May be a success message with no further response
 if (msg.getStatus() == LDAP_SUCCESS) {

Expires November 2001 [Page 34

JAVA SASL API May, 2001

 if (response != null) {
 // Protocol error; supposed to be done already
 throw new SaslException("Protocol error in " +
 "SASL session");
 }
 break; // done
 }

 // Wrap the response in another bind request and send
 // it off
 writeRequest(new LDAPSASLBindRequest(dn, mechName,
 response));
 msg = (LDAPSASLBindResponse)readResponse();
 }

 // Make sure authentication REALLY is complete
 if (!saslClnt.isComplete()) {
 // Authentication session hijacked!
 throw new SaslException("SASL session hijacked!");
 }

 // Check if a security layer was negotiated
 String qop = saslClnt.getNegotiatedProperty(Sasl.QOP);
 if (qop != null && (qop.equalsIgnoreCase("auth-int") ||
 qop.equalsIgnoreCase("auth-conf"))) {
 setInputStream(
 new SaslInputStream(saslClnt,
 getInputStream());
 setOutputStream(
 new SaslOutputStream(saslClnt,
 getOutputStream());
 }
 }

Expires November 2001 [Page 35

