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Abstract

LOOPS (Local Optimizations on Path Segments) aims to provide local

(not end-to-end but in-network) recovery of lost packets to achieve

better data delivery in the presence of losses. [I-D.li-tsvwg-loops-

problem-opportunities] provides an overview over the problems and

optimization opportunities that LOOPS could address.

The present document is a strawman for the set of information that

would be interchanged in a LOOPS protocol, without already defining

a specific data packet format.

The generic information set needs to be mapped to a specific

encapsulation protocol to actually run the LOOPS optimizations. A

companion document contains a sketch of a binding to the tunnel

encapsulation protocol Geneve [I-D.ietf-nvo3-geneve].
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1. Introduction

Today's networks exhibit a wide variety of data rates and, relative

to those, processing power and memory capacities of nodes acting as

routers. For instance, networks that employ tunneling to build

overlay networks may position powerful virtual router nodes in the

network to act as tunnel endpoints. The capabilities available in

the more powerful cases provide new opportunities for optimizations.

LOOPS (Local Optimizations on Path Segments) aims to provide local

(not end-to-end but in-network) recovery of lost packets to achieve

better data delivery. [I-D.li-tsvwg-loops-problem-opportunities]

provides an overview over the problems and optimization

opportunities that LOOPS could address. One simplifying assumption

(Section 3) in the present document is that LOOPS segments operate

independently from each other, each as a pair of a LOOPS Ingress and

a LOOPS Egress node.

The present document is a strawman for the set of information that

would be interchanged in a LOOPS protocol between these nodes,

without already defining a specific data packet format. The main

body of the document defines a mode of the LOOPS protocol that is

based on traditional tunneling, the "tunnel mode". Appendix B is an

even rougher strawman of a radically different, alternative mode

that we call "transparent mode", as well as a slightly more

conventional "hybrid mode" (Appendix B.3). These different modes may

be applicable to different usage scenarios and will be developed in

parallel, with a view of ultimately standardizing one or more of

them.

For tunnel mode, the generic information set needs to be mapped to a

specific encapsulation protocol to actually run the LOOPS

optimizations. LOOPS is not tied to any specific overlay protocol,

but is meant to run embedded into a variety of tunnel protocols.

LOOPS information is added as part of a tunnel protocol header at

the LOOPS ingress as shown in Figure 1. A companion document [I-

D.bormann-loops-geneve-binding] contains a sketch of a binding to

the tunnel encapsulation protocol Geneve [I-D.ietf-nvo3-geneve].
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Figure 1: Packet in Tunnel with LOOPS Information

Figure 2 is extracted from the LOOPS problems and opportunities

document [I-D.li-tsvwg-loops-problem-opportunities]. It illustrates

the basic architecture and terms of the applicable scenario of

LOOPS. Not all of the concepts introduced in the problems and

opportunities document are actually used in the current strawman

specification; Section 3 lays out some simplifying assumptions that

the present proposal makes.

Figure 2: LOOPS Usage Scenario

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

          +------------------------------------+

          |           Outer header             |

          +------------------------------------+

        / |         Tunnel Base Header         |

      /   +------------------------------------+\

 Tunnel   |    +-------------------------+     | \

 Header   ~    |    LOOPS Information    |     ~  Tunnel Header

      \   |    +-------------------------+     |  Extensions

        \ +------------------------------------+ /

          |           Data packet              |

          +------------------------------------+

¶

                                                   ON=overlay node

                                                   UN=underlay node

+---------+                                               +---------+

|   App   | <---------------- end-to-end ---------------> |   App   |

+---------+                                               +---------+

|Transport| <---------------- end-to-end ---------------> |Transport|

+---------+                                               +---------+

|         |                                               |         |

|         |        +--+  path  +--+  path segment2  +--+  |         |

|         |        |  |<-seg1->|  |<--------------> |  |  |         |

| Network |  +--+  |ON|  +--+  |ON|  +--+   +----+  |ON|  | Network |

|         |--|UN|--|  |--|UN|--|  |--|UN|---| UN |--|  |--|         |

+---------+  +--+  +--+  +--+  +--+  +--+   +----+  +--+  +---------+

  End Host                                                  End Host

                    <--------------------------------->

                     LOOPS domain: path segments enabling

                     optimization for local in-network recovery



Data packets:

LOOPS Segment:

LOOPS Ingress:

LOOPS Egress:

LOOPS Nodes:

Forward Information:

Reverse Information:

Setup Information:

PSN:

Sender:

Receiver:

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This document makes use of the terminology defined in [I-D.li-tsvwg-

loops-problem-opportunities]. This section defines additional

terminology used by this document.

The payload packets that enter and exit a LOOPS

segment.

A part of an end-to-end path covered by a single

instance of the LOOPS protocol, the sub-path between the LOOPS

Ingress and the LOOPS Egress. Several LOOPS segments may be

encountered on an end-to-end path, with or without intervening

routers.

The node that forwards data packets and forward

information into the LOOPS segment, potentially performing

retransmission and forward error correction based on

acknowledgements and measurements received from the LOOPS Egress.

The node that receives the data packets and forward

information from the LOOPS ingress, sends acknowledgements and

measurements back to the LOOPS ingress (reverse information),

potentially recovers data packets from forward error correction

information received.

Collective term for LOOPS Ingress and LOOPS Egress in

a LOOPS Segment.

Information that is added to the stream of

data packets in the forward direction by the LOOPS Ingress.

Information that flows in the reverse

direction, from the LOOPS Egress back to the LOOPS Ingress.

Information that is not transferred as part of

the Forward or Reverse Information, but is part of the setup of

the LOOPS Nodes.

Packet Sequence Number, a sequence number identifying a data

packet between the LOOPS Ingress and Egress.

Original sender of a packet on an end-to-end path that

includes one or more LOOPS segment(s).

Ultimate receiver of a packet on an end-to-end path that

includes one or more LOOPS segment(s).
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2. Challenges

LOOPS has to perform well in the presence of some challenges, which

are discussed in this section.

2.1. No Access to End-to-End Transport Information

LOOPS is defined to be independent of the content of the packets

being forwarded: there is no dependency on transport-layer or higher

information. The intention is to keep LOOPS useful with a traffic

mix that may contain encrypted transport protocols such as QUIC as

well as encrypted VPN traffic.

2.2. Path Asymmetry

A LOOPS segment is defined as a unidirectional forwarding path. The

tunnel might be shared with a LOOPS segment in the inverse

direction; this then allows to piggyback Reverse Information on

encapsulated packets on that segment. But there is no guarantee that

the inverse direction of any end-to-end-path crosses that segment,

so the LOOPS optimizations have to be useful on their own in each

direction.

2.3. Reordering vs. Spurious Retransmission

The end-to-end transport layer protocol may have its own

retransmission mechanism to recover lost packets. When LOOPS

recovers a loss, ideally this local recovery would replace the

triggering of a retransmission at the end-to-end sender.

Whether this is possible depends on the specific end-to-end

mechanism used for triggering retransmission. When end-to-end

retransmission is triggered by receiving a sequence of duplicate

acknowledgements (DUPACKs), and with more than a few packets in

flight, the recovered packet is likely to be too late to fill the

hole in the sequence number space that triggers the DUPACK

detection.

(Given a reasonable setting of parameters, the local retransmission

will still arrive earlier than the end-to-end retransmission and

will possibly unblock application processing earlier; with spurious

retransmission detection, there also will be little long-term effect

on the send rate.)

While LOOPS makes no requirements on end-to-end protocols, it is

worth noting that the waste of bandwidth caused by a DUPACK-based

end-to-end retransmission can be avoided when the end-to-end loss

detection is based on time instead of sequence numbers, e.g., with

RACK [I-D.ietf-tcpm-rack]. This requires a limit on the additional

latency that LOOPS will incur in its attempt to recover the loss

¶

¶

¶

¶

¶

¶



locally. In the present version of this document, opportunity to set

such a limit is provided in the Setup Information. The limit can be

used to compute a deadline for retransmission, but also can be used

to choose FEC parameters that keep extra latency low.

2.4. Informing the End-to-End Transport

Congestion control at the end-to-end sender is used to adapt its

sending rate to the network congestion status. In typical TCP

senders, packet loss implies congestion and leads to a reduction in

sending rate. With LOOPS operating, packet loss can be masked from

the sender as the loss may have been locally recovered. In this

case, rate reduction may not be invoked at the sender. This is a

desirable performance improvement if the loss was a random loss, but

it is hard to ascertain that.

If LOOPS successfully conceals congestion losses from the end-to-end

transport protocol, that might increase the rate to a level that

congests the LOOPS segment, or that causes excessive queueing at the

LOOPS ingress. What LOOPS should be able to achieve is to let the

end host sender invoke the rate reduction mechanism when there is a

congestion loss no matter if the lost packet was recovered locally.

As with any tunneling protocol, information about congestion events

inside the tunnel needs to be exported to the end-to-end path the

tunnel is part of. See e.g., [RFC6040] for a discussion of how to do

this in the presence of ECN. A more recent draft, [I-D.ietf-tsvwg-

tunnel-congestion-feedback], proposes to activate ECN for the tunnel

regardless of whether the end-to-end protocol signals the use of an

ECN-capable transport (ECT), which requires more complicated action

at the tunnel egress.

A sender that interprets reordering as a signal of packet loss

(DUPACKs) initiates a retransmission and reduces the sending rate.

When spurious retransmission detection (e.g., via F-RTO [RFC5862] or

DSACK [RFC3708]) is enabled by the TCP sender, it will often be able

undo the unnecessary window reduction shortly afterwards. As LOOPS

recovers lost packets locally, in most cases the end host sender

will eventually find out its reordering-based retransmission (if

any) is spurious. This is an appropriate performance improvement if

the loss was a random loss. For congestion losses, a congestion

event needs to be signaled to the end-to-end transport.

The present version of LOOPS requires the end-to-end transport to be

ECN-capable (which is visible at the IP level). Congestion loss

events can easily be signaled to them by setting the CE (congestion

experienced) mark. Effectively, LOOPS converts a packet loss (which

would be a congestion indication) to a CE mark (which also is a

congestion indication).
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In effect, LOOPS can be used to convert a path segment that does not

yet use CE marks for congestion indication, and drops packets

instead, into a segment that marks for congestion and does not drop

packets except in extreme cases, incurring the benefits of Using

Explicit Congestion Notification (ECN) [RFC8087]. We speak about the

"drop-to-mark" function of LOOPS.

3. Simplifying assumptions

The above notwithstanding, Implementations may want to make use of

indicators such as transport layer port numbers to partition a

tunnel flow into separate application flows, e.g., for active queue

management (AQM). Any such functionality is orthogonal to the LOOPS

protocol itself and thus out of scope for the present document.

One observation that simplifies the design of LOOPS in comparison to

that of a reliable transport protocol is that LOOPS does not have to

recover every packet loss. Therefore, probabilistic approaches, and

simply giving up after some time has elapsed, can simplify the

protocol significantly.

For now, we assume that LOOPS segments that may line up on an end-

to-end path operate independently of each other. Since the objective

of LOOPS ultimately is to assist the end-to-end protocol, it is

likely that some cooperation between them would be beneficial, e.g.,

to obtain some measurements that cover a larger part of the end-to-

end path. For instance, cooperating LOOPS segments could try to

divide up permissible increases to end-to-end latency between them.

This is out of scope for the present version.

Another simplifying assumption is that LOOPS nodes have reasonably

precise absolute time available to them, so there is no need to

burden the LOOPS protocol with time synchronization. How this is

achieved is out of scope.

LOOPS nodes are created and set up (information about their peers,

parameters) by some control plane mechanism that is out of scope for

this specification. This means there is no need in the LOOPS

protocol itself to manage setup information.

4. LOOPS Architecture

From the above, the following architecture is derived for LOOPS.

LOOPS governs the segment from an ingress node to an egress node,

which is part of one or more end-to-end paths. Often, a LOOPS

segment will operate on aggregate traffic from many such end-to-end

paths.
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The LOOPS protocol itself does not define how a LOOPS segment and

the protocol entities in the ingress and egress node are set up. We

expect that a setup protocol on the control plane will provide some 

setup information to the two nodes, including when to start and to

tear down processing.

Each LOOPS segment governs traffic on one direction in the segment.

The LOOPS ingress adds forward information to that traffic; the

LOOPS egress removes the forward information and sends some reverse

information to inform the behavior of the ingress.

Hence, in the data plane, forward information is added to each data

packet. Reverse information can be sent in separate packets (e.g.,

Geneve control-only packets [I-D.ietf-nvo3-geneve]) and/or

piggybacked on a related, reverse-direction LOOPS flow, similar to

the way the forward information for that flow is carried. The setup

protocol is used to provide the relationship between the LOOPS

segments in the two directions that is used for piggybacking reverse

information.

The above describes the "tunnel mode". A transparent mode is

described in Appendix B, which does not modify the data packets and

therefore needs to send any forward information (if needed, e.g.,

for FEC) in separate packets, usually aggregated.

The LOOPS generic information set defines what information is

provided as setup information, forward information, and reverse

information. Bindings map this information set to specific control

plane and data plane protocols, including defining the specific

encoding being used. Where separate packets (outside the data plane

protocols being used) need to be sent, a special UDP-based protocol

needs to be defined as well. The various bindings aim for some

commonality, so that an implementation for multiple bindings does

not need to support gratuitous variety between them.

5. LOOPS Generic Information Set

This section sketches a generic information set for the LOOPS

protocol. Entries marked with (*) are items that may not be

necessary and probably should be left out of an initial

specification.

5.1. Setup Information

Setup Information might include:

encapsulation protocol in use, and its vital parameters

identity of LOOPS ingress and LOOPS egress; information relevant

for running the encapsulation protocol such as port numbers
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target maximum latency increase caused by the operation of LOOPS

on this segment

maximum retransmission count (*)

5.2. Forward Information

In the forward information, we have identified:

tunnel type (a few bits, meaning agreed between Ingress and

Egress)

packet sequence number PSN (20+ bits), counting the data packets

forwarded transmitted by the LOOPS ingress (i.e., retransmissions

re-use the PSN)

an "ACK desirable" flag (one bit, usually set for a certain

percentage of the data packets only)

an optional blob, to be echoed by the egress

anything that the FEC scheme needs.

The first four together (say, 3+24+4+1) might even fit into 32 bits,

but probably need up to 48 bits total. FEC info of course often

needs more space.

(Note that in this proposal there is no timestamp in the forward

information; see Section 6.3.)

24 bits of PSN, minus one bit for sequence number arithmetic, gives

8 million packets (or 2.4 GB at typical packet sizes) per worst-case

RTT. So if that is, say, 30 seconds, this would be enough to fill

640 Mbit/s.

5.3. Reverse Information

For the reverse information, we have identified:

one optional block 1, possibly repeated:

PSN being acknowledged

absolute time of reception for the packet acknowledged (PSN)

the blob, if present, echoed back
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one optional block 2, possibly repeated:

an ACK bitmap (based on PSN), always starting at a multiple of

8

a delta indicating the end PSN of the bitmap (actually the

first PSN that is beyond it), using (Acked-PSN & ~7) +

8*(delta+1) as the end of the bitmap. Acked-PSN in that

formula is the previous block 1 PSN seen in this packet, or 0

if none so far.

Block 1 and Block 2 can be interspersed and repeated. They can be

piggybacked on a reverse direction data packet or sent separately if

none occurs within some timeout. They will usually be aggregated in

some useful form. Block 1 information sets are only returned for

packets that have "ACK desirable" set. Block 2 information is sent

by the receiver based on some saturation scheme (e.g., at least

three copies for each PSN span over time). Still, it might be

possible to go down to 1 or 2 amortized bytes per forward packet

spent for all this.

The latency calculation is done by the sender, who occasionally sets

"ACK desirable", and notes down the absolute time of transmission

for this data packet (the timekeeping can be done quite efficiently

as deltas). Upon reception of a block 1 ACK, it can then subtract

that from the absolute time of reception indicated. This assumes

time synchronization between the nodes is at least as good as the

precision of latency measurement needed, which should be no problem

with IEEE 1588 PTP synchronization (but could be if using NTP-based

synchronization only). A sender can freely garbage collect noted

down transmission time information; doing this too early just means

that the quality of the RTT sampling will reduce.

6. LOOPS General Operation

In the Tunnel Mode described in the main body of this document,

LOOPS information is carried by some tunnel encapsulation.

6.1. Initial Packet Sequence Number

There is no connection establishment procedure in LOOPS. The initial

PSN is assigned unilaterally by the LOOPS Ingress.

Because of the short time that is usually set in the maximum latency

increase, there is little damage from a collision of PSNs with

packets still in flight from previous instances of LOOPS.
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6.1.1. Minimizing collisions

If desired, collisions can be minimized by assigning initial PSNs

randomly, or using stable storage. Random assignment is more useful

for longer PSNs, where the likelihood of overlap will be low. The

specific way a LOOPS ingress uses stable storage is a local matter

and thus out of scope. (Implementation note: this can be made to

work similar to secure nonce generation with write attenuation: Say,

every 10000 packets, the sender notes down the PSN into stable

storage. After a reboot, it reloads the PSN and adds 10000 in

sequence number arithmetic [RFC1982], plus maybe another 10000 so

the sender does not have to wait for the store operation to succeed

before sending more packets.)

6.1.2. Optional Initial PSN procedure

As a potential option (to be discussed), an initial packet sequence

number could be communicated using a simple two-bit protocol, based

on an I flag (Initial PSN) carried in the forward information and an

R flag (Initial PSN Received) in the reverse information. This

procedure essentially clears the egress of any previous state,

however, the benefits of this procedure are limited.

The initial PSN is assigned unilaterally by the LOOPS ingress,

selected randomly. The ingress will keep setting the I flag to one

when it starts to send packets from a new beginning or whenever it

believes there is a need to notify the egress about a new initial

PSN. The ingress will stop setting the I flag when it receives an

acknowledgement with the R flag set from the egress.

When the LOOPS egress receives a packets with the I flag set, it

stops performing services that assume a sequential PSN. The egress

will no longer provide acknowledgement information for the packets

with PSN smaller than this new initial PSN (per sequence number

arithmetic [IEN74]). The egress sends acknowledgement information

back without any delay by echoing the value of the I flag in the R

flag. This also means the egress unsets the R flag in subsequent

acknowledgements for packets with the I flag unset.

It may happen that the first few packets are lost in an initial PSN

assignment process. In this case, the loss of these packets is not

detectable by the LOOPS ingress since the first received PSN will be

treated as an initial PSN at the egress. This is an acceptable

temporary performance degradation: LOOPS does not intend to provide

perfect reliability, and LOOPS usually applies to the aggregated

traffic over a tunnel so that the initial PSN assignment happens

infrequently.
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6.2. Acknowledgement Generation

A data packet forwarded by the LOOPS ingress always carries PSN

information. The LOOPS egress uses the largest newly received PSN

with the "ACK desired" bit as the ACK number in the block 1 part of

the acknowledgement. This means that the LOOPS ingress gets to

modulate the number of acknowledgement sent by the LOOPS egress.

However, whenever an out-of-order packet arrives while there still

are "holes" in the PSNs received, the LOOPS receiver should generate

a block 2 acknowledgement immediately that the LOOPS sender can use

as an ACK list.

Reverse information can be piggybacked in a reverse direction data

packet. When the reverse direction has no user data to be sent, a

pure reverse information packet needs to be generated. This may be

based on a short delay during which the LOOPS egress waits for a

data packet to piggyback on. (To reduce MTU considerations, the

egress could wait for less-than-full data packets.)

6.3. Measurement

When sending a block 1 acknowledgement, the LOOPS egress indicates

the absolute time of reception of the packet. The LOOPS ingress can

subtract the absolute time of transmission that it still has

available, resulting in one high quality latency sample. (In an

alternative design, the forward information could include the

absolute time of transmission as well, and block1 information would

echo it back. This trades memory management at the ingress for

increased bandwidth and MTU reduction.)

When a data packet has been transmitted, it may not be clear which

specific copy is acknowledged in a block 1 acknowledgement: the

acknowledgement for the initial (or, more generally, an earlier)

copy may have been delayed (ACK ambiguity)). The LOOPS ingress

therefore SHOULD NOT base its measurements on acknowledgements for

retransmitted data packets. One way to achieve this is by not

setting the "ACK desired" bit on retransmissions in the first place.

The LOOPS ingress can also use the time of reception of the block 1

acknowledgement to obtain a segment RTT sample. Note that this will

include any wait time the LOOPS egress incurs while waiting for a

piggybacking opportunity -- this is appropriate, as all uses of an

RTT will be for keeping a retransmission timeout.

To maintain quality of information during idle times, the LOOPS

ingress may send keepalive packets, which are discarded at the LOOPS

egress after sending acknowledgements. The indication that a packet

is a keepalive packet is dependent on the encapsulation protocol.
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6.3.1. Ingress-relative timestamps

As an optional procedure, the ingress node can attach a small blob

of data to a forward packet that carries an ACK desired flag; this

blob is then echoed by the egress in its block 1 acknowledgement.

This is typically used to attach a timestamp on a time scale defined

by the ingress; we speak of an ingress-relative timestamp.

Alternatively, the ingress can keep a timestamp in its local

storage, associated with the PSN of the packet that carries an ACK

desired flag; it can then retrieve this timestamp when the block 1

acknowledgement arrives.

In either case, the LOOPS ingress keeps track of the local segment

round trip time (LRTT) based on the (saved or received) timestamp

and the arrival time of the block 1 acknowledgement, by setting the

ACK Desired flag (D flag) occasionally (several times per RTT) and

saving/including a sending timestamp for/in the packet.

As the egress will send block 1 acknowledgement information right

away when it receives a packet with the D flag set, the measurement

of LRTT is more accurate for such packets. A smoothed local segment

round trip time S_LRTT can be computed in a similar way as defined

by [RFC0793]. A recent minimum value of LRTT is also kept as

min_LRTT. S_LRTT is used as a basis for the overall timing of

retransmission and state management.

Retransmitted packets MUST NOT be used for local segment round trip

time (LRTT) calculation.

6.3.2. ACK generation

A block 1 acknowledgement is generated based on receiving a forward

packet with a D flag.

The way block 2 acknowledgement information is sent is more subject

to control by the egress. Generally, the egress will aggregate ACK

bits for at least K packets before sending a block 2; this can be

used to amortize the overhead to close to a couple of bits per ACK.

In order to counter loss of reverse information packets, an egress

will also want to send an ACK bit more than once -- a saturation

value of 3 or more may be chosen based on setup information.

Typically, ACK bits already sent will be prepended to ACK bits that

are new in this block 2 information set. If K packets do not

accumulate for a while, the egress will send one or more packets

with block 2 information that covers the unsent ACK bits it has so

far.

(Discussion: This works best if the egress has information both

about the S_RTT and min_RTT that the ingress uses and the reverse

packet loss rate.)
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6.4. Loss detection and Recovery

There are two ways for LOOPS local recovery, retransmission and FEC.

6.4.1. Local Retransmission

When retransmission is used as recovery mechanism, the LOOPS ingress

detects a packet loss by not receiving an ACK for the packet within

the time expected based on an RTO value (which might be calculated

as in [RFC6298]). Packet retransmission should then not be performed

more than once within an LRTT.

When a retransmission is desired, the LOOPS ingress performs the

local in-network recovery by retransmitting the packet. Further

retransmissions may be desirable if the lack of ACK is persistent

beyond an RTO, as long as the maximum latency increase is not

reached.

6.4.2. FEC

FEC is another way to perform local recovery. When FEC is in use, a

FEC header is sent with data packets as well as with special repair

packets added to the flow. The specific FEC scheme used could be

defined in the Setup Information, using a mechanism like [RFC5052].

The FEC rate (amount of redundancy added) and possibly the FEC

scheme could be unilaterally adjusted by the LOOPS ingress in an

adaptive mechanism based on the measurement information.

6.5. Discussion

Without progress in the way that end-host transport protocols handle

reordering, LOOPS will be unable to prevent end-to-end

retransmissions that duplicate effort that is spent in local

retransmissions. It depends on parameters of the path segment

whether this wasted effort is significant or not.

One remedy against this waste could be the introduction of

resequencing at the LOOPS Egress node. This increases overall mean

packet latency, but does not always increase actual end-to-end data

stream latency if a head-of-line blocking transport such as TCP is

in use. For applications with a large percentage of legacy TCP end-

hosts and sufficient processing capabilities at the LOOPS Egress

node, resequencing may be a viable choice. Note that resequencing

could be switched off and on depending on some measurement

information.

The packet numbering scheme chosen by LOOPS already provides the

necessary information for the LOOPS Egress to reconstruct the

sequence of data packets at the LOOPS ingress.
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7. Sketches of Bindings to Tunnel Protocols

The LOOPS information defined above in a generic way can be mapped

to specific tunnel encapsulation protocols. A sketch for the tunnel

protocol Geneve is given below (Section 7.1). The actual

encapsulation can be designed in a "native" way by putting each of

the various elements into the TLV format of the encapsulation

protocol, or it can be achieved by providing single TLVs for forward

and reverse information and using some generic encoding of both

kinds of information as shown in Appendix B.3.

7.1. Embedding LOOPS in Geneve

Geneve [I-D.ietf-nvo3-geneve] is an extensible overlay protocol

which can embed LOOPS functions. Geneve uses TLVs to carry optional

information between NVEs. NVE is logically the same entity as the

LOOPS node.

The Geneve header has a mandatory Virtual Network Identifier (VNI)

field. The specific VNI value to be used is part of the setup

information for the LOOPS tunnel.

More details for a Geneve binding for LOOPS can be found in [I-

D.bormann-loops-geneve-binding].

8. IANA Considerations

No IANA action is required at this stage. When a LOOPS

representation is designed for a specific tunneling protocol, new

codepoints will be required in the registries that pertain to that

protocol.

9. Security Considerations

The security of a specific LOOPS segment will depend both on the

properties of the generic information set described here and those

of the encapsulation protocol employed. The security considerations

of the encapsulation protocol will apply, as will the protection

afforded by any security measures provided by the encapsulation

protocol. Any LOOPS encapsulation specification is expected to

provide information about preferred configurations of the

encapsulation protocol employed, including security mechanisms, and

to provide a security considerations section discussing the

combination. The following discussion aims at discussing security

considerations that will be common between different encapsulations.
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9.1. Threat model

Attackers might attempt to perturb the operation of a LOOPS segment

for a number of purposes:

Denial of Service: Damaging the ability of LOOPS to recover

packets, or damaging packet forwarding through the LOOPS segment

in general.

Attacks on Confidentiality or Integrity: Obtaining the content of

data packets, modifying them, injecting new or suppressing

specific data packets.

For the purposes of these security considerations, we can

distinguish three classes of attackers:

on-path read-write: The attacker sees packets under way on the

segment and can modify, inject, or suppress them.

In this case there is really nothing LOOPS can do, except for

acting as a full security protocol on its own, which would be

the task of the encapsulation protocol. Without that, attackers

already can manipulate the packet stream as they wish. This

class of attackers is considered out of scope for these

security considerations.

on-path read + inject: The attacker sees packets under way on

the segment and can inject new packets.

For this case, LOOPS itself similarly cannot add to the

confidentiality of the data stream. However, LOOPS could

protect against denial of service against its own protocol

operation and, in a limited fashion, against attacks on

integrity that wouldn't already have been possible by packet

injection without LOOPS.

off-path inject: The attacker can inject new packets, but

cannot see existing packets under way on the segment.

Similar considerations apply as for class 2, except that the

"blind" class 3 attacker might need to guess information it

could have extracted from the packet stream in class 2.

9.2. Discussion

Class 2 attackers can see e.g. sequence numbers and can inject, but

not modify traffic. Attacks might include injecting false ACKs,

initial PSN flags, ... (TBD)
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Class 3 ("blind") attackers might still be able to fake initial PSN

bits + false ACKs, but will have a harder time otherwise as it would

need to guess the PSN range in which it can wreak havoc. Even random

guesses will sometimes hit, though, so the protocol needs to be

robust to such injection attacks. ... (TBD)
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Appendix A. Protocol used in Prototype Implementation

This appendix describes, in a somewhat abstracted form, the protocol

as used in a prototype implementation, as described by Yizhou Li,

and Xingwang Zhou.

The prototype protocol can be run in one of two modes (defined by

preconfiguration):

Retransmission mode

Forward Error Correction (FEC) mode

Forward information is piggybacked in data packets.

Reverse information can be carried in a pure acknowledgement packet

or piggybacked when carrying packets for the inverse direction.

The forward information includes:

Packet Sequence Number (PSN) (32 bits): This identifies a packet

over a specific overlay segment from a specific LOOPS Ingress. If

a packet is retransmitted by LOOPS, the retransmission uses the

original PSN.

Timestamp (32 bits): Information, in a format local to the LOOPS

ingress, that provides the time when the packet was sent. In the

current implementation, a 32-bit unsigned value specifying the

time delta in some granularity from the epoch time to the sending

time of the packet carrying this timestamp. The granularity can

be from 1 ms to 1 second. The epoch time follows the current TCP

practice which is 1 January 1970 00:00:00 UTC. Note that a

retransmitted packet uses its own Timestamp.

FEC Info for Block Code (56 bits): This header is used in FEC

mode. It currently only provides for a block code FEC scheme. It

includes the Source Block Number (SBN), Encoding Symbol ID (ESI),

number of symbols in a single source block and symbol size. 

Appendix A.1 gives more details on FEC.
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The reverse information includes:

ACK Number (32 bits): The largest (in sequence number arithmetic 

[RFC1982]) PSN received so far.

ACK List (variable): This indicates an array of PSN numbers to

describe the PSN "holes" preceding the ACK number. It

conceptually lists the PSNs of every packet perceived as lost by

the LOOPS egress. In actual use, it is truncated.

Echoed Timestamp (32 bits): The timestamp received with the

packet being acknowledged.

A.1. Block Code FEC

The prototype currently uses a block code FEC scheme (RaptorQ 

[RFC6330]). The fields in the FEC Info forward information are:

Source Block Number (SBN): 16 bits. An integer identifier for the

source block that the encoding symbols within the packet relate

to.

Encoding Symbol ID (ESI): 16 bits. An integer identifier for the

encoding symbols within the packet.

K: 8 bits. Number of symbols in a single source block.

T: 16 bits. Symbol size in bytes.

The LOOPS Ingress uses the data packet in Figure 1 to generate the

encoding packet. Both source packets and repair packets carry the

FEC header information; the LOOPS Egress reconstructs the data

packets from both kinds of packets. The LOOPS Egress currently

resequences the forwarded and reconstructed packets, so they are

passed on in-order when the lost packets are recoverable within the

source block.

The LOOPS Nodes need to agree on the use of FEC block mode and on

the specific FEC Encoding ID to use; this is currently done by

configuration.

Appendix B. Transparent mode

This appendix defines a very different way to provide the LOOPS

services, "transparent mode". (We call the protocol described in the

main body of the document "encapsulated mode".)

In transparent mode, the idea is that LOOPS does not meddle with the

forward transmission of data packets, but runs on the side

exchanging additional information.
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An implementation could be based on conventional forwarding switches

that just provide a copy of the ingress and egress packet stream to

the LOOPS implementations. The LOOPS process would occasionally

inject recovered packets back into the LOOPS egress node's

forwarding switch, see Figure 3.

Figure 3: LOOPS Transparent Mode

The obvious advantage of transparent mode is that no encapsulation

is needed, reducing processing requirements and keeping the MTU

unchanged. The obvious disadvantage is that no forward information

can be provided with each data packet, so a replacement needs to be

found for the PSN (packet sequence number) employed in encapsulated

mode. Any forward information beyond the data packets is sent in

separate packets exchanged directly between the LOOPS nodes.

B.1. Packet identification

Retransmission mode and FEC mode differ in their needs for packet

identification. For retransmission mode, a somewhat probabilistic

accuracy of the packet identification is sufficient, for FEC mode,

packet identification should not make mistakes (as these would lead

to faultily reconstructed packets).
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In Retransmission mode, misidentification of a packet could lead to

measurement errors as well as missed retransmission opportunities.

The latter will be fixed end-to-end. The tolerance for measurement

errors would influence the degree of accuracy that is aimed for.

Packet identification can be based on a cryptographic hash of the

packet, computed in LOOPS ingress and egress using the same

algorithm (excluding fields that can change in transit, such as TTL/

hop limit). The hash can directly be used as a packet number, or it

can be sent in the forward information together with a packet

sequence number, establishing a mapping.

For probabilistic packet identification, it is almost always

sufficient to hash the first few (say, 64) bytes of the packet; all

known transport protocols keep sufficient identifying information in

that part (and, for encrypted protocols, the entropy will be

sufficient). Any collisions of the hash could be used to disqualify

the packet for measurement purposes, minimizing the measurement

errors; this could allow rather short packet identifiers in

retransmission mode.

For FEC mode, the packet identification together with the per-packet

FEC information needs to be sent in the (separate) forward

information, so that a systematic code can be reconstructed. For

retransmission mode, there is no need to send any forward

information for most packets, or a mapping from packet identifiers

to packet sequence numbers could be sent in the forward information

(probably in some aggregated form). The latter would allow keeping

the acknowledgement form described in the main body (with aggregate

acknowledgement); otherwise, packet identifiers need to be

acknowledged. With this change, the LOOPS egress will send reverse

information as in the encapsulating LOOPS protocol.

B.2. Generic information and protocol operation

With the changes outlined above, transparent mode operates just as

encapsulated mode. If packet sequence numbers are not used, there is

no use for block2 reverse information; if they are used, a new

block3 needs to be defined that provides the mapping from packet

identifiers to packet sequence numbers in the forward information.

To avoid MTU reduction, some mechanism will be needed to encapsulate

the actual FEC information (additional packets) in the forward

information.

B.3. A hybrid mode

Figure 3 can be modified by including a GRE encapsulator into the

top left corner and a GRE decapsulator in the bottom left corner.

This provides more defined ingress and egress points, but it also
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provides an opportunity to add a packet sequence number at the

ingress. The copies to the top right and bottom right corners are

the encapsulated form, i.e., include the sequence number.

The GRE packet header then has the form:

The forward and reverse information can be designed closer to the

approach in the main body of the document, to be exchanged using UDP

packets between top right ingress and bottom right egress using a

port number allocated for this purpose.

Rough ideas for both directions are given below in CDDL [RFC8610].

This information set could be encoded in CBOR or in a bespoke

encoding; details such as this can be defined later.
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forward-information = [

  [rel-psn, ack-desired, ? fec-info] /

  fec-repair-data

]

rel-psn = uint; relative packet sequence number

; always given as a delta from the previous one in the array

; starting out with a "previous value" of 0

ack-desired = bool

fec-info = [

    sbn: uint, ; Source Block Number

    esi: uint, ; Encoding Symbol ID

    ? (

      nsssb: uint; number of symbols in a single source block

      ss: uint; symbol size

    )

]

fec-repair-data = [

    repair-data: bytes

    ? (

      sbn: uint, ; Source Block Number

      esi: uint, ; Encoding Symbol ID

    )

]

¶



If left out for a sequence number, the fec-info block is constructed

by adding one to the previous one. fec-repair-data contain repair

symbols for the sbn/esi given (which, again, are reconstructed from

context if not given).

The acked-bits in a block2 is a bitmap that gives acknowledgments

for received data packets. The bitmap always comes as a multiple of

8 bits (all bytes are filled in with 8 bits, each identifying a

PSN). The end PSN of the bitmap (actually the first PSN that would

be beyond it) is computed from the current PSN as set by rel-psn,

rounded down to a multiple of 8, and adding 8*(end-psn-delta+1) to

that value.
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reverse-information = [

    block1 / block2

]

block1 = [rel-psn, timestamp]

block2 = [end-psn-delta: uint, acked-bits: bytes]
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