
RTP Media Congestion Avoidance M. Welzl
Techniques (rmcat) S. Islam
Internet-Draft S. Gjessing
Intended status: Experimental University of Oslo
Expires: April 20, 2014 October 17, 2013

Coupled congestion control for RTP media
draft-welzl-rmcat-coupled-cc-02

Abstract

 When multiple congestion controlled RTP sessions traverse the same
 network bottleneck, it can be beneficial to combine their controls
 such that the total on-the-wire behavior is improved. This document
 describes such a method for flows that have the same sender, in a way
 that is as flexible and simple as possible while minimizing the
 amount of changes needed to existing RTP applications.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 20, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Welzl, et al. Expires April 20, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Coupled congestion control for RTP media October 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Definitions . 3
3. Limitations . 4
4. Architectural overview . 5
5. Roles . 6
5.1. SBD . 6
5.2. FSE . 6
5.3. Flows . 7
5.3.1. Example algorithm - Active FSE 8
5.3.2. Example algorithm - Passive FSE 9
5.3.3. Example operation (passive) 11

6. Acknowledgements . 15
7. IANA Considerations . 15
8. Security Considerations 15
9. References . 16
9.1. Normative References 16
9.2. Informative References 16

Appendix A. Changes from -00 to -01 16
Appendix B. Changes from -01 to -02 16

 Authors' Addresses . 17

Welzl, et al. Expires April 20, 2014 [Page 2]

Internet-Draft Coupled congestion control for RTP media October 2013

1. Introduction

 When there is enough data to send, a congestion controller must
 increase its sending rate until the path's capacity has been reached;
 depending on the controller, sometimes the rate is increased further,
 until packets are ECN-marked or dropped. This process inevitably
 creates undesirable queuing delay -- an effect that is amplified when
 multiple congestion controlled connections traverse the same network
 bottleneck. When such connections originate from the same host, it
 would therefore be ideal to use only one single sender-side
 congestion controller which determines the overall allowed sending
 rate, and then use a local scheduler to assign a proportion of this
 rate to each RTP session. This way, priorities could also be
 implemented quite easily, as a function of the scheduler; honoring
 user-specified priorities is, for example, required by rtcweb
 [rtcweb-usecases].

 The Congestion Manager (CM) [RFC3124] provides a single congestion
 controller with a scheduling function just as described above. It is
 hard to implement because it requires an additional congestion
 controller and removes all per-connection congestion control
 functionality, which is quite a significant change to existing RTP
 based applications. This document presents a method that is easier
 to implement than the CM and also requires less significant changes
 to existing RTP based applications. It attempts to roughly
 approximate the CM behavior by sharing information between existing
 congestion controllers, akin to "Ensemble Sharing" in [RFC2140].

2. Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Available Bandwidth:
 The available bandwidth is the nominal link capacity minus the
 amount of traffic that traversed the link during a certain time
 interval, divided by that time interval.

 Bottleneck:
 The first link with the smallest available bandwidth along the
 path between a sender and receiver.

 Flow:
 A flow is the entity that congestion control is operating on.
 It could, for example, be a transport layer connection, an RTP
 session, or a subsession that is multiplexed onto a single RTP

https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Welzl, et al. Expires April 20, 2014 [Page 3]

Internet-Draft Coupled congestion control for RTP media October 2013

 session together with other subsessions.

 Flow Group Identifier (FGI):
 A unique identifier for each subset of flows that is limited by
 a common bottleneck.

 Flow State Exchange (FSE):
 The entity that maintains information that is exchanged between
 flows.

 Flow Group (FG):
 A group of flows having the same FGI.

 Shared Bottleneck Detection (SBD):
 The entity that determines which flows traverse the same
 bottleneck in the network, or the process of doing so.

3. Limitations

 Sender-side only:
 Coupled congestion control as described here only operates
 inside a single host on the sender side. This is because,
 irrespective of where the major decisions for congestion
 control are taken, the sender of a flow needs to eventually
 decide the transmission rate. Additionally, the necessary
 information about how much data an application can currently
 send on a flow is typically only available at the sender side,
 making the sender an obvious choice for placement of the
 elements and mechanisms described here. It is recognized that
 flows that have different senders but the same receiver, or
 different senders and different receivers can also share a
 bottleneck; such scenarios have been omitted for simplicity,
 and could be incorporated in future versions of this document.
 Note that limiting the flows on which coupled congestion
 control operates merely limits the benefits derived from the
 mechanism.

 Shared bottlenecks do not change quickly:
 As per the definition above, a bottleneck depends on cross
 traffic, and since such traffic can heavily fluctuate,
 bottlenecks can change at a high frequency (e.g., there can be
 oscillation between two or more links). This means that, when
 flows are partially routed along different paths, they may
 quickly change between sharing and not sharing a bottleneck.
 For simplicity, here it is assumed that a shared bottleneck is
 valid for a time interval that is significantly longer than the
 interval at which congestion controllers operate. Note that,

Welzl, et al. Expires April 20, 2014 [Page 4]

Internet-Draft Coupled congestion control for RTP media October 2013

 for the only SBD mechanism defined in this document
 (multiplexing on the same five-tuple), the notion of a shared
 bottleneck stays correct even in the presence of fast traffic
 fluctuations: since all flows that are assumed to share a
 bottleneck are routed in the same way, if the bottleneck
 changes, it will still be shared.

4. Architectural overview

 Figure 1 shows the elements of the architecture for coupled
 congestion control: the Flow State Exchange (FSE), Shared Bottleneck
 Detection (SBD) and Flows. The FSE is a storage element that can be
 implemented in two ways: active and passive. In the active version,
 it initiates communication with flows and SBD. However, in the
 passive version, it does not actively initiate communication with
 flows and SBD; its only active role is internal state maintenance
 (e.g., an implementation could use soft state to remove a flow's data
 after long periods of inactivity). Every time a flow's congestion
 control mechanism would normally update its sending rate, the flow
 instead updates information in the FSE and performs a query on the
 FSE, leading to a sending rate that can be different from what the
 congestion controller originally determined. Using information
 about/from the currently active flows, SBD updates the FSE with the
 correct Flow State Identifiers (FSIs).

 ------- <--- Flow 1
 | FSE | <--- Flow 2 ..
 ------- <--- .. Flow N
 ^
 | |
 ------- |
 | SBD | <-------|

 Figure 1: Coupled congestion control architecture

 Since everything shown in Figure 1 is assumed to operate on a single
 host (the sender) only, this document only describes aspects that
 have an influence on the resulting on-the-wire behavior. It does,
 for instance, not define how many bits must be used to represent
 FSIs, or in which way the entities communicate. Implementations can
 take various forms: for instance, all the elements in the figure
 could be implemented within a single application, thereby operating
 on flows generated by that application only. Another alternative

Welzl, et al. Expires April 20, 2014 [Page 5]

Internet-Draft Coupled congestion control for RTP media October 2013

 could be to implement both the FSE and SBD together in a separate
 process which different applications communicate with via some form
 of Inter-Process Communication (IPC). Such an implementation would
 extend the scope to flows generated by multiple applications. The
 FSE and SBD could also be included in the Operating System kernel.

5. Roles

 This section gives an overview of the roles of the elements of
 coupled congestion control, and provides an example of how coupled
 congestion control can operate.

5.1. SBD

 SBD uses knowledge about the flows to determine which flows belong in
 the same Flow Group (FG), and assigns FGIs accordingly. This
 knowledge can be derived from measurements, by considering
 correlations among measured delay and loss as an indication of a
 shared bottleneck, or it can be based on the simple assumption that
 packets sharing the same five-tuple (IP source and destination
 address, protocol, and transport layer port number pair) and having
 the same Differentiated Services Code Point (DSCP) in the IP header
 are typically treated in the same way along the path. The latter
 method is the only one specified in this document: SBD MAY consider
 all flows that use the same five-tuple and DSCP to belong to the same
 FG. This classification applies to certain tunnels, or RTP flows
 that are multiplexed over one transport (cf. [transport-multiplex]).
 In one way or another, such multiplexing will probably be recommended
 for use with rtcweb [rtcweb-rtp-usage].

5.2. FSE

 The FSE contains a list of all flows that have registered with it.
 For each flow, it stores the following for both the active and the
 passive version:

 o a unique flow number to identify the flow

 o the FGI of the FG that it belongs to (based on the definitions in
 this document, a flow has only one bottleneck, and can therefore
 be in only one FG)

 o a priority P, which here is assumed to be represented as a
 floating point number in the range from 0.1 (unimportant) to 1
 (very important). A negative value is used to indicate that a
 flow has terminated.

Welzl, et al. Expires April 20, 2014 [Page 6]

Internet-Draft Coupled congestion control for RTP media October 2013

 o The rate used by the flow, FSE_R.

 In the FSE, each FG contains one static variable S_CR which is meant
 to be the sum of the calculated rates of all flows in the same FG
 (including the flow itself). This value is used to calculate the
 sending rate. For the passive version, in the algorithm given in the
 next section, it is limited to increase or decrease as conservatively
 as a flow's congestion controller decides in order to prohibit sudden
 rate jumps.

 In addition, the passive version of the FSE stores the following:

 o The desired rate DR. This can be smaller than the calculated rate
 if the application feeding into the flow has less data to send
 than the congestion controller would allow. In case of a bulk
 transfer, DR must be set to CC_R received from the flow's
 congestion module.

 The passive version of the FSE contains one static variable per FG
 called TLO (Total Leftover Rate -- used to let a flow 'take'
 bandwidth from application-limited or terminated flows) which is
 initialized to 0.

 The information listed here is enough to implement the sample flow
 algorithm given below. FSE implementations could easily be extended
 to store, e.g., a flow's current sending rate for statistics
 gathering or future potential optimizations.

5.3. Flows

 Flows register themselves with SBD and FSE when they start,
 deregister from the FSE when they stop, and carry out an UPDATE
 function call every time their congestion controller calculates a new
 sending rate. Via UPDATE, they provide the newly calculated rate and
 the desired rate (less than the calculated rate in case of
 application-limited flows, the same otherwise). In the passive
 version, UPDATE returns a rate that should be used instead of the
 rate that the congestion controller has determined. In the active
 version, however, it calculates the rates for all the flows in the FG
 and actively distributes them.

 Below, an active and a passive example algorithm are described.
 While other algorithms could be used instead, the same algorithm must
 be applied to all flows.

Welzl, et al. Expires April 20, 2014 [Page 7]

Internet-Draft Coupled congestion control for RTP media October 2013

5.3.1. Example algorithm - Active FSE

 (1) When a flow f starts, it registers itself with SBD and the FSE.
 FSE_R and DR are initialized with the congestion controller's
 initial rate. SBD will assign the correct FGI. When a flow is
 assigned an FGI, it adds its FSE_R to S_CR.

 (2) When a flow f stops, it sets P to -1.

 (3) Every time the congestion controller of the flow f determines a
 new sending rate CC_R, the flow calls UPDATE, which carries out
 the tasks listed below to derive the new sending rates for all
 the flows in the FG. A flow's UPDATE function uses a local
 (i.e. per-flow) temporary variable: S_P, which is initialized to
 0.

 (a) It updates S_CR and FSE_R(f) with CC_R.

 S_CR = S_CR + CC_R - FSE_R(f)
 FSE_R(f) = CC_R

 (b) It calculates the sum of all the priorities, S_P.

 for all flows i in FG do
 S_P = S_P + P(i)
 end for

 (c) It calculates the sending rates for all the flows in an FG
 and distributes them.

 for all flows i in FG do
 FSE_R(i) = (P(i)*S_CR)/S_P
 send FSE_R(i) to the flow i
 end for

 This algorithm was designed to be the simplest possible method to
 assign rates according to the priorities of flows. It misses some
 features that we would like to incorporate in future versions of this
 document (e.g. letting bulk transfers immediately use the bandwidth
 that is not used by application-limited flows); if these features
 make the algorithm significantly more complex, this will be included
 as a third variant of the algorithm.

Welzl, et al. Expires April 20, 2014 [Page 8]

Internet-Draft Coupled congestion control for RTP media October 2013

5.3.2. Example algorithm - Passive FSE

 (1) When a flow f starts, it registers itself with SBD and the FSE.
 FSE_R and DR are initialized with the congestion controller's
 initial rate. SBD will assign the correct FGI. When a flow is
 assigned an FGI, it adds its FSE_R to S_CR.

 (2) When a flow f stops, it sets its DR to 0 and sets P to -1.

 (3) Every time the congestion controller of the flow f determines a
 new sending rate CC_R, assuming the flow's new desired rate
 new_DR to be "infinity" in case of a bulk data transfer with an
 unknown maximum rate, the flow calls UPDATE, which carries out
 the tasks listed below to derive the flow's new sending rate,
 Rate. A flow's UPDATE function uses a few local (i.e. per-flow)
 temporary variables, which are all initialized to 0: DELTA,
 new_S_CR and S_P.

 (a) For all the flows in its FG (including itself), it
 calculates the sum of all the calculated rates, new_S_CR.
 Then it calculates the difference between FSE_R(f) and
 CC_R, DELTA.

 for all flows i in FG do
 new_S_CR = new_S_CR + FSE_R(i)
 end for
 DELTA = CC_R - FSE_R(f)

 (b) It updates S_CR, FSE_R(f) and DR(f).

 FSE_R(f) = CC_R
 if DELTA > 0 then // the flow's rate has increased
 S_CR = S_CR + DELTA
 else if DELTA < 0 then
 S_CR = new_S_CR + DELTA
 end if
 DR(f) = min(new_DR,FSE_R(f))

 (c) It calculates the leftover rate TLO, removes the terminated
 flows from the FSE and calculates the sum of all the
 priorities, S_P.

Welzl, et al. Expires April 20, 2014 [Page 9]

Internet-Draft Coupled congestion control for RTP media October 2013

 for all flows i in FG do
 if P(i)<0 then
 delete flow
 else
 S_P = S_P + P(i)
 end if
 end for
 if DR(f) < FSE_R(f) then
 TLO = TLO + (P(f)/S_P) * S_CR - DR(f))
 end if

 (d) It calculates the sending rate, Rate.

 Rate = min(new_DR, (P(f)*S_CR)/S_P + TLO)

 if Rate != new_DR and TLO > 0 then
 TLO = 0 // f has 'taken' TLO
 end if

 (e) It updates DR(f) and FSE_R(f) with Rate.

 if Rate > DR(f) then
 DR(f) = Rate
 end if
 FSE_R(f) = Rate

 The goals of the flow algorithm are to achieve prioritization,
 improve network utilization in the face of application-limited flows,
 and impose limits on the increase behavior such that the negative
 impact of multiple flows trying to increase their rate together is
 minimized. It does that by assigning a flow a sending rate that may
 not be what the flow's congestion controller expected. It therefore
 builds on the assumption that no significant inefficiencies arise
 from temporary application-limited behavior or from quickly jumping
 to a rate that is higher than the congestion controller intended.
 How problematic these issues really are depends on the controllers in
 use and requires careful per-controller experimentation. The coupled
 congestion control mechanism described here also does not require all
 controllers to be equal; effects of heterogeneous controllers, or
 homogeneous controllers being in different states, are also subject
 to experimentation.

 This algorithm gives all the leftover rate of application-limited
 flows to the first flow that updates its sending rate, provided that
 this flow needs it all (otherwise, its own leftover rate can be taken
 by the next flow that updates its rate). Other policies could be

Welzl, et al. Expires April 20, 2014 [Page 10]

Internet-Draft Coupled congestion control for RTP media October 2013

 applied, e.g. to divide the leftover rate of a flow equally among all
 other flows in the FGI.

5.3.3. Example operation (passive)

 In order to illustrate the operation of the passive coupled
 congestion control algorithm, this section presents a toy example of
 two flows that use it. Let us assume that both flows traverse a
 common 10 Mbit/s bottleneck and use a simplistic congestion
 controller that starts out with 1 Mbit/s, increases its rate by 1
 Mbit/s in the absence of congestion and decreases it by 2 Mbit/s in
 the presence of congestion. For simplicity, flows are assumed to
 always operate in a round-robin fashion. Rate numbers below without
 units are assumed to be in Mbit/s. For illustration purposes, the
 actual sending rate is also shown for every flow in FSE diagrams even
 though it is not really stored in the FSE.

 Flow #1 begins. It is a bulk data transfer and considers itself to
 have top priority. This is the FSE after the flow algorithm's step
 1:

 --
#	FGI	P	FSE_R	DR	Rate
1	1	1	1	1	1
 --
 S_CR = 1, TLO = 0

 Its congestion controller gradually increases its rate. Eventually,
 at some point, the FSE should look like this:

#	FGI	P	FSE_R	DR	Rate
1	1	1	10	10	10

 S_CR = 10, TLO = 0

 Now another flow joins. It is also a bulk data transfer, and has a
 lower priority (0.5):

Welzl, et al. Expires April 20, 2014 [Page 11]

Internet-Draft Coupled congestion control for RTP media October 2013

 --
#	FGI	P	FSE_R	DR	Rate
1	1	1	10	10	10
2	1	0.5	1	1	1
 --
 S_CR = 11, TLO = 0

 Now assume that the first flow updates its rate to 8, because the
 total sending rate of 11 exceeds the total capacity. Let us take a
 closer look at what happens in step 3 of the flow algorithm.

 CC_R = 8. new_DR = infinity.
 3 a) new_S_CR = 11; DELTA = 8 - 10 = -2.
 3 b) FSE_Rf) = 8. DELTA is negative, hence S_CR = 9;
 DR(f) = 8.
 3 c) S_P = 1.5.
 3 d) new sending rate = min(infinity, 1/1.5 * 9 + 0) = 6.
 3 e) FSE_R(f) = 6.

 The resulting FSE looks as follows:
 --
#	FGI	P	FSE_R	DR	Rate
1	1	1	6	8	6
2	1	0.5	1	1	1

 S_CR = 9, TLO = 0

 The effect is that flow #1 is sending with 6 Mbit/s instead of the 8
 Mbit/s that the congestion controller derived. Let us now assume
 that flow #2 updates its rate. Its congestion controller detects
 that the network is not fully saturated (the actual total sending
 rate is 6+1=7) and increases its rate.

Welzl, et al. Expires April 20, 2014 [Page 12]

Internet-Draft Coupled congestion control for RTP media October 2013

 CC_R=2. new_DR = infinity.
 3 a) new_S_CR = 7; DELTA = 2 - 1 = 1.
 3 b) FSE_R(f) = 2. DELTA is positive, hence S_CR = 9 + 1 = 10;
 DR(f) = 2.
 3 c) S_P = 1.5.
 3 d) new sending rate = min(infinity, 0.5/1.5 * 10 + 0) = 3.33.
 3 e) DR(f) = FSE_R(f) = 3.33.

 The resulting FSE looks as follows:

#	FGI	P	FSE_R	DR	Rate
1	1	1	6	8	6
2	1	0.5	3.33	3.33	3.33

 S_CR = 10, TLO = 0

 The effect is that flow #2 is now sending with 3.33 Mbit/s, which is
 close to half of the rate of flow #1 and leads to a total utilization
 of 6(#1) + 3.33(#2) = 9.33 Mbit/s. Flow #2's congestion controller
 has increased its rate faster than the controller actually expected.
 Now, flow #1 updates its rate. Its congestion controller detects
 that the network is not fully saturated and increases its rate.
 Additionally, the application feeding into flow #1 limits the flow's
 sending rate to at most 2 Mbit/s.

 CC_R=7. new_DR=2.
 3 a) new_S_CR = 9.33; DELTA = 1.
 3 b) FSE_R(f) = 7, DELTA is positive, hence S_CR = 10 + 1 = 11;
 DR = min(2, 7) = 2.
 3 c) S_P = 1.5; DR(f) < FSE_R(f), hence TLO = 1/1.5 * 11 - 2 = 5.33.
 3 d) new sending rate = min(2, 1/1.5 * 11 + 5.33) = 2.
 3 e) FSE_R(f) = 2.

 The resulting FSE looks as follows:

#	FGI	P	FSE_R	DR	Rate
1	1	1	2	2	2
2	1	0.5	3.33	3.33	3.33

 S_CR = 11, TLO = 5.33

Welzl, et al. Expires April 20, 2014 [Page 13]

Internet-Draft Coupled congestion control for RTP media October 2013

 Now, the total rate of the two flows is 2 + 3.33 = 5.33 Mbit/s, i.e.
 the network is significantly underutilized due to the limitation of
 flow #1. Flow #2 updates its rate. Its congestion controller
 detects that the network is not fully saturated and increases its
 rate.

 CC_R=4.33. new_DR = infinity.
 3 a) new_S_CR = 5.33; DELTA = 1.
 3 b) FSE_R(f) = 4.33. DELTA is positive, hence S_CR = 12;
 DR(f) = 4.33.
 3 c) S_P = 1.5.
 3 d) new sending rate: min(infinity, 0.5/1.5 * 12 + 5.33) = 9.33.
 3 e) FSE_R(f) = 9.33, DR(f) = 9.33.

 The resulting FSE looks as follows:

#	FGI	P	FSE_R	DR	Rate
1	1	1	2	2	2
2	1	0.5	9.33	9.33	9.33

 S_CR = 12, TLO = 0

 Now, the total rate of the two flows is 2 + 9.33 = 11.33 Mbit/s.
 Finally, flow #1 terminates. It sets P to -1 and DR to 0. Let us
 assume that it terminated late enough for flow #2 to still experience
 the network in a congested state, i.e. flow #2 decreases its rate in
 the next iteration.

 CC_R = 7.33. new_DR = infinity.
 3 a) new_S_CR = 11.33; DELTA = -2.
 3 b) FSE_R(f) = 7.33. DELTA is negative, hence S_CR = 9.33;
 DR(f) = 7.33.
 3 c) Flow 1 has P = -1, hence it is deleted from the FSE.
 S_P = 0.5.
 3 d) new sending rate: min(infinity, 0.5/0.5*9.33 + 0) = 9.33.
 3 e) FSE_R(f) = DR(f) = 9.33.

 The resulting FSE looks as follows:

#	FGI	P	FSE_R	DR	Rate
2	1	0.5	9.33	9.33	9.33

Welzl, et al. Expires April 20, 2014 [Page 14]

Internet-Draft Coupled congestion control for RTP media October 2013

 S_CR = 9.33, TLO = 0

6. Acknowledgements

 This document has benefitted from discussions with and feedback from
 David Hayes, Andreas Petlund, and David Ros (who also gave the FSE
 its name).

 This work was partially funded by the European Community under its
 Seventh Framework Programme through the Reducing Internet Transport
 Latency (RITE) project (ICT-317700).

7. IANA Considerations

 This memo includes no request to IANA.

8. Security Considerations

 In scenarios where the architecture described in this document is
 applied across applications, various cheating possibilities arise:
 e.g., supporting wrong values for the calculated rate, the desired
 rate, or the priority of a flow. In the worst case, such cheating
 could either prevent other flows from sending or make them send at a
 rate that is unreasonably large. The end result would be unfair
 behavior at the network bottleneck, akin to what could be achieved
 with any UDP based application. Hence, since this is no worse than
 UDP in general, there seems to be no significant harm in using this
 in the absence of UDP rate limiters.

 In the case of a single-user system, it should also be in the
 interest of any application programmer to give the user the best
 possible experience by using reasonable flow priorities or even
 letting the user choose them. In a multi-user system, this interest
 may not be given, and one could imagine the worst case of an "arms
 race" situation, where applications end up setting their priorities
 to the maximum value. If all applications do this, the end result is
 a fair allocation in which the priority mechanism is implicitly
 eliminated, and no major harm is done.

9. References

Welzl, et al. Expires April 20, 2014 [Page 15]

Internet-Draft Coupled congestion control for RTP media October 2013

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2140] Touch, J., "TCP Control Block Interdependence", RFC 2140,
 April 1997.

 [RFC3124] Balakrishnan, H. and S. Seshan, "The Congestion Manager",
RFC 3124, June 2001.

9.2. Informative References

 [rtcweb-rtp-usage]
 Perkins, C., Westerlund, M., and J. Ott, "Web Real-Time
 Communication (WebRTC): Media Transport and Use of RTP",

draft-ietf-rtcweb-rtp-usage-06.txt (work in progress),
 February 2013.

 [rtcweb-usecases]
 Holmberg, C., Hakansson, S., and G. Eriksson, "Web Real-
 Time Communication Use-cases and Requirements",

draft-ietf-rtcweb-use-cases-and-requirements-10.txt (work
 in progress), December 2012.

 [transport-multiplex]
 Westerlund, M. and C. Perkins, "Multiple RTP Sessions on a
 Single Lower-Layer Transport",

draft-westerlund-avtcore-transport-multiplexing-05.txt
 (work in progress), February 2013.

Appendix A. Changes from -00 to -01

 Updated the example algorithm and its operation.

Appendix B. Changes from -01 to -02

 o Included an active version of the algorithm which is simpler.

 o Replaced "greedy flow" with "bulk data transfer" and "non-greedy"
 with "application-limited".

 o Updated new_CR to CC_R, and CR to FSE_R for better understanding.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-rtp-usage-06.txt
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-use-cases-and-requirements-10.txt
https://datatracker.ietf.org/doc/html/draft-westerlund-avtcore-transport-multiplexing-05.txt

Welzl, et al. Expires April 20, 2014 [Page 16]

Internet-Draft Coupled congestion control for RTP media October 2013

Authors' Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Safiqul Islam
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Phone: +47 22 84 08 37
 Email: safiquli@ifi.uio.no

 Stein Gjessing
 University of Oslo
 PO Box 1080 Blindern
 Oslo, N-0316
 Norway

 Phone: +47 22 85 24 44
 Email: steing@ifi.uio.no

Welzl, et al. Expires April 20, 2014 [Page 17]

