
RTP Media Congestion Avoidance                                  M. Welzl
Techniques (rmcat)                                              S. Islam
Internet-Draft                                               S. Gjessing
Intended status: Experimental                         University of Oslo
Expires: April 20, 2014                                 October 17, 2013

Coupled congestion control for RTP media
draft-welzl-rmcat-coupled-cc-02

Abstract

   When multiple congestion controlled RTP sessions traverse the same
   network bottleneck, it can be beneficial to combine their controls
   such that the total on-the-wire behavior is improved.  This document
   describes such a method for flows that have the same sender, in a way
   that is as flexible and simple as possible while minimizing the
   amount of changes needed to existing RTP applications.
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1.  Introduction

   When there is enough data to send, a congestion controller must
   increase its sending rate until the path's capacity has been reached;
   depending on the controller, sometimes the rate is increased further,
   until packets are ECN-marked or dropped.  This process inevitably
   creates undesirable queuing delay -- an effect that is amplified when
   multiple congestion controlled connections traverse the same network
   bottleneck.  When such connections originate from the same host, it
   would therefore be ideal to use only one single sender-side
   congestion controller which determines the overall allowed sending
   rate, and then use a local scheduler to assign a proportion of this
   rate to each RTP session.  This way, priorities could also be
   implemented quite easily, as a function of the scheduler; honoring
   user-specified priorities is, for example, required by rtcweb
   [rtcweb-usecases].

   The Congestion Manager (CM) [RFC3124] provides a single congestion
   controller with a scheduling function just as described above.  It is
   hard to implement because it requires an additional congestion
   controller and removes all per-connection congestion control
   functionality, which is quite a significant change to existing RTP
   based applications.  This document presents a method that is easier
   to implement than the CM and also requires less significant changes
   to existing RTP based applications.  It attempts to roughly
   approximate the CM behavior by sharing information between existing
   congestion controllers, akin to "Ensemble Sharing" in [RFC2140].

2.  Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   Available Bandwidth:
         The available bandwidth is the nominal link capacity minus the
         amount of traffic that traversed the link during a certain time
         interval, divided by that time interval.

   Bottleneck:
         The first link with the smallest available bandwidth along the
         path between a sender and receiver.

   Flow:
         A flow is the entity that congestion control is operating on.
         It could, for example, be a transport layer connection, an RTP
         session, or a subsession that is multiplexed onto a single RTP

https://datatracker.ietf.org/doc/html/rfc3124
https://datatracker.ietf.org/doc/html/rfc2140
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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         session together with other subsessions.

   Flow Group Identifier (FGI):
         A unique identifier for each subset of flows that is limited by
         a common bottleneck.

   Flow State Exchange (FSE):
         The entity that maintains information that is exchanged between
         flows.

   Flow Group (FG):
         A group of flows having the same FGI.

   Shared Bottleneck Detection (SBD):
         The entity that determines which flows traverse the same
         bottleneck in the network, or the process of doing so.

3.  Limitations

   Sender-side only:
         Coupled congestion control as described here only operates
         inside a single host on the sender side.  This is because,
         irrespective of where the major decisions for congestion
         control are taken, the sender of a flow needs to eventually
         decide the transmission rate.  Additionally, the necessary
         information about how much data an application can currently
         send on a flow is typically only available at the sender side,
         making the sender an obvious choice for placement of the
         elements and mechanisms described here.  It is recognized that
         flows that have different senders but the same receiver, or
         different senders and different receivers can also share a
         bottleneck; such scenarios have been omitted for simplicity,
         and could be incorporated in future versions of this document.
         Note that limiting the flows on which coupled congestion
         control operates merely limits the benefits derived from the
         mechanism.

   Shared bottlenecks do not change quickly:
         As per the definition above, a bottleneck depends on cross
         traffic, and since such traffic can heavily fluctuate,
         bottlenecks can change at a high frequency (e.g., there can be
         oscillation between two or more links).  This means that, when
         flows are partially routed along different paths, they may
         quickly change between sharing and not sharing a bottleneck.
         For simplicity, here it is assumed that a shared bottleneck is
         valid for a time interval that is significantly longer than the
         interval at which congestion controllers operate.  Note that,
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         for the only SBD mechanism defined in this document
         (multiplexing on the same five-tuple), the notion of a shared
         bottleneck stays correct even in the presence of fast traffic
         fluctuations: since all flows that are assumed to share a
         bottleneck are routed in the same way, if the bottleneck
         changes, it will still be shared.

4.  Architectural overview

   Figure 1 shows the elements of the architecture for coupled
   congestion control: the Flow State Exchange (FSE), Shared Bottleneck
   Detection (SBD) and Flows.  The FSE is a storage element that can be
   implemented in two ways: active and passive.  In the active version,
   it initiates communication with flows and SBD.  However, in the
   passive version, it does not actively initiate communication with
   flows and SBD; its only active role is internal state maintenance
   (e.g., an implementation could use soft state to remove a flow's data
   after long periods of inactivity).  Every time a flow's congestion
   control mechanism would normally update its sending rate, the flow
   instead updates information in the FSE and performs a query on the
   FSE, leading to a sending rate that can be different from what the
   congestion controller originally determined.  Using information
   about/from the currently active flows, SBD updates the FSE with the
   correct Flow State Identifiers (FSIs).

                          -------  <---  Flow 1
                          | FSE |  <---  Flow 2 ..
                          -------  <---  .. Flow N
                             ^
                             |             |
                          -------          |
                          | SBD |  <-------|
                          -------

             Figure 1: Coupled congestion control architecture

   Since everything shown in Figure 1 is assumed to operate on a single
   host (the sender) only, this document only describes aspects that
   have an influence on the resulting on-the-wire behavior.  It does,
   for instance, not define how many bits must be used to represent
   FSIs, or in which way the entities communicate.  Implementations can
   take various forms: for instance, all the elements in the figure
   could be implemented within a single application, thereby operating
   on flows generated by that application only.  Another alternative
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   could be to implement both the FSE and SBD together in a separate
   process which different applications communicate with via some form
   of Inter-Process Communication (IPC).  Such an implementation would
   extend the scope to flows generated by multiple applications.  The
   FSE and SBD could also be included in the Operating System kernel.

5.  Roles

   This section gives an overview of the roles of the elements of
   coupled congestion control, and provides an example of how coupled
   congestion control can operate.

5.1.  SBD

   SBD uses knowledge about the flows to determine which flows belong in
   the same Flow Group (FG), and assigns FGIs accordingly.  This
   knowledge can be derived from measurements, by considering
   correlations among measured delay and loss as an indication of a
   shared bottleneck, or it can be based on the simple assumption that
   packets sharing the same five-tuple (IP source and destination
   address, protocol, and transport layer port number pair) and having
   the same Differentiated Services Code Point (DSCP) in the IP header
   are typically treated in the same way along the path.  The latter
   method is the only one specified in this document: SBD MAY consider
   all flows that use the same five-tuple and DSCP to belong to the same
   FG.  This classification applies to certain tunnels, or RTP flows
   that are multiplexed over one transport (cf. [transport-multiplex]).
   In one way or another, such multiplexing will probably be recommended
   for use with rtcweb [rtcweb-rtp-usage].

5.2.  FSE

   The FSE contains a list of all flows that have registered with it.
   For each flow, it stores the following for both the active and the
   passive version:

   o  a unique flow number to identify the flow

   o  the FGI of the FG that it belongs to (based on the definitions in
      this document, a flow has only one bottleneck, and can therefore
      be in only one FG)

   o  a priority P, which here is assumed to be represented as a
      floating point number in the range from 0.1 (unimportant) to 1
      (very important).  A negative value is used to indicate that a
      flow has terminated.
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   o  The rate used by the flow, FSE_R.

   In the FSE, each FG contains one static variable S_CR which is meant
   to be the sum of the calculated rates of all flows in the same FG
   (including the flow itself).  This value is used to calculate the
   sending rate.  For the passive version, in the algorithm given in the
   next section, it is limited to increase or decrease as conservatively
   as a flow's congestion controller decides in order to prohibit sudden
   rate jumps.

   In addition, the passive version of the FSE stores the following:

   o  The desired rate DR.  This can be smaller than the calculated rate
      if the application feeding into the flow has less data to send
      than the congestion controller would allow.  In case of a bulk
      transfer, DR must be set to CC_R received from the flow's
      congestion module.

   The passive version of the FSE contains one static variable per FG
   called TLO (Total Leftover Rate -- used to let a flow 'take'
   bandwidth from application-limited or terminated flows) which is
   initialized to 0.

   The information listed here is enough to implement the sample flow
   algorithm given below.  FSE implementations could easily be extended
   to store, e.g., a flow's current sending rate for statistics
   gathering or future potential optimizations.

5.3.  Flows

   Flows register themselves with SBD and FSE when they start,
   deregister from the FSE when they stop, and carry out an UPDATE
   function call every time their congestion controller calculates a new
   sending rate.  Via UPDATE, they provide the newly calculated rate and
   the desired rate (less than the calculated rate in case of
   application-limited flows, the same otherwise).  In the passive
   version, UPDATE returns a rate that should be used instead of the
   rate that the congestion controller has determined.  In the active
   version, however, it calculates the rates for all the flows in the FG
   and actively distributes them.

   Below, an active and a passive example algorithm are described.
   While other algorithms could be used instead, the same algorithm must
   be applied to all flows.
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5.3.1.  Example algorithm - Active FSE

   (1)  When a flow f starts, it registers itself with SBD and the FSE.
        FSE_R and DR are initialized with the congestion controller's
        initial rate.  SBD will assign the correct FGI.  When a flow is
        assigned an FGI, it adds its FSE_R to S_CR.

   (2)  When a flow f stops, it sets P to -1.

   (3)  Every time the congestion controller of the flow f determines a
        new sending rate CC_R, the flow calls UPDATE, which carries out
        the tasks listed below to derive the new sending rates for all
        the flows in the FG.  A flow's UPDATE function uses a local
        (i.e. per-flow) temporary variable: S_P, which is initialized to
        0.

        (a)  It updates S_CR and FSE_R(f) with CC_R.

               S_CR = S_CR + CC_R - FSE_R(f)
               FSE_R(f) = CC_R

        (b)  It calculates the sum of all the priorities, S_P.

               for all flows i in FG do
                   S_P = S_P + P(i)
               end for

        (c)  It calculates the sending rates for all the flows in an FG
             and distributes them.

               for all flows i in FG do
                   FSE_R(i) = (P(i)*S_CR)/S_P
                   send FSE_R(i) to the flow i
               end for

   This algorithm was designed to be the simplest possible method to
   assign rates according to the priorities of flows.  It misses some
   features that we would like to incorporate in future versions of this
   document (e.g. letting bulk transfers immediately use the bandwidth
   that is not used by application-limited flows); if these features
   make the algorithm significantly more complex, this will be included
   as a third variant of the algorithm.



Welzl, et al.            Expires April 20, 2014                 [Page 8]



Internet-Draft  Coupled congestion control for RTP media    October 2013

5.3.2.  Example algorithm - Passive FSE

   (1)  When a flow f starts, it registers itself with SBD and the FSE.
        FSE_R and DR are initialized with the congestion controller's
        initial rate.  SBD will assign the correct FGI.  When a flow is
        assigned an FGI, it adds its FSE_R to S_CR.

   (2)  When a flow f stops, it sets its DR to 0 and sets P to -1.

   (3)  Every time the congestion controller of the flow f determines a
        new sending rate CC_R, assuming the flow's new desired rate
        new_DR to be "infinity" in case of a bulk data transfer with an
        unknown maximum rate, the flow calls UPDATE, which carries out
        the tasks listed below to derive the flow's new sending rate,
        Rate.  A flow's UPDATE function uses a few local (i.e. per-flow)
        temporary variables, which are all initialized to 0: DELTA,
        new_S_CR and S_P.

        (a)  For all the flows in its FG (including itself), it
             calculates the sum of all the calculated rates, new_S_CR.
             Then it calculates the difference between FSE_R(f) and
             CC_R, DELTA.

               for all flows i in FG do
                   new_S_CR = new_S_CR + FSE_R(i)
               end for
               DELTA =  CC_R - FSE_R(f)

        (b)  It updates S_CR, FSE_R(f) and DR(f).

               FSE_R(f) = CC_R
               if DELTA > 0 then  // the flow's rate has increased
                   S_CR = S_CR + DELTA
               else if DELTA < 0 then
                   S_CR = new_S_CR + DELTA
               end if
               DR(f) = min(new_DR,FSE_R(f))

        (c)  It calculates the leftover rate TLO, removes the terminated
             flows from the FSE and calculates the sum of all the
             priorities, S_P.



Welzl, et al.            Expires April 20, 2014                 [Page 9]



Internet-Draft  Coupled congestion control for RTP media    October 2013

               for all flows i in FG do
                  if P(i)<0 then
                     delete flow
                  else
                     S_P = S_P + P(i)
                  end if
               end for
               if DR(f) < FSE_R(f) then
                  TLO = TLO + (P(f)/S_P) * S_CR - DR(f))
               end if

        (d)  It calculates the sending rate, Rate.

               Rate = min(new_DR, (P(f)*S_CR)/S_P + TLO)

               if Rate != new_DR and TLO > 0 then
                   TLO = 0  // f has 'taken' TLO
               end if

        (e)  It updates DR(f) and FSE_R(f) with Rate.

               if Rate > DR(f) then
                   DR(f) = Rate
               end if
               FSE_R(f)  = Rate

   The goals of the flow algorithm are to achieve prioritization,
   improve network utilization in the face of application-limited flows,
   and impose limits on the increase behavior such that the negative
   impact of multiple flows trying to increase their rate together is
   minimized.  It does that by assigning a flow a sending rate that may
   not be what the flow's congestion controller expected.  It therefore
   builds on the assumption that no significant inefficiencies arise
   from temporary application-limited behavior or from quickly jumping
   to a rate that is higher than the congestion controller intended.
   How problematic these issues really are depends on the controllers in
   use and requires careful per-controller experimentation.  The coupled
   congestion control mechanism described here also does not require all
   controllers to be equal; effects of heterogeneous controllers, or
   homogeneous controllers being in different states, are also subject
   to experimentation.

   This algorithm gives all the leftover rate of application-limited
   flows to the first flow that updates its sending rate, provided that
   this flow needs it all (otherwise, its own leftover rate can be taken
   by the next flow that updates its rate).  Other policies could be
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   applied, e.g. to divide the leftover rate of a flow equally among all
   other flows in the FGI.

5.3.3.  Example operation (passive)

   In order to illustrate the operation of the passive coupled
   congestion control algorithm, this section presents a toy example of
   two flows that use it.  Let us assume that both flows traverse a
   common 10 Mbit/s bottleneck and use a simplistic congestion
   controller that starts out with 1 Mbit/s, increases its rate by 1
   Mbit/s in the absence of congestion and decreases it by 2 Mbit/s in
   the presence of congestion.  For simplicity, flows are assumed to
   always operate in a round-robin fashion.  Rate numbers below without
   units are assumed to be in Mbit/s.  For illustration purposes, the
   actual sending rate is also shown for every flow in FSE diagrams even
   though it is not really stored in the FSE.

   Flow #1 begins.  It is a bulk data transfer and considers itself to
   have top priority.  This is the FSE after the flow algorithm's step
   1:

   ----------------------------------------
   | # | FGI |  P  | FSE_R  |  DR  | Rate |
   |   |     |     |        |      |      |
   | 1 |  1  |  1  |   1    |   1  |   1  |
   ----------------------------------------
   S_CR = 1, TLO = 0

   Its congestion controller gradually increases its rate.  Eventually,
   at some point, the FSE should look like this:

   --------------------------------------
   | # | FGI |  P  |  FSE_R  |  DR  | Rate |
   |   |     |     |         |      |      |
   | 1 |  1  |  1  |   10    |  10  |  10  |
   -----------------------------------------
   S_CR = 10, TLO = 0

   Now another flow joins.  It is also a bulk data transfer, and has a
   lower priority (0.5):
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   ----------------------------------------
   | # | FGI |   P   | FSE_R  |  DR  | Rate |
   |   |     |       |        |      |      |
   | 1 |  1  |   1   |   10   |  10  |  10  |
   | 2 |  1  |  0.5  |    1   |   1  |   1  |
   ------------------------------------------
   S_CR = 11, TLO = 0

   Now assume that the first flow updates its rate to 8, because the
   total sending rate of 11 exceeds the total capacity.  Let us take a
   closer look at what happens in step 3 of the flow algorithm.

   CC_R = 8. new_DR = infinity.
   3 a) new_S_CR = 11; DELTA = 8 - 10 = -2.
   3 b) FSE_Rf) = 8. DELTA is negative, hence S_CR = 9;
        DR(f) = 8.
   3 c) S_P = 1.5.
   3 d) new sending rate = min(infinity, 1/1.5 * 9 + 0) = 6.
   3 e) FSE_R(f) = 6.

   The resulting FSE looks as follows:
   ----------------------------------------
   | # | FGI |   P   |  FSE_R  |  DR  | Rate |
   |   |     |       |         |      |      |
   | 1 |  1  |   1   |    6    |   8  |   6  |
   | 2 |  1  |  0.5  |    1    |   1  |   1  |
   -------------------------------------------
   S_CR = 9, TLO = 0

   The effect is that flow #1 is sending with 6 Mbit/s instead of the 8
   Mbit/s that the congestion controller derived.  Let us now assume
   that flow #2 updates its rate.  Its congestion controller detects
   that the network is not fully saturated (the actual total sending
   rate is 6+1=7) and increases its rate.
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   CC_R=2. new_DR = infinity.
   3 a) new_S_CR = 7; DELTA = 2 - 1 = 1.
   3 b) FSE_R(f) = 2. DELTA is positive, hence S_CR = 9 + 1 = 10;
        DR(f) = 2.
   3 c) S_P = 1.5.
   3 d) new sending rate = min(infinity, 0.5/1.5 * 10 + 0) = 3.33.
   3 e) DR(f) = FSE_R(f) = 3.33.

   The resulting FSE looks as follows:
   -------------------------------------------
   | # | FGI |   P   |  FSE_R  |  DR  | Rate |
   |   |     |       |         |      |      |
   | 1 |  1  |   1   |    6    |   8  |   6  |
   | 2 |  1  |  0.5  |   3.33  | 3.33 | 3.33 |
   -------------------------------------------
   S_CR = 10, TLO = 0

   The effect is that flow #2 is now sending with 3.33 Mbit/s, which is
   close to half of the rate of flow #1 and leads to a total utilization
   of 6(#1) + 3.33(#2) = 9.33 Mbit/s.  Flow #2's congestion controller
   has increased its rate faster than the controller actually expected.
   Now, flow #1 updates its rate.  Its congestion controller detects
   that the network is not fully saturated and increases its rate.
   Additionally, the application feeding into flow #1 limits the flow's
   sending rate to at most 2 Mbit/s.

   CC_R=7. new_DR=2.
   3 a) new_S_CR = 9.33; DELTA = 1.
   3 b) FSE_R(f) = 7, DELTA is positive, hence S_CR = 10 + 1 = 11;
        DR = min(2, 7) = 2.
   3 c) S_P = 1.5; DR(f) < FSE_R(f), hence TLO = 1/1.5 * 11 - 2 = 5.33.
   3 d) new sending rate = min(2, 1/1.5 * 11 + 5.33) = 2.
   3 e) FSE_R(f) = 2.

   The resulting FSE looks as follows:
   -------------------------------------------
   | # | FGI |   P   |  FSE_R  |  DR  | Rate |
   |   |     |       |         |      |      |
   | 1 |  1  |   1   |    2    |   2  |   2  |
   | 2 |  1  |  0.5  |   3.33  | 3.33 | 3.33 |
   -------------------------------------------
   S_CR = 11, TLO = 5.33
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   Now, the total rate of the two flows is 2 + 3.33 = 5.33 Mbit/s, i.e.
   the network is significantly underutilized due to the limitation of
   flow #1.  Flow #2 updates its rate.  Its congestion controller
   detects that the network is not fully saturated and increases its
   rate.

   CC_R=4.33. new_DR = infinity.
   3 a) new_S_CR = 5.33; DELTA = 1.
   3 b) FSE_R(f) = 4.33. DELTA is positive, hence S_CR = 12;
        DR(f) = 4.33.
   3 c) S_P = 1.5.
   3 d) new sending rate: min(infinity, 0.5/1.5 * 12 + 5.33 ) = 9.33.
   3 e) FSE_R(f) = 9.33, DR(f) = 9.33.

   The resulting FSE looks as follows:
   -------------------------------------------
   | # | FGI |   P   |  FSE_R  |  DR  | Rate |
   |   |     |       |         |      |      |
   | 1 |  1  |   1   |    2    |   2  |   2  |
   | 2 |  1  |  0.5  |   9.33  | 9.33 | 9.33 |
   -------------------------------------------
   S_CR = 12, TLO = 0

   Now, the total rate of the two flows is 2 + 9.33 = 11.33 Mbit/s.
   Finally, flow #1 terminates.  It sets P to -1 and DR to 0.  Let us
   assume that it terminated late enough for flow #2 to still experience
   the network in a congested state, i.e. flow #2 decreases its rate in
   the next iteration.

   CC_R = 7.33. new_DR = infinity.
   3 a) new_S_CR = 11.33; DELTA = -2.
   3 b) FSE_R(f) = 7.33. DELTA is negative, hence S_CR = 9.33;
        DR(f) = 7.33.
   3 c) Flow 1 has P = -1, hence it is deleted from the FSE.
        S_P = 0.5.
   3 d) new sending rate: min(infinity, 0.5/0.5*9.33 + 0) = 9.33.
   3 e) FSE_R(f) = DR(f) = 9.33.

   The resulting FSE looks as follows:
   -------------------------------------------
   | # | FGI |   P   |  FSE_R  |  DR  | Rate |
   |   |     |       |         |      |      |
   | 2 |  1  |  0.5  |   9.33  | 9.33 | 9.33 |
   -------------------------------------------
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   S_CR = 9.33, TLO = 0
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7.  IANA Considerations

   This memo includes no request to IANA.

8.  Security Considerations

   In scenarios where the architecture described in this document is
   applied across applications, various cheating possibilities arise:
   e.g., supporting wrong values for the calculated rate, the desired
   rate, or the priority of a flow.  In the worst case, such cheating
   could either prevent other flows from sending or make them send at a
   rate that is unreasonably large.  The end result would be unfair
   behavior at the network bottleneck, akin to what could be achieved
   with any UDP based application.  Hence, since this is no worse than
   UDP in general, there seems to be no significant harm in using this
   in the absence of UDP rate limiters.

   In the case of a single-user system, it should also be in the
   interest of any application programmer to give the user the best
   possible experience by using reasonable flow priorities or even
   letting the user choose them.  In a multi-user system, this interest
   may not be given, and one could imagine the worst case of an "arms
   race" situation, where applications end up setting their priorities
   to the maximum value.  If all applications do this, the end result is
   a fair allocation in which the priority mechanism is implicitly
   eliminated, and no major harm is done.
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Appendix A.  Changes from -00 to -01

   Updated the example algorithm and its operation.

Appendix B.  Changes from -01 to -02

   o  Included an active version of the algorithm which is simpler.

   o  Replaced "greedy flow" with "bulk data transfer" and "non-greedy"
      with "application-limited".

   o  Updated new_CR to CC_R, and CR to FSE_R for better understanding.
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