
modern C. Wendt
Internet-Draft H. Bellur
Intended status: Standards Track Comcast
Expires: January 4, 2018 July 03, 2017

Distributed Registry Protocol (DRiP)
draft-wendt-modern-drip-02

Abstract

 This document describes a protocol for allowing a distributed set of
 nodes to synchronize a set of information in real-time with minimal
 amount of delay. This is useful for registry types of information
 like identity and telephone numbers with associated routing and
 ownership information and could be extended to support other
 distributed real-time information updates as well.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2018.

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Wendt & Bellur Expires January 4, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft DRiP July 2017

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Terminology . 2
3. DRiP Overview . 3
4. Distributed MESH Architecture 3
5. DRiP procedures . 4
5.1. Distributed Registry Rules 4
5.2. Node State . 5
5.2.1. API - POST /node/:nodeid/active 5
5.2.2. API - POST /node/:nodeid/inactive 5
5.2.3. API - GET /state 5

5.3. Custom HTTP header fields 6
5.4. Key-Value Data Propagation Rules 8
5.5. Key-Value Data Update 9
5.5.1. Voting Phase . 10
5.5.2. Commit Phase . 12

5.6. Node Sync Operation 14
5.6.1. API - PUT /sync/node/:nodeid 14

5.7. Heartbeat . 15
5.7.1. API - POST /heartbeat/node/:nodeid 16

5.8. Key-Value Data Update Entitlement Verification 16
6. Security Considerations 16
6.1. HTTPS . 16
6.2. Authorization . 16
6.3. Payload Validation 17

7. IANA Considerations . 17
8. Acknowledgements . 17
9. References . 17
9.1. Normative References 17
9.2. Informative References 17

 Authors' Addresses . 17

1. Introduction

 This document describes the Distributed Registry Protocol (DRiP).
 DRiP defines a set of peer protocols for how an arbitrary number of
 nodes arranged in a distributed mesh architecture can be used to
 synchronize data in real-time across a network.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2119

Wendt & Bellur Expires January 4, 2018 [Page 2]

Internet-Draft DRiP July 2017

 Initiator Node - A node that initiates data propagation.

 Receiver Node - A node that forwards the propagated key-value data.

3. DRiP Overview

 DRiP uses a mix of a gossip protocol with update counters for
 distribution of key-value data with the addition of a voting system
 to avoid race conditions on writing of key-value data.

4. Distributed MESH Architecture

 The DRiP architecture is based on a peer-to-peer communication model
 where a given node associated with a data store is not necessarily
 aware of the total number of nodes in the entire network. Minimally,
 every node should reachable by at least one multi-node path from
 every other node. Each node in the DRiP network maintains a list of
 peer nodes from which it receives and transmits updates. Information
 is propagated by forwarding to it's peer nodes until the information
 received by a node has already been received.

Wendt & Bellur Expires January 4, 2018 [Page 3]

Internet-Draft DRiP July 2017

 ___ ___ ___ ___
DB	_________	DB		DB	_________	DB
___		___		___		___
 | Data | | Data |
 | Store | | Store |
 | Cluster _|_ _|_ Cluster _|_
 |DB |_________|DB | |DB |_________|DB |
 |___| |___| |___| |___|
 \ /
 \ /
 ____ DRIP _ /__
 |Node |------------|Node |
 | A | HTTPS | C |
 |_____| |_____|
 \H H/
 D\T T/D
 R\T P/R
 I\P P/I
 P\S S/P
 ____ / DRIP _____
 |Node |------------|Node |
 | B | HTTPS | D |
 |_____| |_____|
 / /
 ___ ___ / __/_ ___
 |DB |_________|DB | |DB |_________|DB |
 |___| |___| |___| |___|
 | Data | | Data |
 | Store | | Store |
 | Cluster _|_ _|_ Cluster _|_
 |DB |_________|DB | |DB |_________|DB |
 |___| |___| |___| |___|

 Distributed Mesh Architecture

5. DRiP procedures

5.1. Distributed Registry Rules

 All nodes in the distributed mesh MUST agree upon a specific key-
 value data model. The choice of data store is implementation
 specific.

 All nodes MUST be configured with at least one peer node before
 propagation.

 A node MUST ignore any updates or commands it receives from other
 nodes that are not configured as peer nodes.

Wendt & Bellur Expires January 4, 2018 [Page 4]

Internet-Draft DRiP July 2017

 All nodes MUST send a periodic heartbeat or keep-alive message via
 HTTPS to the respective peer nodes. If a heartbeat is not received
 the peer node is removed from the list of active peer nodes.

5.2. Node State

 The peer node should maintain a state that defines whether it is
 active, inactive, or synchronizing key-value data with a peer node.

 The node should proactively tell it's peer nodes its state by sending
 the following POST messages. The GET query is available for nodes to
 query the state of peer nodes.

5.2.1. API - POST /node/:nodeid/active

 Example (using cURL)

 Request

 $ curl -i -H "DRiP-Node-ID: nodeA" -H "Authorization: eyJ0e..."
 -X POST https://nodearegistry.com/node/nodeA/active

 Response

 HTTP/1.1 200 OK

5.2.2. API - POST /node/:nodeid/inactive

 Example (using cURL)

 Request

 $ curl -i -H "DRiP-Node-ID: nodeA" -H "Authorization: eyJ0e..."
 -X POST https://nodearegistry.com/node/nodeA/inactive

 Response

 HTTP/1.1 200 OK

5.2.3. API - GET /state

 Description:

 A node should query the state of its peer node before it initiates a
 sync operation. This request responds with either "active" or "sync"
 or no response, if in "inactive" state.

https://nodearegistry.com/node/nodeA/active
https://nodearegistry.com/node/nodeA/inactive

Wendt & Bellur Expires January 4, 2018 [Page 5]

Internet-Draft DRiP July 2017

 Example (using cURL)

 Request

 $ curl -i -H "DRiP-Node-ID: nodeA" -H "Authorization: eyJ0e..."
 -X GET https://nodearegistry.com/state

 Response

 HTTP/1.1 200 OK with the following JSON object.

 +----------+----------------------------------+
 | Property | Description |
 +----------+----------------------------------+
 | state | "active" or "inactive" or "sync" |
 +----------+----------------------------------+

5.3. Custom HTTP header fields

 Custom HTTP header fields will be used to carry node specific
 information.

 +----------------+--+
 | Field Name | Description |
 +----------------+--+
DRiP-Node-ID	Each node in the mesh MUST have a unique
	identifier. An Initiator node MUST set its own
	node ID as the field value. A Receiver Node MUST
	NOT change the DRiP-Node-ID field value as it
	forward the HTTPS request to its peer nodes.
 +----------------+--+

 Example:
 DRiP-Node-ID: xyz

https://nodearegistry.com/state

Wendt & Bellur Expires January 4, 2018 [Page 6]

Internet-Draft DRiP July 2017

 +---------------------+---+
 | Field Name | Description |
 +---------------------+---+
DRiP-Node-Counter	Every node maintains a count of the number
	of times it initiates key-value data
	propagation. This counter MUST be an
	unsigned type, typically, a 64 bit integer.
	The Initiator node MUST set this count as
	the field value. A Receiver Node MUST NOT
	change the DRiP-Node-Counter field value as
	it forward the HTTPS request to its peer
	nodes.
 +---------------------+---+

 Example:
 DRiP-Node-Counter: 123

 +-------------------------+---+
 | Field Name | Description |
 +-------------------------+---+
DRiP-Node-Counter-reset	A node can reset the count (to zero) of
	the number of times it initiates key-
	value data propagation. If the counter
	value is reset, prior to initiating
	data propagation, then this field value
	MUST be set to true. Otherwise, it MUST
	be set to false, at all times. A
	typical use case to reset the counter
	value is when the counter (of unsigned
	type) value wraps around. The Initiator
	node MUST set this field value to
	either true or false. A Receiver Node
	MUST NOT change the DRiP-Node-Counter-
	reset field value as it forward the
	HTTPS request to its peer nodes.
 +-------------------------+---+

 Example:
 DRiP-Node-Counter-reset: false

Wendt & Bellur Expires January 4, 2018 [Page 7]

Internet-Draft DRiP July 2017

 +-------------------------+---+
 | Field Name | Description |
 +-------------------------+---+
DRiP-Transaction-Type	The Initiator node MUST set this field
	value to be either "update" or "sync".
	A Receiver Node MUST NOT change the
	DRiP-Transaction-Type field value as it
	forward the HTTPS request to its peer
	nodes.
 +-------------------------+---+

 Example:
 DRiP-Transaction-Type: update

 +-----------------------+---+
 | Field Name | Description |
 +-----------------------+---+
DRiP-Sync-Complete	For sync transaction type, the Initiator
	node MUST set this field value to be
	true, if synchronization is complete.
	Otherwise, this field value MUST be set
	to false.
 +-----------------------+---+

 Example:
 DRiP-Sync-Complete: false

5.4. Key-Value Data Propagation Rules

 A node propagates key-value data to all its peer nodes except the the
 node from which it received data. For example, in Figure 1, when
 node B receives key-value data from node A, it will propagate the
 data received to nodes C and D but not back to node A.

 For each transaction type (Update or Sync), the following set of
 actions MUST take place when a node receives a HTTPS request with
 propagated key-value data:

 o If DRiP-Node-ID field value (in the HTTP header) contains
 Initiator node ID that has never been seen, both DRiP-Node-ID and
 DRiP-Node-Counter field values MUST be stored for future reference
 and the key-value data is propagated to all peer nodes.

 o If DRiP-Node-ID field value (in the HTTP header) matches with a
 stored node ID and DRiP-Node-Counter-reset field value is false.

 * The received key-value data MUST be propagated to the peer
 nodes if DRiP-Node-Counter field value is greater than the

Wendt & Bellur Expires January 4, 2018 [Page 8]

Internet-Draft DRiP July 2017

 saved counter value. The DRiP-Node-Counter field value MUST be
 saved as the new counter for the stored node ID.

 * If DRiP-Node-Counter field value is less than or equal to saved
 counter value, then the key-value data has already been
 received and MUST NOT be propagated to peer nodes. This
 ensures that propagation stops when all nodes have received the
 key-value data from the Initiator node.

 o If DRiP-Node-ID field value matches with a stored node ID and
 DRiP-Node-Counter-reset field value is true:

 * The received key-value data MUST be propagated to the peer
 nodes. The DRiP-Node-Counter field value MUST be saved as the
 new counter for the stored node ID.

5.5. Key-Value Data Update

 When an Initiator node has new data it wants to propagate to the
 distributed mesh, it initiates an Update. The Update consists of a
 two-phase commit (2PC) procedure in order to guarantee there are no
 race conditions for updating the same key's data, as well as for any
 error conditions in the distributed mesh that would cause the update
 to not complete for all nodes in the network.

 The two phases are called the "voting" phase and the "commit" phase.

Wendt & Bellur Expires January 4, 2018 [Page 9]

Internet-Draft DRiP July 2017

 ----------------------->| |
 | | Waiting | |
 | | For |
 | ---------------------| Events |
 | | (Update, |_________|
 | | Start Timer)
 | | --------------------------------
 | | | Received Update From Peer Node | |
 | | | |
 | | ______________|_ If key matches an |
 | | | | in-progress update |
 | ----------->| | vote "no". |
 | | Waiting For | Otherwise, vote "yes". |
 | | Response From | |
 | | Peer Nodes |<-----------------------------
 | | |
 | ----| |----
 | Timer | |________________| |
 | Expired | | Received Votes
 | | | From All Peer
 | | | Nodes
 | | _______________ | | |
 | | | | |
 | | | | |
 | --->| |<---
 | | Validating |
 | (If all Votes | Votes |
 | are "YES", | |
 | propagate | |
 | commit) | |
 ---------------|________________|

 Update State Diagram

5.5.1. Voting Phase

 The voting phase is the phase where all nodes are queried to "vote"
 whether they are aware of any potential conflict that would cause the
 transaction not to complete.

 The Initiator node MUST set a timeout period to get response from its
 peer nodes.

 The peer nodes known to the initiator node will continue propagate
 the information to their peer nodes and so on. However, these peer
 nodes beyond the initiator node will no longer need to keep track of
 the time interval for responses. A node will stop continuing to

Wendt & Bellur Expires January 4, 2018 [Page 10]

Internet-Draft DRiP July 2017

 propagate information when it determines it has received the same
 information again. This can be determined by keeping track of the
 counter and originating node id.

 If all peer nodes vote "yes", then the second phase or commit phase
 in the local node is initiated. If any node in the distributed mesh
 votes "no" or if the timeout period expires and all peer nodes have
 not responded, then the commit of the information MUST NOT be
 completed. No action is taken for responses received after the
 timeout period.

 Note: The voting procedure is intentionally split into two separate
 full HTTP transactions for reliability.

 ___ ___ ___ ___ ___ ___
DB	_________	DB		DB	_________	DB		DB	_________	DB
___		___		___		___		___		___
 | Data | | Data | | Data |
 | Store | | Store | | Store |
 | Cluster _|_ _|_ Cluster _|_ _|_ Cluster _|_
 |DB |_________|DB | |DB |_________|DB | |DB |_________|DB |
 |___| |___| |___| |___| |___| |___|
 \ \ |
 \ \ |
 ____ Vote(HTTPS) ____ Vote(HTTPS) |____
 |Node | <---------- |Node | ----------> |Node |
 | B |---------------| A |---------------| C |
 |_____| ----------> |_____| <---------- |_____|
 Yes/No Yes/No

 Voting Phase

5.5.1.1. API - POST /voting

Wendt & Bellur Expires January 4, 2018 [Page 11]

Internet-Draft DRiP July 2017

 Request:

 POST /voting

 Description:

 A post from either Initiator node or subsequent peer nodes to request
 a vote of "yes" or "no" whether the key-value data could be committed
 without error or conflict.

 Example (using cURL)

 Request

 $ curl -i -H "Content-Type: application/json" -H "DRiP-Node-ID:
 nodeA" -H "DRiP-Node-Counter: 1234" -H
 "DRiP-Node-Counter-reset: false" -X POST -d '{<key-value
 data>}' https://nodebregistry.com/voting

 Response

 HTTP/1.1 200 OK

5.5.1.2. POST /votingphase/node/:nodeid/response/:response

 Request:

 POST /voting/peernode/:nodeid/response/:response

 Description:

 A POST from peer node back to node with response of vote.

 Example (using cURL)

 Request

 $ curl -i -X POST http://nodearegistry.com/node/nodeA/response/yes

 Response

 HTTP/1.1 200 OK

5.5.2. Commit Phase

 The Initiator node, that originated the gossip, upon receiving a
 successful aggregated "yes" vote from all the peer nodes should start
 the commit phase. This node MUST commit the data to its data store.

https://nodebregistry.com/voting
http://nodearegistry.com/node/nodeA/response/yes

Wendt & Bellur Expires January 4, 2018 [Page 12]

Internet-Draft DRiP July 2017

 Subsequently, this information is propagated to all the nodes so that
 each node in the mesh will commit the same information in their
 respective data stores.

 ___ ___ ___ ___
DB	_________	DB		DB	_________	DB
___		___		___		___
 | Data | | Data |
 | Store | | Store |
 | Cluster _|_ _|_ Cluster _|_
 |DB |_________|DB | |DB |_________|DB |
 |___| |___| |___| |___|
 \ /
 \COMMIT /COMMIT
 ____ COMMIT _ /__
 |Node |------------|Node |
 | A | HTTPS | C |
 |_____| |_____|
 \H H/
 \T T/
 COMMIT\T P/COMMIT
 \P P/
 \S S/
 ____ / COMMIT _____
 |Node |------------|Node |
 | B | HTTPS | D |
 |_____| |_____|
 / /
 /COMMIT /COMMIT
 ___ ___/ _/__ ___
 |DB |_________|DB | |DB |_________|DB |
 |___| |___| |___| |___|
 | Data | | Data |
 | Store | | Store |
 | Cluster _|_ _|_ Cluster _|_
 |DB |_________|DB | |DB |_________|DB |
 |___| |___| |___| |___|

 Commit Phase

5.5.2.1. API - POST /commit

Wendt & Bellur Expires January 4, 2018 [Page 13]

Internet-Draft DRiP July 2017

 Request:

 POST /commit

 Description:

 A commit message is sent from Initiator or subsequent peer nodes to
 signal the Receiver node to commit the data to its data store.

 Example (using cURL)

 Request

 $ curl -i -H "Content-Type: application/json" -H "DRiP-Node-ID:
 nodeA" -H "DRiP-Node-Counter: 1234" -H
 "DRiP-Node-Counter-reset: false" -X POST -d
 '<key-value data>' https://nodebregistry.com/commit

 Response

 HTTP/1.1 200 OK

5.6. Node Sync Operation

 A node, either newly added to the distributed mesh or put back into
 service after being inactive, will get the state of a peer node to
 determine if it is in "active" state. If so, the node can
 immediately initiate a Sync transaction. The peer node MUST start
 propagating a comprehensive and complete set of key-value data from
 its data store.

 The two phase commit does NOT apply here as the contents of the
 initiating node's data store is either outdated or empty. During
 this phase (HTTPS requests received will have DRiP-Sync-Complete
 field value set to false), this node SHOULD NOT become an Initiator
 node to provision data. While this transaction is going on, this
 node MUST vote "yes" to all real-time updates. The commits
 corresponding to the Updates should also be completed and reflected
 in the data store.

5.6.1. API - PUT /sync/node/:nodeid

https://nodebregistry.com/commit

Wendt & Bellur Expires January 4, 2018 [Page 14]

Internet-Draft DRiP July 2017

 Request:

 PUT /sync/node/:nodeid

 Description:

 API call for initiating a full registry synchronization from node to
 peer-node.

 Example (using cURL)

 Request

 $ curl -i -H "DRiP-Node-ID: nodeA" -H "Authorization: eyJ0e..."
 -X POST https://peernode.com/sync/node/nodeA

 Response

 HTTP/1.1 200 OK

5.7. Heartbeat

 Periodic heartbeats are required for a node to determine it's
 visibility to the rest of it's peer nodes and whether it should put
 itself in "inactive" mode. The procedure for heartbeats is as
 follows.

 A node sends periodic heartbeat requests to its peer nodes with an
 indication of its state. These heartbeat requests are not to be
 propagated beyond the peer nodes.

 If all of its peer nodes cannot be reached or do not respond with
 200OK, then the node that sent the heartbeat request will set its own
 state to "inactive". This is based on the reasonable assumption that
 none of the peer nodes are able to communicate with this node until a
 new heartbeat request is successful. Once in the inactive state, the
 node will

 o not propagate any incoming key-value data

 o not update any incoming key-value data

 o continue to send the periodic heartbeat requests to its peer
 nodes. If any one responds with 200 OK, then the node will move
 its state to "synchronizing" and will re-synchronize its data with
 any active peer node as detailed in section 4.6

https://peernode.com/sync/node/nodeA

Wendt & Bellur Expires January 4, 2018 [Page 15]

Internet-Draft DRiP July 2017

 In addition, any one or more peer nodes that cannot be reached or did
 not respond with 200 OK should not be used to propagate key-value
 data until it responds (with 200 OK) to the heartbeat request.

5.7.1. API - POST /heartbeat/node/:nodeid

 Example (using cURL)

 Request

 $ curl -i -H "DRiP-Node-ID: nodeA" -H "Authorization: eyJ0e..."
 -X POST -d '<state>' https://peernode.com/heartbeat/node/nodeA

 Response

 HTTP/1.1 200 OK

5.8. Key-Value Data Update Entitlement Verification

 When a node owner would like to create or modify particular key-value
 data, generally in the context of a registry, there MAY be a
 verification procedure that key-value data write or modification can
 be performed. This could include validating whether key-value data
 is entitled to be written, modified or subsequently propagated based
 on application policy. For example, identity or telephone number
 ownership or porting. The exact mechanics of this are out of scope
 of this document and are generally application specific.

6. Security Considerations

6.1. HTTPS

 All nodes MUST perform HTTP transactions using TLS as defined in
 [RFC7230].

6.2. Authorization

 All nodes MUST validate their authority to consume the HTTP APIs of a
 peer node by adding a JSON Web Token (JWT) value [RFC7519] in the
 Authorization request-header field.

 The creation and verification of the JWT should be based on a digital
 signature. For most distributed registry scenarios where the owner
 of a node may not have a direct relationship with another node owner,
 a PKI based certificate approach is highly suggested. For protection
 against replay attacks, the claim set SHOULD contain an "iat" claim
 and the signature should be verified to be signed by the expected
 owner of the peer node. The "iat" claim identifies the time at which

https://peernode.com/heartbeat/node/nodeA
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7519

Wendt & Bellur Expires January 4, 2018 [Page 16]

Internet-Draft DRiP July 2017

 the JWT was issued and can be used to validate when the time of the
 transaction occurred.

6.3. Payload Validation

 In addition to the DRiP level protocol protection, it is highly
 suggested to sign and validate part or all of the JSON update
 payloads to the originator of the update. DRiP does not define
 anything regarding the contents of the payload, so this document does
 not address this in any way.

7. IANA Considerations

 None

8. Acknowledgements

 We would like to thank you for your interest in this work.

9. References

9.1. Normative References

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token
 (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015,
 <http://www.rfc-editor.org/info/rfc7519>.

9.2. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

Authors' Addresses

 Chris Wendt
 Comcast
 One Comcast Center
 Philadelphia, PA 19103
 USA

 Email: chris-ietf@chriswendt.net

https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7519
http://www.rfc-editor.org/info/rfc7519
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Wendt & Bellur Expires January 4, 2018 [Page 17]

Internet-Draft DRiP July 2017

 Harsha Bellur
 Comcast
 One Comcast Center
 Philadelphia, PA 19103
 USA

 Email: Harsha_Bellur@cable.comcast.com

Wendt & Bellur Expires January 4, 2018 [Page 18]

