
Network Working Group M. West
Internet-Draft Google
Intended status: Standards Track March 15, 2020
Expires: September 16, 2020

Incrementally Better Cookies
draft-west-cookie-incrementalism-01

Abstract

 This document proposes a few changes to cookies inspired by the
 properties of the HTTP State Tokens mechanism proposed in
 [I-D.west-http-state-tokens]. First, cookies should be treated as
 "SameSite=Lax" by default. Second, cookies that explicitly assert
 "SameSite=None" in order to enable cross-site delivery should also be
 marked as "Secure". Third, same-site should take the scheme of the
 sites into account. Fourth, cookies should respect schemes. Fifth,
 cookies associated with non-secure schemes should be removed at the
 end of a user's session. Sixth, the definition of a session should
 be tightened.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 16, 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

West Expires September 16, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft cookie-incrementalism March 2020

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions and Definitions 4
2.1. Conformance . 4
2.2. Syntax . 4

3. Monkey-Patches against RFC6265bis 4
3.1. "Lax" by Default . 4
3.1.1. "Lax-Allowing-Unsafe" Enforcement 6

3.2. Requiring "Secure" for "SameSite=None" 8
3.3. Schemeful Same-Site 8
3.4. Scheming Cookies . 9
3.5. Evict Non-Secure Cookies 11
3.6. Session Lifetime . 11

4. Security and Privacy Considerations 13
4.1. CSRF . 13
4.2. Secure Transport . 13
4.3. Tracking . 14

5. Implementation Considerations 14
5.1. Sequencing . 14
5.2. Deployment . 15

6. IANA Considerations . 15
7. References . 15
7.1. Normative References 15
7.2. Informative References 16

 Acknowledgments . 17
 Author's Address . 17

1. Introduction

 The HTTP State Tokens proposal ([I-D.west-http-state-tokens]) aims to
 replace cookies with a state management mechanism that has better
 security and privacy properties. That proposal is somewhat
 aspirational: it's going to take a long time to come to agreement on
 the exact contours of a cookie replacement, and an even longer time
 to actually do so.

 While we're debating the details of a new state management primitive,
 it seems quite reasonable to reevaluate some aspects of the existing
 primitive: cookies. When we can find consensus on some aspect of
 HTTP State Tokens, we can apply those aspirations to cookies, driving
 incremental improvements to state management in the status quo.

West Expires September 16, 2020 [Page 2]

Internet-Draft cookie-incrementalism March 2020

 Based on conversations at [HTTP-Workshop-2019] and elsewhere, I'd
 suggest that we have something like agreement on at least three
 principles:

 1. HTTP requests should not carry state along with cross-site
 requests by default (see Section 8.2 of [RFC6265bis]).

 2. HTTP requests should not carry state over non-secure channels
 (see Section 8.3 of [RFC6265bis], and [RFC7258]).

 3. Non-secure channels should not be able to infuence the state of
 securely-transported content (see Sections 8.3, 8.5, and 8.6 of
 [RFC6265bis]).

 With those principles in mind, this document proposes a few changes
 that seem possible to deploy in the near-term. User agents should:

 1. Treat the lack of an explicit "SameSite" attribute as
 "SameSite=Lax". That is, the "Set-Cookie" value "key=value" will
 produce a cookie equivalent to "key=value; SameSite=Lax".
 Cookies that require cross-site delivery can explicitly opt-into
 such behavior by asserting "SameSite=None" when creating a
 cookie.

 This is spelled out in more detail in Section 3.1.

 2. Require the "Secure" attribute to be set for any cookie which
 asserts "SameSite=None" (similar conceptually to the behavior for
 the "__Secure-" prefix). That is, the "Set-Cookie" value
 "key=value; SameSite=None; Secure" will be accepted, while
 "key=value; SameSite=None" will be rejected.

 This is spelled out in more detail in Section 3.2.

 3. Require both the scheme and registrable domain of a request's
 client's "site for cookies" to match the target URL when deciding
 whether a given request is considered same-site. That is, a
 request initiated from "http://site.example" to
 "https://site.example" should be considered cross-site.

 This is spelled out in more detail in Section 3.3.

 4. Separate cookies by scheme. That is, a given cookie set from
 "http://example.com/" should be considered distinct from the same
 cookie set from "https://example.com/", preventing the former
 from influencing the state of the latter.

 This is spelled out in more detail in Section 3.4.

https://datatracker.ietf.org/doc/html/rfc7258

West Expires September 16, 2020 [Page 3]

Internet-Draft cookie-incrementalism March 2020

 5. Evict non-secure cookies when a user's session on a non-secure
 site ends, thereby reducing the timespan over which a user
 broadcasts a stable identifier to the network.

 This is spelled out in more detail in Section 3.5.

 6. Tighten the definition of a user's "session" with heuristics that
 better represent users' expectations.

 This is spelled out in more detail in Section 3.6.

2. Conventions and Definitions

2.1. Conformance

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. Syntax

 This document adjusts some syntax from [RFC6265bis], and in doing so,
 relies upon the Augmented Backus-Naur Form (ABNF) notation of
 [RFC5234].

3. Monkey-Patches against RFC6265bis

3.1. "Lax" by Default

 The processing algorithm in Section 5.3.7 of [RFC6265bis] treats the
 absence of a "SameSite" attribute in a "Set-Cookie" header as
 equivalent to the presence of "SameSite=None". Cookies are therefore
 available for cross-site delivery by default, and developers may opt-
 into more security by setting some other value explicitly. Ideally,
 we'd invert that such that developers who accepted the risks of
 cross-site delivery (see Section 8.2 of [RFC6265bis]) could opt into
 them, while developers who didn't make any explicit choice would be
 protected by default.

 We could accomplish this goal by first altering the processing
 algorithm, replacing the current step 1:

 1. Let "enforcement" be "None".

 with the following two steps:

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234

West Expires September 16, 2020 [Page 4]

Internet-Draft cookie-incrementalism March 2020

 1. Let "enforcement" be "Default".

 2. If cookie-av's attribute-value is a case-insensitive
 match for "None", set "enforcement" to "None".

 And then by, altering step 13 of the cookie storage model
 (Section 5.4 of [RFC6265bis]) from:

 13. If the cookie-attribute-list contains an attribute
 with an attribute-name of "SameSite", set the cookie's
 same-site-flag to attribute-value (i.e. either "Strict",
 "Lax", or "None"). Otherwise, set the cookie's
 same-site-flag to "None".

 to:

 13. If the cookie-attribute-list contains an attribute
 with an attribute-name of "SameSite" and an
 attribute-value of "Strict", "Lax", or "None", set the
 cookie's same-site-flag to attribute-value. Otherwise,
 set the cookie's same-site-flag to "Default".

 And finally by altering the fifth bullet point of step 1 of the
 cookie-string construction algorithm in Section 5.5 of [RFC6265bis]
 from:

 * If the cookie's same-site-flag is not "None", and the HTTP
 request is cross-site (as defined in Section 5.2) then exclude
 the cookie unless all of the following statements hold:

 1. The same-site-flag is "Lax"

 2. The HTTP request's method is "safe".

 3. The HTTP request's target browsing context is a top-level
 browsing context.

 to:

West Expires September 16, 2020 [Page 5]

Internet-Draft cookie-incrementalism March 2020

 * If the cookie's same-site-flag is not "None", and the HTTP
 request is cross-site (as defined in Section 5.2) then exclude
 the cookie unless all of the following statements hold:

 1. The same-site-flag is "Lax" or "Default".

 2. The HTTP request's method is "safe".

 3. The HTTP request's target browsing context is a top-level
 browsing context.

 This would have the effect of mapping the default behavior in the
 absence of an explicit "SameSite" attribute, as well as the presence
 of any unknown "SameSite" value, to the "Lax" behavior, protecting
 developers by making cross-site delivery an explicit choice, as
 opposed to an implicit default.

3.1.1. "Lax-Allowing-Unsafe" Enforcement

 The "Lax" enforcement mode described in Section 5.3.7.1 of
 [RFC6265bis] allows a cookie to be sent along with cross-site
 requests if and only if they are top-level navigations with a "safe"
 HTTP method. Implementation experience shows that this is difficult
 to apply across the board, and it may be reasonable to temporarily
 carve out cases in which some cookies that rely on today's default
 behavior can continue to be delivered as the default is shifted to
 "Lax" enforcement.

 One such carveout, described in this section, accommodates certain
 cases in which it may be desirable for a cookie to be excluded from
 non-top-level cross-site requests, but to be sent with all top-level
 navigations regardless of HTTP request method.

 For example, a login flow may involve a cross-site top-level POST
 request to an endpoint which expects a cookie with login information.
 For such a cookie, "Lax" enforcement is not appropriate, as it would
 cause the cookie to be excluded due to the unsafe HTTP request
 method. On the other hand, "None" enforcement would allow the cookie
 to be sent with all cross-site requests. For a cookie containing
 potentially sensitive login information, this may not be desirable.

 In order to retain some of the protections of "Lax" enforcement (as
 compared to "None") while still allowing cookies to be sent cross-
 site with unsafe top-level requests, user agents may choose to
 provide an intermediate "Lax-allowing-unsafe" enforcement mode. A
 cookie whose enforcement mode is "Lax-allowing-unsafe" will be sent
 along with a cross-site request if and only if it is a top-level
 request, regardless of request method.

West Expires September 16, 2020 [Page 6]

Internet-Draft cookie-incrementalism March 2020

 User agents may choose to apply this enforcement mode instead of
 "Lax" enforcement, but only in a limited or restricted fashion. Such
 restrictions may include applying "Lax-allowing-unsafe" only to
 cookies that did not explicitly specify "SameSite=Lax" (i.e., those
 whose same-site-flag was set to "Default" by default) with creation-
 time more recent than a duration of the user agent's choosing (2
 minutes seems reasonable).

 This is done by further modifying the previously mentioned fifth
 bullet point of step 1 of the cookie-string construction algorithm in
 Section 5.5 of [RFC6265bis] from:

 * If the cookie's same-site-flag is not "None", and the HTTP
 request is cross-site (as defined in Section 5.2) then exclude
 the cookie unless all of the following statements hold:

 1. The same-site-flag is "Lax" or "Default".

 2. The HTTP request's method is "safe".

 3. The HTTP request's target browsing context is a top-level
 browsing context.

 to:

 * If the cookie's same-site-flag is not "None", and the HTTP
 request is cross-site (as defined in Section 5.2) then exclude
 the cookie unless all of the following statements hold:

 1. The same-site-flag is "Lax" or "Default".

 2. The HTTP request's method is "safe", or the cookie meets
 the user agent's requirements for being granted
 "Lax-allowing-unsafe" enforcement.

 3. The HTTP request's target browsing context is a top-level
 browsing context.

 As a more permissive variant of "Lax" mode, "Lax-allowing-unsafe"
 mode necessarily provides fewer protections against CSRF.
 Ultimately, the provision of such an enforcement mode should be seen
 as a temporary measure to ease adoption of "Lax" enforcement by
 default.

West Expires September 16, 2020 [Page 7]

Internet-Draft cookie-incrementalism March 2020

3.2. Requiring "Secure" for "SameSite=None"

 Cookies sent over plaintext HTTP are visible to anyone on the
 network. As section 8.3 of [RFC6265bis] points out, this visibility
 exposes substantial amounts of data to network attackers. We know,
 for example, that long-lived and stable cookies have enabled
 pervasive monitoring [RFC7258] in the past (see Google's PREF cookie
 [pref-cookie]), and we know that a secure transport layer provides
 significant confidentiality protections against this kind of attack.

 We can, to a reasonable extent, mitigate this threat by ensuring that
 cookies intended for cross-site delivery (and therefore likely to be
 more prevalent on the wire than cookies scoped down to same-site
 requests) require secure transport.

 That is, we can require that any cookie which asserts "SameSite=None"
 must also assert the "Secure" attribute (Section 4.1.2.5 of
 [RFC6265bis]) by altering the storage model defined in Section 5.4 of
 [RFC6265bis], inserting the following step after the existing step
 14:

 15. If the cookie's "same-site-flag" is "None", abort
 these steps and ignore the cookie entirely unless
 the cookie's secure-only-flag is true.

 This is conceptually similar to the requirements put into place for
 the "__Secure-" prefix (Section 4.1.3.1 of [RFC6265bis]).

3.3. Schemeful Same-Site

 By considering the scheme as well as the registrable domain when
 determining whether a given request is "same-site", the "SameSite"
 attribute can protect secure origins from CSRF attacks initiated by a
 network attacker that can forge requests from a non-secure origin on
 the same registrable domain. To do so we need to modify a number of
 things:

 First change the definition of "site for cookies" from a registrable
 domain to an origin. In the places where a we return an empty string
 for a non-existent "site for cookies" we should instead return an
 origin set to a freshly generated globally unique identifier. Then
 replace the same-site calculation algorithm with the following:

https://datatracker.ietf.org/doc/html/rfc7258

West Expires September 16, 2020 [Page 8]

Internet-Draft cookie-incrementalism March 2020

Two origins, A and B, are considered same-site if the following algorithm
returns true:
1. If A and B are both scheme/host/port triples then

 1. If A's scheme does not equal B's scheme, return false.

 2. Let hostA be A's host, and hostB be B's host.

 3. If hostA equals hostB and hostA's registrable domain is null, return
true.

 4. If hostA's registrable domain equals hostB's registrable domain and is
non-null, return true.

2. If A and B are both the same globally unique identifier, return true.

3. Return false.

Note: The port component of the origins is not considered.

A request is "same-site" if its target's URI's origin
is same-site with the request's client's "site for cookies", or if the
request has no client. The request is otherwise "cross-site".

 Now that we have a new algorithm, we can update any comparision of
 two sites from "have the same registrable domain" (or "is an exact
 match for") to say "is same-site".

 Note: The request's URL when establishing a WebSockets connection has
 scheme "http" or "https", rather than "ws" or "wss". FETCH maps
 schemes when constructing the request. This mapping allows same-site
 cookies to be sent with WebSockets.

3.4. Scheming Cookies

 Cookies are one of the very few components of the web platform that
 ignore scheme by default. The "Secure" attribute can lock a cookie
 to secure schemes, and the "__Secure-" prefix can harden that
 boundary, but these mechanisms are little-used, and cookies lacking
 these protections flow across scheme boundaries. They are delivered
 to both the HTTP and HTTPS variants of a given domain, even though
 their security properties differ radically. As Section 8.6 of
 [RFC6265bis] points out, this gives network attackers the ability to
 influence otherwise secured traffic by modifying user state that
 flows to secure origins, and, of course, insight into user behavior
 as securely-set cookies that lack the "Secure" attribute likewise
 flow from secure origins to non-secure variants.

 We should remedy this defect by storing a "scheme" component along

 with the cookie, and using that component in cookies' matching
 algorithms to ensure that secure and non-secure origins' state is

West Expires September 16, 2020 [Page 9]

Internet-Draft cookie-incrementalism March 2020

 clearly distinguishable and separate. This is accomplished as
 follows:

 First, alter the Storage Model defined in Section 5.4 of [RFC6265bis]
 by adding "scheme" to the list of fields the user agent stores about
 each cookie, and setting it when creating a cookie by altering step 2
 of the same algorithm from:

 2. Create a new cookie with name cookie-name, value cookie-value.
 Set the creation-time and the last-access-time to the current
 date and time.

 to:

 2. Create a new cookie with name cookie-name, value cookie-value.
 Set the creation-time and the last-access-time to the current
 date and time. Set the scheme to request-uri's origin's scheme
 component.

 Likewise alter step 17 of the same algorithm from:

 17. If the cookie store contains a cookie with the same name,
 domain, host-only-flag, and path as the newly-created cookie:

 to:

 17. If the cookie store contains a cookie with the same name, scheme,
 domain, host-only-flag, and path as the newly-created cookie:

 And step 17.1 from:

 17.1. Let old-cookie be the existing cookie with the same name,
 domain, host-only-flag, and path as the newly-created
 cookie. (Notice that this algorithm maintains the invariant
 that there is at most one such cookie.)

 to:

17.1. Let old-cookie be the existing cookie with the same name, scheme,
 domain, host-only-flag, and path as the newly-created
 cookie. (Notice that this algorithm maintains the invariant
 that there is at most one such cookie.)

 Second, alter The Cookie Header algorithm defined in Section 5.5 of
 [RFC6265bis] to take the "scheme" into account when deciding which
 cookies to deliver by adding another condition to the list in Step 1
 of the algorithm:

West Expires September 16, 2020 [Page 10]

Internet-Draft cookie-incrementalism March 2020

* The cookies' `scheme` matches the scheme component of request-uri's origin.

 This seems like the minimal set of changes necessary. We could do
 other cleanup, including removing the "Secure" attribute, as this
 mechanism obviates it entirely, altering the eviction algorithm to
 prefer discarding non-secure schemes, etc.

3.5. Evict Non-Secure Cookies

 In the status quo, cookies delivered to non-secure origins are,
 generally, quite old. Each cookies' age is somewhat representative
 of its risk: long-lived cookies expose persistent identifiers to the
 network when delivered non-securely which create tracking
 opportunities over time. Here, we aim to mitigate this risk by
 substantially reducing the lifetime of non-secure cookies, thereby
 limiting the window of opportunity for network attackers.

 This is similar conceptually to previous proposals, notably
 [I-D.thomson-http-omnomnom] and [cookies-over-http-bad], but seems
 like it might be more deployable, especially in conjunction with the
 scheme changes above.

 The change is straightforward, requiring the following text to be
 added to the bottom of Section 5.4 of [RFC6265bis]:

   ~~~ When "the current session is over", the user agent MUST remove
   from the cookie store all cookies whose "scheme" component is non-
   secure.  ~~

   As discussed below in {#session-lifetime}, if we add a site-specific
   session concept, we can make the following addition:

   ~~ When "the current session is over" for an origin, the user agent
   MUST remove from the cookie store all cookies whose "scheme"
   component is non-secure, and whose "domain" component's registrable
   domain matches the origin's registrable domain.  ~~

   This still requires the user agent to define a notion of non-
   secureness, but it would certainly include "http".

3.6.  Session Lifetime

   Section 5.4 of [RFC6265bis] defines "the current session is over" by
   choosing not to define it, instead leaving it up to the user agent.
   Unfortunately, we have several "session" concepts in user agents
   today, and it's not clear that any of them are appropriate for
   cookies.  HTML's "sessionStorage" lifetime is tied to a particular
   top-level browsing context, thereby giving two tabs/windows different



West                   Expires September 16, 2020              [Page 11]



Internet-Draft            cookie-incrementalism               March 2020

   views into a page's state.  Various user agents' "private mode"
   create sessions that are scoped in various ways: Chrome's Incognito
   mode ties a session's lifetime to the closure of the last Incognito
   window, Safari's private mode's lifetime is tab-specific, etc.
   Session cookies' lifetime likewise differs between user agents, in
   some cases based on user-visible settings like Chrome's "Continue
   where you left off" (which can lead to quite persistent sessions
   indeed).

   At some risk of further complicating the notion of a "session", it
   might be reasonable to learn from existing user agents' work around
   meeting users' conceptions of when they're using a given site, and to
   define a recommended heuristic that user agents could adopt.  In
   particular, Chromium's site engagement score and Safari's ITP both
   track a user's last moment of interaction with a site (which might
   feasibly include things like navigation, clicks, scrolls, etc).  This
   seems like a useful bit of data to take into account, along with
   whether or not a user has top-level browsing contexts that include a
   given site.

   To that end, we could add a few concepts to [RFC6265bis] to give
   browser vendors more clarity around a reasonable approach to defining
   when "the current session is over" for a specific site, rather that
   for the browsing session as a whole.  Something along the following
   lines makes sense to me:

   1.  User agents should store a timestamp of the last interaction with
       a given site in a top-level browsing context [HTML].  User agents
       have a great deal of flexibility in what they consider an
       interaction, but typing and clicking should probably count.

   2.  Change the "close a browsing context" algorithm [HTML] to call
       the following algorithm between its existing step 1 and step 2:

       1.  Let "closedOrigin" be the origin of "browsingContext"'s
           active document.

       2.  For each top-level browsing context "c":

           1.  If "c" is "browsingContext", continue.

           2.  If "c"'s active document's origin is same site with
               "browsingContext"'s active document's origin, return.

       3.  ASSERT: No top-level browsing context contains a document
           that's same-site with the document being closed.

       4.  Return, and continue running this algorithm in parallel.



West                   Expires September 16, 2020              [Page 12]



Internet-Draft            cookie-incrementalism               March 2020

       5.  Wait however long a user would reasonably expect their state
           to be retained (an hour sounds reasonable).

       6.  For each top-level browsing context "c":

           1.  If "c"'s active document's origin is same site with
               "closedOrigin", return.

       7.  ASSERT: No top-level browsing context contains a document
           that's same-site with the document that was closed.

       8.  Trigger "the current session is over" for "closedOrigin".

   3.  Define a new handler for "the current session is over" that takes
       an origin into account, and clears session cookies for that
       origin's site.

   Note that these definitions refer to "site", not "origin", as cookies
   span an entire registrable domain.  Ideally, we'll address that too,
   but not today.

4.  Security and Privacy Considerations

4.1.  CSRF

   "SameSite" is a reasonably robust defense against some classes of
   cross-site request forgery attacks, as described in Section 8.8.1 of
   [RFC6265bis], but developers need to opt-into its protections in
   order for them to have any effect.  That is, developers are
   vulnerable to CSRF attacks by default, and must do some work to shift
   themselves into a more defensible position.

   The change proposed in Section 3.1 would invert that requirement,
   placing the burden on the small number of developers who are building
   services that require state in cross-site requests.  Those developers
   would be empowered to opt-into the status quo's less-secure model,
   while developers who don't intend for their projects to be embedded
   in cross-site contexts are protected by default.

4.2.  Secure Transport

   As discussed in Section 8.3 of [RFC6265bis], cookies delivered over
   plaintext channels are exposed to intermediaries, and thereby enable
   pervasive monitoring [RFC7258].  The change proposed in Section 3.2
   above would set secure transport as a baseline requirement for all
   stateful cross-site requests, thereby reducing the risk that these
   cookies can be cataloged or modified by network attackers.

https://datatracker.ietf.org/doc/html/rfc7258


West                   Expires September 16, 2020              [Page 13]



Internet-Draft            cookie-incrementalism               March 2020

   Requiring secure transport for cookies intended for cross-site usage
   has the exciting secondary effect of increasing pressure on entities
   that produce embeddable content to migrate their products to HTTPS.
   That has security benefits for those third-party products themselves,
   but also has the effect of removing the potential of mixed content
   ([mixed-content]) as a blocker to first-party migration to HTTPS.

   Note that in the long term, it seems quite reasonable to take the
   additional step of requiring the "Secure" attribute for all cookies,
   regardless of their "SameSite" value.  That would have more
   substantial impact on pervasive monitoring and network attackers
   generally.  This document's proposal limits itself to "SameSite=None"
   because that seems like a low-hanging, high-value change that's
   deployable in the near term.  User agents are encouraged to find
   additional subsets for which "Secure" can be required.

4.3.  Tracking

   The proposals in this document do not in themselves mitigate the
   privacy risks described in Section 7.1 of [RFC6265bis].  Entities who
   wish to use cookies to track user activity from cross-site contexts
   can continue to do so by setting cookies that declare themselves as
   "SameSite=None".

   Requiring that explicit declaration, however, gives user agents the
   ability to easily distinguish cookies used for stateful cross-site
   requests from those with narrower scope.  After the change proposed
   in Section 3.1, only those cookies that make an explicit
   "SameSite=None" declaration can be directly used for cross-site
   tracking.  It may make sense for user agents to use that information
   to give users different controls for these cookies, or to apply
   different policies for expiration and delivery.

5.  Implementation Considerations

5.1.  Sequencing

   The steps described in this document don't need to be taken at the
   same time.  It's quite possible that it will be less disruptive to
   deploy "SameSite=Lax" as a default first, then to require the
   "Secure" attribute for any explicitly "SameSite=None" cookie as a
   subsequent step, and then deploying schemeful same-site in a final
   step.

   User agents are encouraged to adopt these recommendations in whatever
   order they believe will lead to the widest, most expedient
   deployment.



West                   Expires September 16, 2020              [Page 14]



Internet-Draft            cookie-incrementalism               March 2020

5.2.  Deployment

   It's possible that a middle-ground between "SameSite=Lax" and
   "SameSite=None" could be a better balance between doing what
   developers want by default, and mitigating CSRF by default.
   [I-D.west-cookie-samesite-firstparty] explores the possibility of
   integrating First-Party Sets [first-party-set] with the "SameSite"
   attribute in order to allow entities that shard themselves across
   multiple registrable domains to maintain stateful communication
   between them (to support single-sign on, for example).

   It's possible that user agents who support First-Party Sets could
   reduce the deployment overhead for developers, and increase the
   robustness of a site's CSRF defense for cross-site-but-not-cross-
   party cookies by defaulting to something like that document's
   "FirstPartyLax" instead of "Lax".

6.  IANA Considerations

   This document has no IANA actions.

7.  References

7.1.  Normative References

   [HTML]     "HTML", n.d., <https://html.spec.whatwg.org/>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC5234]  Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
              Specifications: ABNF", STD 68, RFC 5234,
              DOI 10.17487/RFC5234, January 2008,
              <https://www.rfc-editor.org/info/rfc5234>.

   [RFC6265bis]
              West, M. and J. Wilander, "Cookies: HTTP State Management
              Mechanism", draft-ietf-httpbis-rfc6265bis-05 (work in
              progress), February 2020.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

              May 2017, <https://www.rfc-editor.org/info/rfc8174>.

https://html.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-rfc6265bis-05
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174


West                   Expires September 16, 2020              [Page 15]



Internet-Draft            cookie-incrementalism               March 2020

7.2.  Informative References

   [cookies-over-http-bad]
              West, M., "Cookies over HTTP Bad", April 2018,
              <https://github.com/mikewest/cookies-over-http-bad>.

   [first-party-set]
              West, M., "First-Party Sets", n.d.,
              <https://mikewest.github.io/first-party-sets/>.

   [HTTP-Workshop-2019]
              Nottingham, M., "HTTP Workshop 2019: Report", April 2019,
              <https://github.com/HTTPWorkshop/workshop2019/wiki/

Report>.

   [I-D.thomson-http-omnomnom]
              Thomson, M. and C. Peterson, "Expiring Aggressively Those
              HTTP Cookies", draft-thomson-http-omnomnom-00 (work in
              progress), May 2016.

   [I-D.west-cookie-samesite-firstparty]
              West, M., "First-Party Sets and SameSite Cookies", draft-

west-cookie-samesite-firstparty-01 (work in progress), May
              2019.

   [I-D.west-http-state-tokens]
              West, M., "HTTP State Tokens", draft-west-http-state-

tokens-00 (work in progress), March 2019.

   [mixed-content]
              West, M., "Mixed Content", n.d.,
              <https://w3c.github.io/webappsec-mixed-content/>.

   [pref-cookie]
              Soltani, A., Peterson, A., and B. Gellman, "NSA uses
              Google cookies to pinpoint targets for hacking", December
              2013, <https://www.washingtonpost.com/news/the-

switch/wp/2013/12/10/
nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/>.

   [RFC7258]  Farrell, S. and H. Tschofenig, "Pervasive Monitoring Is an
              Attack", BCP 188, RFC 7258, DOI 10.17487/RFC7258, May
              2014, <https://www.rfc-editor.org/info/rfc7258>.

https://github.com/mikewest/cookies-over-http-bad
https://mikewest.github.io/first-party-sets/
https://github.com/HTTPWorkshop/workshop2019/wiki/Report
https://github.com/HTTPWorkshop/workshop2019/wiki/Report
https://datatracker.ietf.org/doc/html/draft-thomson-http-omnomnom-00
https://datatracker.ietf.org/doc/html/draft-west-cookie-samesite-firstparty-01
https://datatracker.ietf.org/doc/html/draft-west-cookie-samesite-firstparty-01
https://datatracker.ietf.org/doc/html/draft-west-http-state-tokens-00
https://datatracker.ietf.org/doc/html/draft-west-http-state-tokens-00
https://w3c.github.io/webappsec-mixed-content/
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
https://www.washingtonpost.com/news/the-switch/wp/2013/12/10/nsa-uses-google-cookies-to-pinpoint-targets-for-hacking/
https://datatracker.ietf.org/doc/html/bcp188
https://datatracker.ietf.org/doc/html/rfc7258
https://www.rfc-editor.org/info/rfc7258


West                   Expires September 16, 2020              [Page 16]



Internet-Draft            cookie-incrementalism               March 2020

Acknowledgments

   Conversations with a number of folks at 2019's HTTP Workshop helped
   me clarify my thinking around the incremental improvements we can
   make to cookies.  In particular, Martin Thomson and Anne van Kesteren
   provided insightful feedback.

   Lily Chen has been instrumental in initial deployments of the
   "SameSite" changes described in Section 3.1 and Section 3.2, proving
   that incremental changes to cookies can be successfully shipped.

   Steven Bingler contributed the "Schemeful SameSite" proposal
   described in Section 3.3.

Author's Address

   Mike West
   Google

   Email: mkwst@google.com
   URI:   https://www.mikewest.org/

https://www.mikewest.org/


West                   Expires September 16, 2020              [Page 17]


