
Network Working Group M. West
Internet-Draft Google
Intended status: Standards Track March 28, 2019
Expires: September 29, 2019

HTTP State Tokens
draft-west-http-state-tokens-00

Abstract

 This document describes a mechanism which allows HTTP servers to
 maintain stateful sessions with HTTP user agents. It aims to address
 some of the security and privacy considerations which have been
 identified in existing state management mechanisms, providing
 developers with a well-lit path towards our current understanding of
 best practice.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 29, 2019.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

West Expires September 29, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HTTP State Tokens March 2019

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Wait. Don't we have cookies? 3

 1.2. No. Really. We have cookies already. Why do we need this
 new thing? . 4

1.3. Examples . 5
2. Conventions . 5
2.1. Conformance . 5
2.2. Syntax . 5

3. Infrastructure . 5
3.1. HTTP State Tokens . 5
3.2. Requests and Responses 6
3.3. Token Storage . 7

4. Syntax . 8
4.1. The 'Sec-Http-State' HTTP Header Field 8
4.2. The 'Sec-Http-State-Options' HTTP Header Field 9

5. Delivering HTTP State Tokens 11
5.1. Attach HTTP State Tokens to a request 11
5.2. Generate a request's signature 12

6. Configuring HTTP State Tokens 13
7. Security and Privacy Considerations 15
7.1. Confidentiality and Integrity 15
7.2. Signed Sessions . 16
7.3. User Control . 16
7.4. Lifetime . 16
7.5. Ambient Authority and Cross-Site Delivery 16

8. IANA Considerations . 17
8.1. Header Field Registry 17

9. References . 18
9.1. Normative References 18
9.2. Informative References 19
9.3. URIs . 19

Appendix A. Acknowledgements 19
Appendix B. Changes . 20
B.1. Since the beginning of time 20

 Author's Address . 20

1. Introduction

 This document defines a state-management mechanism for HTTP that
 allows clients to create and persist origin-bound session identifiers
 that can be delivered to servers in order to enable stateful
 interaction. In a nutshell, each user agent will generate a single
 token per secure origin, and will deliver it as a "Sec-Http-State"

West Expires September 29, 2019 [Page 2]

Internet-Draft HTTP State Tokens March 2019

 structured header along with requests to that origin (defined in
Section 4.1 and Section 5).

 Servers can configure this token's characteristics via a "Sec-Http-
 State-Options" response header (defined in Section 4.2 and

Section 6).

 That's it.

1.1. Wait. Don't we have cookies?

 Cookies [RFC6265] are indeed a pervasive HTTP state management
 mechanism, and they enable practically everything interesting on the
 web today. That said, cookies have some issues: they're hard to use
 securely, they add substantial weight to users' outgoing requests,
 and they enable tracking users' activity across the web in
 potentially surprising ways.

 The mechanism proposed in this document aims at a more minimal and
 opinionated construct which takes inspiration from some of cookies'
 optional characteristics. In particular:

 1. The client controls the token's value, not the server.

 2. The token will only be available to the network layer, not to
 JavaScript (including network-like JavaScript, such as Service
 Workers).

 3. The user agent will generate only one token per origin, and will
 only expose the token to the origin for which it was generated.

 4. Tokens will not be generated for, or delivered to, non-secure
 origins.

 5. Tokens will be delivered only along with same-site requests by
 default, and can only be created from same-site contexts.

 6. Each token persists for one hour after generation by default.
 This default expiration time can be overwritten by servers, and
 tokens can be reset at any time by servers, users, or user
 agents.

 These distinctions might not be appropriate for all use cases, but
 seem like a reasonable set of defaults. For folks for whom these
 defaults aren't good enough, we'll provide developers with a few
 control points that can be triggered via a "Sec-HTTP-State-Options"
 HTTP response header, described in Section 4.2.

https://datatracker.ietf.org/doc/html/rfc6265

West Expires September 29, 2019 [Page 3]

Internet-Draft HTTP State Tokens March 2019

1.2. No. Really. We have cookies already. Why do we need this new
 thing?

 We do have cookies. And we've defined a number of extensions to
 cookies to blunt some of their sharper edges: the "HttpOnly"
 attribute, the "Secure" attribute, "SameSite", prefixes like
 "__Host-" and "__Secure-", and so on. Isn't that the right way
 forward? Shouldn't we just push developers towards these existing
 flags on the existing state management primitive?

 This document's underlying assumption is that it's going to be easier
 to teach developers about a crazy new thing that's secure by default
 than it would be to convince them to change their "Set-Cookie"
 headers to include "__Host-name=value; HttpOnly; Secure;
 SameSite=Lax; Path=/". A new thing resets expectations in a way that
 vastly exceeds the impact of explanations about the the four
 attributes that must be used, the one attribute that must not be
 used, and the weird naming convention that ought to be adopted.

 Moreover, it appears that we're collectively pretty bad at helping
 developers understand the risks that might lead them to adopt The
 Good Cookie Syntax(tm) above. Adoption of these features has been
 quite slow. Based on data gathered from Chrome's telemetry in March,
 2019, cookies are set as follows:

 o ~6.8% of cookies are set with "HttpOnly".

 o ~5.5% are set with "Secure".

 o ~3.1% are set with "HttpOnly; Secure".

 o ~0.06% are set with "SameSite=*; Secure".

 o ~0.05% are set with "SameSite=*".

 o ~0.03% are set with "HttpOnly; Secure; SameSite=*".

 o ~0.006% are set with "SameSite=*; HttpOnly".

 o ~0.005% are set with a "__Secure-" prefix.

 o ~0.01% are set with a "__Host-" prefix.

 In total:

 o ~9.9% of cookies are marked as "HttpOnly".

 o ~8.8% of cookies are marked as "Secure".

West Expires September 29, 2019 [Page 4]

Internet-Draft HTTP State Tokens March 2019

 o ~0.1% of cookies are marked as "SameSite".

 o ~84.2% of cookies use none of these features.

 Given that "Secure" has been around since at least 1997 [RFC2109];
 ~9% adoption after more than two decades is not inspiring.

1.3. Examples

 User agents can deliver HTTP state tokens to a server in a "Sec-Http-
 State" header. For example, if a user agent has generated a token
 bound to "https://example.com/" whose base64 encoding is
 "hB2RfWaGyNk60sjHze5DzGYjSnL7tRF2HWSBx6J1o4k=" ([RFC4648],
 Section 4), then it would generate the following header when
 delivering the token along with requests to "https://example.com/":

 Sec-Http-State: token=*hB2RfWa...GyNko4k=*

 The server can control certain aspects of the token's delivery by
 responding to requests with a "Sec-Http-State-Options" header:

 Sec-Http-State-Options: max-age=3600, key=*b7kuUkp...lkRioC2=*

2. Conventions

2.1. Conformance

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.2. Syntax

 This document defines two Structured Headers
 [I-D.ietf-httpbis-header-structure]. In doing so it relies upon the
 Augmented Backus-Naur Form (ABNF) notation of [RFC5234] and the OWS
 rule from [RFC7230].

3. Infrastructure

3.1. HTTP State Tokens

 An HTTP State Token holds a session identifier which allows a user
 agent to maintain a stateful session with a specific origin, along
 with associated metadata:

https://datatracker.ietf.org/doc/html/rfc2109
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230

West Expires September 29, 2019 [Page 5]

Internet-Draft HTTP State Tokens March 2019

 o "creation" is a timestamp representing the point in time when the
 token was created.

 o "delivery" specifies the initiating contexts from which the token
 can be delivered. It is an enum of either "same-origin", "same-
 site", or "cross-site". Unless otherwise specified, its value is
 "same-site".

 o "key" is a server-provided key which can be used to sign requests
 with which the token is delivered. It is either null, or contains
 up to 256-bits of binary data. Unless otherwise specified, its
 value is null.

 o "max-age" is a timestamp representing the token's lifetime in
 seconds. Unless otherwise specified, HTTP State Tokens have a
 3600 second (1 hour) "max-age".

 o "value" is the token's value (surprising, right?). It contains up
 to 256-bits of binary data.

 An HTTP State Token is said to be "expired" if its "creation"
 timestamp plus "max-age" seconds is in the past.

3.2. Requests and Responses

 This document relies upon the definitions of "request" and "response"
 found in [Fetch].

 A request's delivery scope can be obtained as follows:

 1. Let "request-origin" be the request's "origin", and "target-
 origin" be the request's "URL"'s "origin".

 2. If the request was generated by the user agent as a response to
 direct user interaction with the user agent (e.g. the user typed
 an address into the agent's address bar, clicked a bookmark, or
 etc.), return "same-origin".

 3. If "request-origin" is same-origin with "target-origin", return
 "same-origin".

 4. If "request-origin"'s registrable domain is the same as "target-
 origin"'s registrable domain, return "same-site".

 5. Return "cross-site".

West Expires September 29, 2019 [Page 6]

Internet-Draft HTTP State Tokens March 2019

3.3. Token Storage

 User agents MUST keep a list of all the unexpired HTTP State Tokens
 which have been created. For the purposes of this document, we'll
 assume that user agents keep this list in the form of a map whose
 keys are origins, and whose values are HTTP State Tokens.

 This map exposes three functions:

 o An HTTP State Token can be stored for a given origin. If the
 origin already exists in the map, the entry's value will be
 overwritten with the new HTTP State Token.

 o An origin's HTTP State Token can be retrieved. If the origin does
 not exist in the map, "null" will be returned instead.

 o An origin (along with its HTTP State Token) can be deleted from
 the map.

 The map is initially empty.

3.3.1. Generate an HTTP State Token for an origin

 The user agent can generate a new HTTP State Token for an origin
 using an algorithm equivalent to the following:

 1. Delete "origin" from the user agent's token store.

 2. Let "token" be a newly created HTTP State Token with its
 properties set as follows:

 * "creation": The current time.

 * "delivery": "same-site"

 * "key": null

 * "max-age": 3600

 * "value": 256 cryptographically random bits.

 3. Store "token" in the user agent's token store for "origin".

 4. If the user agent has defined a "NotifyHostHTTPStateReset()"
 algorithm, call it with "origin".

 5. Return "token".

West Expires September 29, 2019 [Page 7]

Internet-Draft HTTP State Tokens March 2019

 Note: Step 4 recognizes that user agents may wish to notify an
 origin's developers that HTTP state has been reset in order to enable
 cleanup of state stored client-side. HTML might, for instance, wish
 to post a message to a specially-named "BroadcastChannel" to enable
 this kind of work. This could take something like the following
 form:

 let resetChannel = new BroadcastChannel('http-state-reset'));
 resetChannel.onmessage = e => { /* Do exciting cleanup here. */ };

4. Syntax

4.1. The 'Sec-Http-State' HTTP Header Field

 The "Sec-Http-State" HTTP header field allows user agents to deliver
 HTTP state tokens to servers as part of an HTTP request.

 "Sec-Http-State" is a Structured Header
 [I-D.ietf-httpbis-header-structure]. Its value MUST be a dictionary
 ([I-D.ietf-httpbis-header-structure], Section 3.1). Its ABNF is:

 Sec-Http-State = sh-dictionary

 The dictionary MUST contain:

 o Exactly one member whose key is "token", and whose value is binary
 content ([I-D.ietf-httpbis-header-structure], Section 3.9) that
 encodes the HTTP state token's value for the origin to which the
 header is delivered.

 If the "token" member contains more than 256 bits of binary
 content, the member MUST be ignored.

 The dictionary MAY contain:

 o Exactly one member whose key is "sig", and whose value is binary
 content ([I-D.ietf-httpbis-header-structure], Section 3.9) that
 encodes a signature over the token and the request which contains
 it, using a key previously delivered by the server. This
 mechanism is described in Section 5.2.

 If the "sig" member contains more than 256 bits of binary content,
 the member MUST be ignored.

 The "Sec-Http-State" header is parsed per the algorithm in
 Section 4.2 of [I-D.ietf-httpbis-header-structure]. Servers MUST
 ignore the header if parsing fails, or if the parsed header does not
 contain a member whose key is "token".

West Expires September 29, 2019 [Page 8]

Internet-Draft HTTP State Tokens March 2019

 User agents will attach a "Sec-Http-State" header to outgoing
 requests according to the processing rules described in Section 5.

4.2. The 'Sec-Http-State-Options' HTTP Header Field

 The "Sec-Http-State-Options" HTTP header field allows servers to
 deliver configuration information to user agents as part of an HTTP
 response.

 "Sec-Http-State-Options" is a Structured Header
 [I-D.ietf-httpbis-header-structure]. Its value MUST be a dictionary
 ([I-D.ietf-httpbis-header-structure], Section 3.1). Its ABNF is:

 Sec-Http-State-Options = sh-dictionary

 The "Sec-Http-State-Options" header is parsed per the algorithm in
 Section 4.2 of [I-D.ietf-httpbis-header-structure]. User agents MUST
 ignore the header if parsing fails.

 The dictionary MAY contain:

 o Exactly one member whose key is "key", and whose value is binary
 content ([I-D.ietf-httpbis-header-structure], Section 3.10) that
 encodes an key which can be used to generate a signature over
 outgoing requests.

 o Exactly one member whose key is "delivery", and whose value is one
 of the following tokens ([I-D.ietf-httpbis-header-structure],
 Section 3.9): "same-origin", "same-site", or "cross-site".

 If the "delivery" member contains an unknown identifier, the
 member MUST be ignored.

 o Exactly one member whose key is "max-age", and whose value is an
 integer ([I-D.ietf-httpbis-header-structure], Section 3.6)
 representing the server's desired lifetime for its HTTP State
 Token.

 If the "max-age" member contains anything other than a positive
 integer, the member MUST be ignored.

 User agents will process the "Sec-Http-State-Options" header on
 incoming responses according to the processing rules described in

Section 6.

West Expires September 29, 2019 [Page 9]

Internet-Draft HTTP State Tokens March 2019

4.2.1. Examples

4.2.1.1. Cross-Site Delivery

 Some servers will require access to their tokens from cross-site
 contexts (perhaps to support authenticated activity or single-sign
 on, etc). These servers can request a "cross-site" delivery option
 by delivering the following header:

 Sec-Http-State-Options: delivery=cross-site, ...

4.2.1.2. Token Lifetime

 Other servers might want their sessions to persist for more than an
 hour. These servers can request a more reasonable token lifetime
 lifetime by by delivering the following header:

 Sec-Http-State-Options: max-age=2592000, ...

 Servers may also wish to explicitly trigger the token's expiration
 (upon signout, for instance). Setting a "max-age" of "0" does the
 trick:

 Sec-Http-State-Options: max-age=0, ...

4.2.1.3. Token Provenance

 For some servers, the client-generated token will be enough to
 maintain state. They can treat it as an opaque session identifier,
 and bind the user's state to it server-side. Other servers will
 require additional assurance that they can trust the token's
 provenance. To that end, servers can generate a unique key,
 associate it with the session identifier on the server, and deliver
 it to the client via an HTTP response header:

 Sec-Http-State-Options: key=*ZH0GxtBMWA...nJudhZ8dtz*, ...

 Clients will store that key, and use it to generate a signature over
 some set of data that mitigates the risk of token capture:

 Sec-HTTP-State:
 token=*J6BRKa...MonM*,
 sig=*(HMAC-SHA265(key, token+metadata))*

 Note: This part in particular is not fully baked, and we need to do
 some more work to flesh out the threat model (see also Token
 Binding). Look at it as an area to explore, not a solidly thought-
 out solution.

West Expires September 29, 2019 [Page 10]

Internet-Draft HTTP State Tokens March 2019

5. Delivering HTTP State Tokens

 User agents deliver HTTP state tokens to servers by appending a "Sec-
 Http-State" header field to outgoing requests.

 This specification provides algorithms which are called at the
 appropriate points in [Fetch] in order to attach "Sec-Http-State"
 headers to outgoing requests, and to ensure that "Sec-Http-State-
 Options" headers are correctly processed.

5.1. Attach HTTP State Tokens to a request

 The user agent can attach HTTP State Tokens to a given request using
 an algorithm equivalent to the following. This algorithm is intended
 to execute as the request is being sent out over the network (after
 Service Worker processing), perhaps after the "Cookie" header is
 handled in step 5.17.1 of Section 4.5 of [Fetch], describing the
 "HTTP-network-or-cache fetch" algorithm:

 1. If the user agent is configured to suppress explicit identifiers
 for the request, or if the request's URL is not _a priori_
 authenticated [Mixed-Content], then skip the remaining steps in
 this algorithm, and return without modifying the request.

 2. Let "target-origin" be the origin of "request"'s current URL.

 3. Let "request-token" be the result of retrieving origin's token
 from the user agent's token store, or "null" if no such token
 exists.

 4. If "request-token" is expired, clear the user agent's token
 store for "target-origin", and set "request-token" to "null".

 5. If "request-token" is "null", then:

 1. If "request"'s delivery scope is "cross-site", return
 without modifying the request.

 Note: As the default "delivery" for HTTP State Tokens is
 "same-site", we return early rather than generating a token
 for a cross-site request.

 2. Set "request-token" to the result of generating an HTTP
 State Token for "target-origin", as defined in

Section 3.3.1.

 6. Return without modifying the request if either of the following
 statements are true:

West Expires September 29, 2019 [Page 11]

Internet-Draft HTTP State Tokens March 2019

 * "request-token"'s "delivery" is "same-origin", and
 "request"'s delivery scope is not "same-origin".

 * "request-token"'s "delivery" is "same-site", and "request"'s
 delivery scope is neither "same-origin" nor "same-site".

 7. Let "serialized-value" be the base64 encoding ([RFC4648],
 Section 4) of "request-token"'s value.

 8. Insert a member into "header-value" whose key is "token" and
 whose value is "serialized-value".

 9. If "request-token"'s "key" is not null, then insert a member
 into "header-value" whose key is "sig", and whose value is the
 result of executing Section 5.2 on request, "serialized-value",
 and "request-token"'s "key".

 10. Append a header to "request"'s header list whose name is "Sec-
 Http-State", and whose value is the result of serializing
 "header-value" ([I-D.ietf-httpbis-header-structure],
 Section 4.1).

5.2. Generate a request's signature

 If the origin server provides a "key", the user agent will use it to
 sign any outgoing requests which target that origin and include an
 HTTP State Token. Note that the signature is produced before adding
 the "Sec-Http-State" header to the request.

 Given a request, a base64-encoded token value, and a key:

 1. Let "cbor-request" be the result of building a CBOR
 representation [RFC7409] of the given request, as specified in
 the first element of the array described in Section 3.2 of
 [I-D.yasskin-http-origin-signed-responses].

 2. Add an item to "cbor-request" which maps the byte string ':token'
 to the byte string containing the given base64-encoded token
 value.

 3. Return the result of computing HMAC-SHA256 [RFC2104] over the
 canonical CBOR serialization of "cbor-request" (Section 3.4 of
 [I-D.yasskin-http-origin-signed-responses]), using the given
 "key".

https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc4648#section-4
https://datatracker.ietf.org/doc/html/rfc7409
https://datatracker.ietf.org/doc/html/rfc2104

West Expires September 29, 2019 [Page 12]

Internet-Draft HTTP State Tokens March 2019

5.2.1. Example

 The following request:

 GET / HTTP/1.1
 Host: example.com
 Accept: */*

 results in the following CBOR representation (represented using the
 extended diagnostic notation from Appendix G of
 [I-D.ietf-cbor-cddl]):

 {
 ':method': 'GET',
 ':token': 'hB2RfWaGyNk60sjHze5DzGYjSnL7tRF2HWSBx6J1o4k='
 ':url': 'https://example.com/',
 'accept': '*/*',
 }

6. Configuring HTTP State Tokens

 Servers configure the HTTP State Token representing a given users'
 state by appending a "Sec-Http-State-Options" header field to
 outgoing responses.

 User agents MUST process this header on a given response as per the
 following algorithm, which is intended to be called after the "Set-
 Cookie" header is handled in step 11.4 of Section 4.6 of [Fetch],
 which defines the "HTTP-network fetch" algorithm.

 1. Let "response-origin" be the origin of response's URL.

 2. If the response's URL is not _a priori_ authenticated
 [Mixed-Content], return without altering "response-origin"'s HTTP
 State Token.

 3. Let "token" be the result of retrieving "response-origin"'s token
 from the user agent's token store, or "null" if no such token
 exists.

 4. If "token" is expired, clear the user agent's token store for
 "response-origin", and set "token" to "null".

 5. If "token" is "null", then:

 1. If "request"'s delivery scope is "cross-site", return without
 modifying the request.

West Expires September 29, 2019 [Page 13]

Internet-Draft HTTP State Tokens March 2019

 Note: As the default "delivery" for HTTP State Tokens is
 "same-site", we return early rather than generating a token
 for a cross-site request.

 2. Set "token" to the result of generating an HTTP State Token
 for "target-origin", as defined in Section 3.3.1.

 6. If the response's header list contains "Sec-Http-State-Options",
 then:

 1. Let "header" be the result of getting response's "Sec-Http-
 State-Options" header, and parsing parsing it per the
 algorithm in Section 4.2 of
 [I-D.ietf-httpbis-header-structure].

 2. Return without altering "response-origin"'s HTTP State Token
 if any of the following conditions hold:

 + Parsing the header results in failure.

 + "header" has a member named "key" whose value is not a
 byte sequence (Section 3.10 of
 [I-D.ietf-httpbis-header-structure])

 + "header" has a member named "delivery" whose value is not
 one of the following tokens (Section 3.9 of
 [I-D.ietf-httpbis-header-structure]): "same-origin",
 "same-site", and "cross-site".

 + "header" has a member named "max-age" whose value is not a
 positive integer (Section 3.6 of
 [I-D.ietf-httpbis-header-structure]).

 3. If "header" has a member named "key", set "token"'s "key" to
 the member's value.

 4. If "header" has a member named "delivery", set "token"'s
 "delivery" to the member's value.

 5. If "header" has a member named "max-age":

 1. If the member's value is "0", generate a new HTTP State
 Token for "response-origin" as defined in Section 3.3.1.

 Otherwise, set "token"'s "max-age" to the member's value.

West Expires September 29, 2019 [Page 14]

Internet-Draft HTTP State Tokens March 2019

 Note that "max-age" is processed last, meaning that any other
 options specified alongside "max-age=0" will be de facto
 ignored as a new token is generated, replacing the old.

7. Security and Privacy Considerations

 HTTP State Tokens aim to mitigate some of the security and privacy
 drawbacks that decades of implementation experience with cookies have
 laid bare. It would be worthwhile to skim through the privacy
 considerations (Section 7 of [RFC6265]) and security considerations
 (Section 8 of [RFC6265]) of that existing state management mechanism,
 as it forms a foundation upon which this document builds.

7.1. Confidentiality and Integrity

 HTTP State Tokens improve upon cookies' weak confidentiality/
 integrity guarantees (see Sections 8.3, 8.5, 8.6, and 8.7 of
 [RFC6265]) in several ways:

 1. User agents MUST require secure channels (such as TLS) for
 delivery and configuration of HTTP State Tokens. User agents
 cannot be induced to deliver an origin's tokens across channels
 visible to (and modifiable by) network attackers, nor can an
 attack on DNS cause tokens to be revealed (as any server to which
 the user could be directed will also need to authenticate itself,
 which is presumably difficult).

 2. HTTP State Tokens are mapped to origins, matching developers
 expectations for client-side data generally. This ensures that
 tokens are isolated by host and port: code running on
 "https://bar.example.com/" cannot alter state on
 "https://foo.example.com/" without the latter's cooperation, and
 that the same applies to "https://example.com:8000/" and
 "https://example.com:80/".

 Note that this origin binding means that there are no path
 restrictions for tokens. Servers relying upon these tokens for
 state management SHOULD NOT run mutually distrusting services on
 different paths of the same origin.

 3. User agents MUST NOT expose HTTP State Tokens to non-HTTP APIs
 which are web-accessible, thereby reducing the risk of accidental
 exposure via cross-site scripting attack.

 Further, the "Sec-" prefix on both "Sec-HTTP-State" and "Sec-
 HTTP-State-Options" ensures that both are considered "forbidden
 header names" by [Fetch]. The latter should also be treated as a
 "forbidden response header".

https://datatracker.ietf.org/doc/html/rfc6265#section-7
https://datatracker.ietf.org/doc/html/rfc6265#section-8
https://datatracker.ietf.org/doc/html/rfc6265

West Expires September 29, 2019 [Page 15]

Internet-Draft HTTP State Tokens March 2019

7.2. Signed Sessions

 HTTP State Tokens embrace the session identifier pattern discussed in
Section 8.4 of [RFC6265] by requiring that the client control the

 token's value, setting it to a fixed-length, random byte sequence.
 The client's control mitigates the risk of sensitive information
 being stored in the token directly, and the token's length makes it
 unlikely to be easily guessed.

 Some servers will be interested in proving the token's provenance
 over time, which they do today by storing cookies with signed values.
 Since storing a signed value directly is impossible in a client-
 controlled world, servers can instead store a "key", which is used to
 sign outgoing requests. Since this key is never exposed directly to
 the web, it provides a reasonable guarantee of client stability over
 time which a server can rely upon when making risk judgements.

7.3. User Control

 User agents MUST provide users with the ability to control the
 creation and distribution of HTTP State Tokens, just as they do for
 cookies today. This certainly means providing controls over first-
 vs third-party distribution, control over the origins which can store
 state, control over the state presented to origins, visibility into
 the state of the user agent's token store, and etc.

 Further, this document grants user agents wide latitude to experiment
 with various distribution policies and limitations. The capabilities
 offered by "delivery" and "max-age" should be considered upper bounds
 on distribution, within which user agents are free to roam.

7.4. Lifetime

 By default, HTTP State Tokens live for an hour, which is a compromise
 between the reasonable desire of servers to maintain state across a
 given user's session, and the privacy risks associated with long-
 lived tokens stored on a user's disk.

 Servers that desire a longer session lifetime can explicitly request
 an extension, which the browser can choose to act on.

7.5. Ambient Authority and Cross-Site Delivery

 HTTP State Tokens, like cookies, provide a form of ambient authority
 (see Section 8.2 of [RFC6265]). By default, this authority is
 limited to requests initiated by same-site actors, which serves as a
 reasonable mitigation against some classes of attack (e.g.

https://datatracker.ietf.org/doc/html/rfc6265#section-8.4
https://datatracker.ietf.org/doc/html/rfc6265#section-8.2

West Expires September 29, 2019 [Page 16]

Internet-Draft HTTP State Tokens March 2019

 "https://evil.com/" making authenticated requests to
 "https://example.com/").

 Servers that desire to interact in an authenticated manner in cross-
 site contexts are required to opt-into doing so by delivering an
 appropriate "delivery" value in a "Sec-HTTP-State-Options" response
 header. Servers which choose to do so SHOULD take reasonable
 precautions, implementing CSRF tokens for sensitive actions, and
 taking stock of the context from which a given request is initiated
 (by examining incoming "Referrer", "Origin", and "Sec-Fetch-Site"
 headers).

 Further, tokens can only be created in same-origin or same-site
 contexts, which means that cross-site identifier would only be
 available after the relevant origin was visited in a same-site
 context, and explicitly declared its tokens as being deliverable
 cross-site (at which point the user agent is empowered to make some
 decisions about how to handle that declaration).

8. IANA Considerations

8.1. Header Field Registry

 This document registers the "Sec-Http-State" and "Sec-Http-State-
 Options" header fields in the "Permanent Message Header Field Names"
 registry located at https://www.iana.org/assignments/message-headers
 [1].

8.1.1. Sec-Http-State Header Field

 Header field name: Sec-Http-State

 Applicable protocol: http

 Status: experimental

 Author/Change controller: IETF

 Specification document(s): This document (see Section 4.1)

 Related information: (empty)

8.1.2. Sec-Http-State-Options Header Field

 Header field name: Sec-Http-State-Options

 Applicable protocol: http

https://www.iana.org/assignments/message-headers

West Expires September 29, 2019 [Page 17]

Internet-Draft HTTP State Tokens March 2019

 Status: experimental

 Author/Change controller: IETF

 Specification document(s): This document (see Section 4.2)

 Related information: (empty)

9. References

9.1. Normative References

 [Fetch] van Kesteren, A., "Fetch", n.d.,
 <https://fetch.spec.whatwg.org/>.

 [I-D.ietf-httpbis-header-structure]
 Nottingham, M. and P. Kamp, "Structured Headers for HTTP",

draft-ietf-httpbis-header-structure-09 (work in progress),
 December 2018.

 [I-D.yasskin-http-origin-signed-responses]
 Yasskin, J., "Signed HTTP Exchanges", draft-yasskin-http-

origin-signed-responses-05 (work in progress), January
 2019.

 [Mixed-Content]
 West, M., "Mixed Content", n.d.,
 <https://w3c.github.io/webappsec-mixed-content/>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2109] Kristol, D. and L. Montulli, "HTTP State Management
 Mechanism", RFC 2109, DOI 10.17487/RFC2109, February 1997,
 <https://www.rfc-editor.org/info/rfc2109>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/info/rfc4648>.

https://fetch.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-09
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-05
https://datatracker.ietf.org/doc/html/draft-yasskin-http-origin-signed-responses-05
https://w3c.github.io/webappsec-mixed-content/
https://datatracker.ietf.org/doc/html/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://datatracker.ietf.org/doc/html/rfc2109
https://www.rfc-editor.org/info/rfc2109
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc4648
https://www.rfc-editor.org/info/rfc4648

West Expires September 29, 2019 [Page 18]

Internet-Draft HTTP State Tokens March 2019

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7409] Haleplidis, E. and J. Halpern, "Forwarding and Control
 Element Separation (ForCES) Packet Parallelization",

RFC 7409, DOI 10.17487/RFC7409, November 2014,
 <https://www.rfc-editor.org/info/rfc7409>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [I-D.abarth-cake]
 Barth, A., "Origin Cookies", draft-abarth-cake-01 (work in
 progress), March 2011.

 [I-D.ietf-cbor-cddl]
 Birkholz, H., Vigano, C., and C. Bormann, "Concise data
 definition language (CDDL): a notational convention to
 express CBOR and JSON data structures", draft-ietf-cbor-

cddl-08 (work in progress), March 2019.

 [RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
 DOI 10.17487/RFC6265, April 2011,
 <https://www.rfc-editor.org/info/rfc6265>.

9.3. URIs

 [1] https://www.iana.org/assignments/message-headers

Appendix A. Acknowledgements

 This document owes much to Adam Barth's [I-D.abarth-cake] and
 [RFC6265].

https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7409
https://www.rfc-editor.org/info/rfc7409
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-abarth-cake-01
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-08
https://datatracker.ietf.org/doc/html/draft-ietf-cbor-cddl-08
https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://www.iana.org/assignments/message-headers
https://datatracker.ietf.org/doc/html/rfc6265

West Expires September 29, 2019 [Page 19]

Internet-Draft HTTP State Tokens March 2019

Appendix B. Changes

 RFC Editor: Please remove this section before publication.

B.1. Since the beginning of time

 o This document was created.

Author's Address

 Mike West
 Google

 Email: mkwst@google.com
 URI: https://www.mikewest.org/

West Expires September 29, 2019 [Page 20]

https://www.mikewest.org/

