
Internet Draft Proposal for RSVPv2-NSLP April 2003

Internet Engineering Task Force L. Westberg
INTERNET-DRAFT A. Bader
Expires October 2003 D. Partain
 V. Rexhepi

 Ericsson

 G. Karagiannis

 University of Twente

 April 2003

A Proposal for RSVPv2-NSLP
draft-westberg-proposal-for-rsvpv2-nslp-00.txt

Document Version: $Revision: 2.1 $

Status of this memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts. Internet-Drafts are draft documents valid for a maximum of
 six months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet- Drafts as
 reference material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Distribution of this memo is unlimited.

Copyright Notice

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Westberg, et al. Expires October 2003 [Page 1]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Copyright (C) The Internet Society (2002). All Rights Reserved.

Abstract

 The Resource ReSerVation Protocol (RSVPv1) has been on the standards
 track within the IETF for a number of years. During that time, the
 level of vendor support and deployment has been relatively slow,
 despite the demand for technologies offering services with different
 levels of quality of service to their customers. This memo seeks to
 initiate a dialog about the design of a new version of RSVPv1, called
 RSVPv2, that meet the requirements formulated by IETF NSIS working
 group. It also outlines the motivation for using RSVP2 as "next step
 in signaling".

 The RSVPv2 framework uses the layer-split architecture separating
 signaling application and transport functions. This concept was
 adopted by NSIS WG and the two layers are called NSLP NSIS Signaling
 Layer Protocol (NSLP) and NSIS Transport Layer Protocol (NTLP). This
 draft provides design guidelines and specifications for the
 development of the RSVPv2 NSLP part.

 RSVP2-NSLP offers increased modularity and contains less mandatory
 objects compared to RSVPv1, which allow lightweight implementation
 and flexible application. The new protocol is extended with PHR and
 PDR objects that makes it possible to use the protocol in different
 part of multi-domain networks and use the protocol in DiffServ
 environment.

Westberg, et al. Expires October 2003 [Page 2]

Internet Draft Proposal for RSVPv2-NSLP April 2003

Table of Contents

1 Introduction ... 5
1.1 Definitions/Terminology 6
2 Motivation for RSVPv2 .. 10
2.1 Limitation of RSVPv1 design 11
2.1.1 Designed for Multicast Applications 11
2.1.2 Least Common Denominator Not Small Enough 11
2.1.3 Sender-initiated versus Receiver-initiated Signalling

 ... 12
2.1.4 Designed for End-host to End-host Communication 13
2.2 Different Network Signalling Requirements/Needs and RSVP

 ... 13
3 Design Goals and General Features for RSVPv2-NSLP 14
3.1 Increased Layer Modularity and Extendibility 14
3.2 Increased Object Modularity 15
3.3 Hierarchical Object Structure 15
3.4 Global and Local Objects 16
3.5 Local information exchange 16
3.6 Object Re-use .. 17
3.7 Reduced Focus on Multicast 17
3.8 Primarily Sender-initiated Signalling 17
3.9 Low latency in setup 17
3.10 Highest possible network utilization 18
3.11 Uni / bi-directional reservation 18
3.12 End-to-end .. 18
3.13 Edge-to-edge .. 18
3.14 End-to-edge ... 19
4 Overview of the RSVPv2-NSLP Framework 19

 4.1 RSVPv2 NSLP protocol features provided by the intra-do-
 main level
 .. 22

4.1.1 PDR protocol part functions 23
4.1.2 PHR protocol part functions 23

 4.2 RSVPv2 NSLP protocol features provided by the e2e service
 level ... 25

5 RSVPv2 NSLP specification 26
5.1 RSVPv2 NSLP Object Classes structure 26
5.1.1 RSVPv2 NSLP Message Structure 29
5.2 RSVPv2-NSLP Objects in RSVPv2-NSLP Object_Classes 29
5.2.1 Example of mapping of RSVPv1 [RFC2205] objects in 30
5.2.2 PDR/PHR objects .. 33

 5.3 RSVPv2-NSLP functionality on nodes used for inter-domain
 signaling ... 33

5.3.1 NI (NSIS Initiator) functionality 33
5.3.1.1 Unidirectional functionality 33

https://datatracker.ietf.org/doc/html/rfc2205

5.3.1.2 Bidirectional functionality 35

Westberg, et al. Expires October 2003 [Page 3]

Internet Draft Proposal for RSVPv2-NSLP April 2003

5.3.2 NF (NSIS Forwarder) functionality 36
5.3.2.1 Unidirectional functionality 36
5.3.2.2 Bidirectional functionality 38
5.3.3 NR (NSIS Responder) functionality 39
5.3.3.1 Bidirectional functionality 40

 5.4 RSVPv2-NSLP functionality on nodes used for intra-domain
 signaling ... 41

5.4.1 NI (NSIS Initiator) functionality 41
5.4.1.1 Unidirectional functionality 42
5.4.1.2 Bidirectional functionality 42

 5.4.2 Functionality of NF (NSIS Forwarder) located outside
 NSIS intra-domain ... 42

5.4.2.1 Unidirectional functionality 42
5.4.2.2 Bidirectional functionality 42
5.4.3 NF (ingress) functionality 42
5.4.3.1 Unidirectional functionality 43
5.4.3.2 Bidirectional functionality 48
5.4.4 NF (interior) functionality 49
5.4.4.1 Unidirectional functionality 49
5.4.4.2 Bidirectional functionality 51
5.4.5 NF (egress) functionality 51
5.4.5.1 Unidirectional functionality 52
5.4.5.2 Bidirectional functionality 55
5.4.6 NR (NSIS Responder) functionality 56
5.4.6.1 Unidirectional functionality 56
5.4.6.2 Bidirectional functionality 56
6 Example of RSVPv2-NSLP Inter-domain signaling procedures 57
6.1 Normal operation for uni-directional reservation 57
6.2 Normal operation for bi-directional reservation 62
7 Example of RSVPv2-NSLP Intra-domain signaling procedures 65
7.1 Normal operation for uni-directional reservation 65
7.2 Example of Fault Handling Operation 80
7.2.1 Loss of NTLP signalling messages 81
7.2.2 Severe Congestion Handling operation 81
7.2.2.1 Proportional marking 82
7.3 Example of Adaptation to load sharing operation 84
7.4 Normal operation for bi-directional reservation 84
8 Appendix - Examples of PHR and PDR object specifications

 ... 90
8.1 PHR objects .. 90
8.2 PDR objects .. 93
9 References ... 98
10 Authors' Addresses .. 101

Westberg, et al. Expires October 2003 [Page 4]

Internet Draft Proposal for RSVPv2-NSLP April 2003

1. Introduction

 A number of different QoS solutions have been developed by the IETF,
 amongst them IntServ and its signaling protocol, RSVPv1, defined in
 [RFC2205]. RSVPv1 [RFC2205] is a resource reservation signaling
 protocol that was designed to be applied in an end-to-end
 communication path. It can be used by an application to make its QoS
 requirements known and reserve resources in all the network nodes in
 the path.

 RSVPv1 has not enjoyed the level of deployment that might have been
 expected. This is due to issues such as design constraints as it is
 optimized for multicast, etc. [RFC2475, RFC3175, etc]. This memo
 seeks to initiate a dialog about the design of a new version of
 RSVPv1, which we call RSVPv2. The goal of the RSVPv2 framework would
 be to rectify the issues that have been identified with RSVPv1 and
 provide an evolutionary path forward.

 The RSVPv2 framework uses the concept introduced in [BrLi01] that
 splits signaling protocol into two layers:

 (1) a common lower level protocol that performs transport-layer
 and soft-state functions. This common lower level is called
 CSTP ("Common Signaling Transport Protocol").

 (2) a set of upper-level signaling functions that are specific
 to particular signaling applications. These upper-level
 signaling tasks and functions are accomplished by a set of
 ULSPs ("User Layer Signaling Protocols).

 The CSTP together with the set of ULSPs will implement the Internet
 Signaling Protocol Suite (ISPS). The NSIS working group adopted this
 concept denoting the two protocols as NSIS Transport Layer Protocol
 (NTLP) and NSIS Signaling Layer Protocol (NSLP), respectively
 [Hanc03].

 This memo outlines the motivation for using RSVPv2-NSLP as NSIS
 Signaling Layer Protocol. It provides a design guideline and
 specification for RSVPv2-NSLP. Note that in order to be able to
 communicate with NTLP, RSVPv2-NSLP needs to use an NSLP Identifier
 that has to be assigned by the NSIS WG. RSVPv2-NSLP specified in this
 draft is able to interwork with NTLP specified in [WeKa03].

https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc3175

Westberg, et al. Expires October 2003 [Page 5]

Internet Draft Proposal for RSVPv2-NSLP April 2003

1.1. Definitions/Terminology

 Interdomain traffic:

 Traffic that passes from one NSIS domain to
 another ([identical to [Hanc03]).

 Intra-domain NSIS signaling is where the NSIS signaling messages are
 originated, processed and terminated within the same NSIS domain.

 NSIS Domain (ND) (identical to [Hanc03]):

 Administrative domain where an NSIS protocol
 signals for a resource or set of resources.

 NSIS Entity (NE) (identical to [Hanc03]):

 the function within a node which implements an
 NSIS protocol. In the case of path-coupled signaling, the
 NE will always be on the data path.

 NSIS Forwarder (NF) (identical to [Hanc03]):

 NSIS Entity between a NI and NR which may
 interact with local resource management function (RMF). It also
 propagates NSIS signaling further through the network.

 NF Edge nodes:

 NF Nodes that are located at the boundary of an administrative
 domain, e.g., Diffserv. This node is a NTLP stateful node.

 NF Interior node:

 All the nodes that are part of an administrative domain, e.g.,
 Diffserv, and are not NF edge nodes. An interior node can be
 either a NTLP stateful node or a NTLP stateless node.

 NF Ingress node:

 An NF edge node that handles the traffic as it enters the
 domain. This node is a NTLP stateful node.

 NF Egress node:

Westberg, et al. Expires October 2003 [Page 6]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 An NF edge node that handles the traffic as it leaves the
 domain. This node is a NTLP stateful node.

 NSIS Initiator (NI) (identical to [Hanc03]):

 NSIS Entity that initiates NSIS signaling for a
 network resource.

 NSIS Responder (NR) (identical to [Hanc03]):

 NSIS Entity that terminates NSIS signaling and
 can optionally interact with applications as well.

 NSIS Signaling Layer Protocol (NSLP) (identical to [Hanc03]):

 generic term for an NSIS protocol component that supports a specific
 signaling application.

 NSIS Transport Layer Protocol (NTLP) (identical to [Hanc03]):
 placeholder name for the NSIS protocol component that will support
 lower layer (signaling application independent) functions.

 NTLP aware node:

 a node that implements and supports the NTLP protocol.

 NTLP stateful node:

 a NTLP aware node that maintains a NTLP transport layer state.

 NTLP stateless node:

 a NTLP aware node that does not maintain a NTLP transport layer
 state.

 NE NTLP stateful

 NE entity that is NTLP stateful.

 NE NTLP stateless

 NE entity that is NTLP stateless.

 NF NTLP stateful

Westberg, et al. Expires October 2003 [Page 7]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NF entity that is NTLP stateful.

 NF NTLP stateless

 NF entity that is NTLP stateless.

 Resource Management Function (RMF) (identical to [Hanc03]):

 an abstract concept,
 representing the management of resources in a domain or a node.

 End Host:

 QoS-aware end terminal, either fixed or mobile, i.e. running
 QoS-aware applications. This node is a NTLP stateful node and it
 can be considered as a NI or a NR.

 RSVPv2 NSLP:

 an NSLP type that can be a part of the RSVPv2 framework.

 NSLP intra-domain:

 a domain that supports NSIS intra-domain signaling.

 Classifier - an entity which selects packets based on the content of
 packet headers according to defined rules.

 DS behavior aggregate (identical to [RFC2475]):

 A collection of packets with the same DS codepoint crossing
 a link in a particular direction.

 DS-compliant (identical to [RFC2475]):

 Enabled to support differentiated services functions and
 behaviors as defined in [RFC2474], this document, and other
 differentiated services documents; usually used in reference
 to a node or device.

 Interdomain traffic - Traffic that passes from one NSIS domain to
 another

 Intra-domain NSIS signaling is where the NSIS signaling messages are
 originated, processed and terminated within the same NSIS domain.

https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2474

Westberg, et al. Expires October 2003 [Page 8]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NSIS Forwarder (NF) - NSIS Entity on the path between a NI and NR
 which may interact with local resource management function (RMF)
 The NSIS Forwarder also propagates NSIS signaling further through the
 network (identical to [Hanc03]). Note that NF can be also
 considered as a RSVPv2 forwarder.

 NSIS Initiator (NI) - NSIS Entity that initiates NSIS signaling for a
 network resource (identical to [Hanc03]). Note that NI can be also
 considered as a RSVPv2 initiator.

 NSIS Responder (NR) - NSIS Entity that terminates NSIS signaling and
 can optionally interact with applications as well
 (identical to [Hanc03]). Note that NR can be also considered as a
 RSVPv2 responder.

 Path-coupled signaling - a mode of signaling where the signaling
 messages follow a path that is tied to the data messages
 (see [Hanc03]).

 Path-decoupled signaling - signaling with independent data and
 signaling paths (see [Hanc03]).

 Per Hop Behavior (PHB) (identical to [RFC2475]):

 The externally observable forwarding behavior applied at
 a DS-compliant node to a DS behavior aggregate.

 Per Hop Reservation (PHR):

 The per-hop resource reservation in a Diffserv domain,
 extending the Diffserv PHB, e.g., the bandwidth allocated to
 an AF PHB (see RFC2597]), with resource reservation. It is
 implemented at both the interior nodes and the edge nodes.

 Per Hop Reservation (PHR) protocol:

 A type of protocol that is used to perform a per hop
 reservation. A PHR protocol part is used in all nodes in the
 Diffserv domain (both edge and interior nodes) on a hop by
 hop basis.

 Per Domain Behavior (PDB)(similar to [NiKa01]):

 Describes the behavior experienced by a particular set of
 packets as they cross a DS domain. A PDB is characterized

https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc2597

Westberg, et al. Expires October 2003 [Page 9]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 by specific metrics that quantify the treatment that a set
 of packets with a particular DSCP (or set of DSCPs) will
 receive as it crosses a DS domain.

 Per Domain Reservation (PDR):

 The resource reservation functionality in the complete Diffserv domain.

 Per Domain Reservation (PDR) protocol:

 A type of signaling protocol used to perform a per domain
 reservation signaling.
 A PDR protocol part is used by NF(edge) nodes (NF(ingress)
 and NF(egress)),
 but not by the NF(interior) nodes.

 Resource - something of value in a network infrastructure to which
 rules or policy criteria are first applied before access is granted.
 Examples of resources include the buffers in a router and bandwidth
 on an interface

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Motivation for RSVPv2

 Embarking on the adventure of creating RSVPv2 is not to be done
 lightly. A great deal of effort was put into the design of the
 IntServ model and its signaling protocol, RSVPv1. As such, there
 must be a clear need for the evolution of the QoS signaling part of
 RSVPv1. This section tries to provide that motivation.

 We believe that this work can be accomplished by examining the design
 constraints placed upon the development of RSVPv1 and eliminate these
 constraints in RSVPv2 design.

https://datatracker.ietf.org/doc/html/rfc2119

Westberg, et al. Expires October 2003 [Page 10]

Internet Draft Proposal for RSVPv2-NSLP April 2003

2.1. Limitation of RSVPv1 design

 RSVPv1 is well-designed for the applications for which it was
 intended and worked hard to provide a modular protocol within the
 constraints of its intended use. We see value in questioning the
 applications chosen, thereby improving the protocol.

 This section outlines some of the design considerations that went
 into the design of RSVPv1, which in turn led to decisions that make
 it difficult to use RSVPv1 beyond its originally-intended scope.

2.1.1. Designed for Multicast Applications

 One of the most important design requirement for RSVPv1 was support
 for multicast applications. RFC 1633 [RFC1633] states, "There are a
 number of requirements to be met by the design of a reservation
 setup protocol. It should be fundamentally designed for a multicast
 environment...."

 Multicast support introduces a level of complexity into the protocol
 that is not needed in support of unicast applications. For example,
 RSVPv1's state maintenance is complex as it needs to support dynamic
 membership changes in the multicast groups, such as reservation
 state
 merging and maintenance.

 Our working assumption is that RSVPv2 should be optimized for
 unicast
 rather than multicast and that relaxing this design constraint will
 in turn greatly simplify the protocol.

2.1.2. Least Common Denominator Not Small Enough

 Rightfully so, RSVPv1 put a great deal of effort into creating a
 modular protocol with the ability to use those pieces that apply in a
 particular setting. However, this modularity was created with the
 backdrop of multicast applications. This means that, while modular
 to some degree, even the "least common denominator" of objects that
 must be carried is too heavy in some networking contexts. That is,
 while flexible, RSVPv1 does not allow for more lightweight
 implementations if fewer features are needed in certain parts of the
 network.

https://datatracker.ietf.org/doc/html/rfc1633
https://datatracker.ietf.org/doc/html/rfc1633

Westberg, et al. Expires October 2003 [Page 11]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 The fact that the least common denominator is too heavy means that:

 * Some objects are always carried in RSVPv1 messages that are
 not applicable in some settings.

 * There is an expectation of the same level of protocol
 functionality throughout the network(s). Clearly, different
 parts of the network need different levels of functionality,
 a differentiation not supported by RSVPv1.

 On May 20, 2002, Bob Braden, one of the creators of RSVPv1, wrote
 the
 following on the NSIS working group's mailing list [NSIS-ML1]:

 "...RSVP may have had the modularity wrong.... RSVP design and
 specification may have talked too much about int-serv specific
 things like Tspecs. We should instead have defined RSVP strictly
 in terms of transporting opaque QoS objects upstream and
 downstream...."

 Our working assumption is that RSVPv2 can be created with even more
 modularity to enable its use in most (if not all) networking
 contexts. In particular, we believe that RSVPv2 can be made more
 suitable for use in the different parts of the network where
 requirements on the signaling protocol differ greatly.

2.1.3. Sender-initiated versus Receiver-initiated Signalling

 RSVPv1 is receiver-oriented, which is to say that the receiver of a
 data flow initiates and maintains the resource reservation used for
 that flow. This choice was made despite the fact that sender-
 initiated reservations are "perhaps the most obvious choice" since
 sender-initiated reservations "scale poorly for large, dynamic
 multicast delivery trees and for heterogeneous receivers" (Section

5.1.3, RFC 1633 [RFC1633]). These two problems were solved by using
 receiver-initiated reservations.

 Our working assumption is that relaxation of the requirement for
 multicast support will also allow for sender-initiated reservations
 without introducing scalability problems.

https://datatracker.ietf.org/doc/html/rfc1633
https://datatracker.ietf.org/doc/html/rfc1633

Westberg, et al. Expires October 2003 [Page 12]

Internet Draft Proposal for RSVPv2-NSLP April 2003

2.1.4. Designed for End-host to End-host Communication

 RSVPv1 was primarily designed with signaling between end-host systems
 in mind. This communication implies a certain set of requirements on
 the entities involved and on the kinds of information that they need
 to signal.

 In recent work (particularly in NSIS), it has become clear that there
 are in fact several different kinds of signaling conversations that
 may be needed in different parts of the network. Each of these kinds
 of signaling implies a different -- and potentially conflicting --
 set of requirements on the signaling protocol. For example, the
 signaling requirements for the conversation between the end-host and
 the network may indeed need more complexity than RSVPv1 whereas the
 signaling needs in a DiffServ-capable access network would require
 significantly less.

 Our working assumption is that RSVPv2 must be designed to allow an
 appropriate set of objects to be defined for the various "interfaces"
 (e.g., host-to-network, edge-to-edge, end-to-end) used in various
 parts of the network while not including any mandatory objects that
 are not applicable in all parts of the network.

2.2. Different Network Signalling Requirements/Needs and RSVP

 As previously mentioned, RSVPv1 put a great deal of effort into
 creating a modular protocol with the ability to use those pieces
 that
 apply in a particular setting. However, while flexible, RSVPv1 does
 not allow for more lightweight implementations if fewer features are
 needed in certain network scenarios.

 This section provides a (non-exhaustive) list of scenarios where
 there seems to be a need for new tools, either because the need for
 optimization is sufficiently strong or the scenario was not
 considered in the design of RSVPv1.

 * Networks with semi-permanent trunk aggregation: In such
 networks the transmission links are not expensive and
 semi-permanent trunk aggregation can be applied.

 * Networks with trusted end hosts: In these networks the
 security requirements are less important. Such networks are

Westberg, et al. Expires October 2003 [Page 13]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 the networks used between PSTN (Public Switched Telephone
 Networks) gateways and backbone routers [PAN-SSP].

 * Networks with untrusted mobile end hosts: In these networks
 the security requirements between the first hop access router
 and the untrusted mobile end host are very significant. Such
 networks are the networks that use wireless LAN (WLAN)
 access [RFC2002].

 * Networks that have to support fast and frequent mobility
 procedures (e.g., handover), where the transmission links
 are expensive, and the majority of the traffic is unicast.
 Cellular radio access networks are examples of such networks.
 [RAN-ISSUE].

3. Design Goals and General Features for RSVPv2-NSLP

 This section briefly outlines some of the guiding principles behind
 the design of RSVPv2-NSLP. Moreover, the RSVPv2 NSLP general features
 are described. These design goals and features are in line with some
 of the NSIS requirements described in [Bru03] and [Hanc03].

3.1. Increased Layer Modularity and Extendibility

 The essential design goal for RSVPv2 framework is to preserve the
 flexibility of RSVPv1 while at the same time further expanding its
 modularity. It can be fulfilled by using the NTLP-NSLP layer-split
 architecture.

 The RSVPv2-NSLP protocol can be considered as an NSLP that will use a
 subset of the transport layer functions provided by the NTLP (see for
 example [WeKa03]) such as:

 * Support of Path-Coupled (Path-Directed) Signaling;

 * Soft state support: This feature ensures that a state
 will be removed if it is not periodically refreshed or
 explicitly removed.

 * Adaptation to load sharing. Load sharing allows NF interior
 nodes to take advantage of multiple routes to the same

https://datatracker.ietf.org/doc/html/rfc2002

Westberg, et al. Expires October 2003 [Page 14]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 destination by sending via some or all of these available
 routes. The NTLP protocol level has to adapt to load sharing
 once it is used.

 * The NTLP signaling protocol should be able to exchange local
 information between NSIS Forwarders located within one single
 administrative domain. Local information might, for example,
 be IP addresses, severe congestion notification, notification
 of successful or erroneous processing of signaling messages.

3.2. Increased Object Modularity

 The purpose of the object modularity is to increase processing
 efficiency of RSVPv2 NTLP messages by only including those objects
 relevant in a particular part of the network.

 RSVPv1 uses flexible object definitions that are opaque to RSVPv1 for
 transporting and maintaining traffic and policy control parameters.
 This type of object definition has certain advantages in terms of
 flexibility, but one of its main disadvantages is that each RSVPv1
 message may contain up to fourteen classes of attribute objects. Even
 if some of the RSVPv1 objects are not needed in a scenario they will
 have to be included in RSVPv1 messages and considered as mandatory
 objects.

 In order to achieve modularity, the RSVPv2-NSLP object structure will
 need to have less (possibly no) "mandatory" functionality and allow a
 more open object structure.

 This open object structure can be solved by enhancing the RSVPv1
 object structure and by introducing a concept of "profiles". A
 profile is a specification of which RSVPv1 objects are needed for a
 certain network scenario (see Section 2.2 above). In this way, the
 RSVPv1 messages will only carry the RSVPv1 objects that are required
 and specified by each profile. The profile concept makes use of
 profile identifiers to separate different profiles used in RSVP aware
 nodes.

3.3. Hierarchical Object Structure

 RSVPv1, even in its simplest form, still uses objects and features
 that are not needed in all routers (nodes) used in a network

Westberg, et al. Expires October 2003 [Page 15]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 scenario. For example, in a network scenario with WLAN access, the
 QoS signaling protocol used between the access router and the
 untrusted mobile end host requires strong security procedures.
 However, the QoS signaling protocol used in the same network scenario
 between the same access router and another router will not require
 the same security procedures. Another example is a network with
 semi-permanent trunk aggregation, where the edges of such a network
 have to provide aggregator/deaggregator features, e.g., maintenance
 of both per micro-flow and per aggregated flow reservation states,
 while the interior nodes require only simpler functionality, e.g.,
 maintenance of per aggregated flow reservation states.

 The RSVPv2 framework will endeavor to improve this by providing a
 hierarchical structure and positioning of the RSVPv2 NSLP objects
 within RSVPv2 messages for each networking scenario. Each profile
 used for a network scenario will have to specify how the objects are
 structured into the RSVPv2 NSLP message and how they should be
 processed by a router. The objects that will be processed by all
 routers used in a network scenario will be placed as the first ones
 in the object sequence of the RSVPv2 NSLP message. Objects that will
 be processed only in specific routers can be placed later in the
 sequence.

3.4. Global and Local Objects

 NSLP RSVPv2's object space will consist of globally-understood
 objects ("global objects") and locally-understood objects ("local
 objects"). The purpose of this division is to provide additional
 flexibility in defining the objects carried by the RSVPv2 protocol
 such that only those objects that are applicable in a particular
 setting are used.

 The appropriate fora for defining these objects and how to manage the
 object space is obviously still a very open question.

3.5. Local information exchange

 The signaling protocol MUST be able to exchange local information
 between NSIS Forwarders located within one single administrative
 domain. Local information might, for example, be IP addresses, severe
 congestion notification, notification of successful or erroneous
 processing of signaling messages.

Westberg, et al. Expires October 2003 [Page 16]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 In some cases, the NSIS signaling protocol MAY carry identification
 of the NSIS Forwarders located at the boundaries of a domain.
 However, the identification of edge should not be visible to the end
 host (NSIS Initiator) and only applies within one administrative
 domain.

3.6. Object Re-use

 Obviously, whenever it is appropriate, RSVPv2 will re-use objects
 that are defined for RSVPv1.

3.7. Reduced Focus on Multicast

 Given the complexity that multicast support introduces to QoS
 signalling and the fact that the vast majority of the traffic in
 typical IP networks is point-to-point unicast transport, RSVPv2 will
 be optimized to operate as a sender-initiated protocol for unicast
 data flows.

 This should not be interpreted to mean that multicast support is not
 important and should not be supported. Given the increased
 modularity of RSVPv2 framework, it is entirely possible that
 appropriate objects will be defined in support of multicast.

3.8. Primarily Sender-initiated Signalling

 Given a reduced focus on multicast, the "obvious" choice of sender-
 initiated signalling seems to be applicable to the NSLP RSVPv2. The
 receiver-initiated reservations will undoubtedly still be needed in
 some network scenarios, so the RSVPv2 framework will need to handle
 such reservations as well. However, this feature will be optional.

3.9. Low latency in setup

 The RSVPv2 framework SHOULD allow for low latency setup of
 reservations in scenarios, where reservations are in a short time
 scale (e.g. handover in mobile environments), or where human
 interaction is immediately concerned (e.g., voice communication setup
 delay).

Westberg, et al. Expires October 2003 [Page 17]

Internet Draft Proposal for RSVPv2-NSLP April 2003

3.10. Highest possible network utilization

 There are networking environments that require high network
 utilization for various reasons, and the signaling protocol SHOULD do
 its best ability support high resource utilization while maintaining
 appropriate QoS.

 In networks where resources are very expensive (as is the case for
 many wireless networks), efficient network utilization is of critical
 financial importance. On the other hand there are other parts of the
 network where high utilization is not required.

3.11. Uni / bi-directional reservation

 Both unidirectional as well as bi-direction reservations SHOULD be
 possible. With bi-directional reservations we mean here reservations
 having the same end-points. But the path in the two directions does
 not need to be the same. The goal of a bi-directional reservation is
 mainly an optimization in terms of setup delay. There is no
 requirements on constrains such as use the same data path etc.

3.12. End-to-end

 When used end-to-end (see also [Hanc03]), the RSVPv2 NSLP protocol is
 initiated by an end host and is terminated by another end host. In
 this context, RSVPv2 NSLP can be applied as needed within all of the
 RSVPv2 NSLP domains between the end hosts. In the end-to-end path,
 RSVPv2 NSLP may be used both for intra-domain RSVPv2 NSLP signaling,
 as well as for inter-domain signaling.

3.13. Edge-to-edge

 In this scenario (see also [Hanc03]) the RSVPv2 NSLP protocol is
 initiated by an edge node of a RSVPv2 NSLP domain and is terminated
 by another edge node of the same (or possibly different) RSVPv2 NSIS
 domain. RSVPv2 NSLP can be applied either within one single RSVPv2
 NSLP domain, which is denoted as edge-to-edge in a single domain, or
 within a concatenated number of RSVPv2 NSLP domains, which is denoted
 as edge-to-edge in a multi-domain. When an appropriate security trust
 relation exists between two or more concatenated RSVPv2 NSLP domains,
 these concatenated RSVPv2 NSLP domains are considered, in terms of
 RSVPv2 NSLP, to be a single, larger RSVPv2 NSLP domain.

Westberg, et al. Expires October 2003 [Page 18]

Internet Draft Proposal for RSVPv2-NSLP April 2003

3.14. End-to-edge

 In this scenario (see also [Hanc03]) the RSVPv2 NSLP protocol is
 either initiated by an end host and is terminated by an edge node or
 is initiated by an edge node and is terminated by an end host. In the
 path-coupled case, the edge node may be a proxy that is located on a
 boundary node of a RSVPv2 NSLP domain.

4. Overview of the RSVPv2-NSLP Framework

 The RSVPv2 protocol can be considered as an NSLP that will use a
 subset of the transport layer functions provided by the NTLP protocol
 level (see for example, [WeKa03]). The RSVPv2 protocol can be used
 for End-to-End, Edge-to-Edge, and End-to-Edge scenarios. In the End-
 to-End scenario the both NSIS end nodes are functioning as NSIS
 Initiators (NI) and NSIS Responders (NR). In the Edge-to-Edge
 scenario, both NSIS edge nodes are functioning as NI, NR and NSIS
 Forwarders (NF). In the End-to-Edge scenario the NSIS end host is
 functioning as a NI or NR and the edge node is functioning as a NI,
 NR and NF.

 The NSLP can consist of one protocol level or it can be separated
 into more than one hierarchical levels.

 Figure 1 shows the NSIS protocol that consists of one NTLP level and
 one NSLP level.

 |-----| |-------| |-------| |-------| |-------| |-----|
 |NSLP |<->| NSLP |<->| NSLP |<->| NSLP |<->| NSLP |<->| NSLP|
 | |<->| |<->| |<->| |<->| |<->| |
 | | | | | | | | | | | |
 ----- ------- ------- ------- ------- -----
 |NTLP |<->| NTLP |<->| NTLP |<->| NTLP |<->| NTLP |<->| NTLP|
 | |<->| |<->| |<->| |<->| |<->| |
 |-----| |-------| |-------| |-------| |-------| |-----|
 NI NF NF NF NF NR

 Figure 1: One level used for RSVPv2 NSLP signaling

 The NSLP depicted in Figure 1 includes a set of upper-level signaling
 functions that are specific to particular signaling applications.

Westberg, et al. Expires October 2003 [Page 19]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Such functions could, for example, be end to end resource reservation
 signaling, security, policy, billing, etc.

 In Figure 2 the NSIS protocol is shown, which consists of one NTLP
 level and two NSLP hierarchical levels. However, the approach is
 quite general to more NSLP hierarchical levels: the important issue
 is the use of NSLP at more than one level at all.

 This type of hierarchical level separation can for example, be
 applied for intra-domain signaling in order to maximize the
 scalability in an NSIS intra-domain.

 The lowest hierarchical level in Figure 2 represents the NTLP level
 protocol. Note that in this the NF nodes are usually considered to be
 NTLP stateful nodes. This holds also for the NF nodes used at the
 boundary of a domain, i.e., the NF edge nodes. However, as described
 in [WeKa03], the NF interior nodes of a domain can be considered to
 be NF stateful nodes (see Figure 1) or, when processing optimization
 is required, the NF interior nodes can be NF stateless nodes (see
 Figure 2). The NF stateful nodes are NF NTLP aware nodes that
 maintain a NTLP state by using the NTLP soft state principle and are
 able to process and modify the application level information (NSLP)
 that is transported by the NTLP protocol. The NF NTLP stateless
 nodes are NF NTLP aware nodes that do not maintain a NTLP state, but
 they are able to process and modify the application level information
 (NSLP) that is transported by the NSLP protocol. The RSVPv2 NSLP
 framework depicted in Figure 2 is separated in two levels:

 * the intra-domain level (located above the NTLP level), that is
 composed by two protocol parts the Per Domain Reservation (PDR)
 protocol part and the Per Hop Reservation (PHR) level. Note that these
 two protocol parts are simialr to the two protocols (PDR and PHR) that
 are described in the Resource management in Diffserv (RMD)
 scheme [RMD-frame].

 In order to maximize the scalability in the RSVPv2 intra-domain
 the complexity imposed by the combination of the RSVPv2 NSLP and NTLP
 has to be moved as much as possible away from the interior nodes.
 Therefore, the RSVPv2 NTLP separates the problem of a
 complex reservation within a domain from a simple reservation
 within a node. This is accomplished by specifying two types
 of resource reservation protocol parts into the RSVPv2 NSLP
 intra-doamin.
 The first resource reservation protocol part type is denoted as Per

Westberg, et al. Expires October 2003 [Page 20]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Hop Reservation (PHR) that enables the signaling of the resources
 to be reserved per traffic class (e.g., Diffserv Per Hop Behavior
 (PHB) class) in each node within a domain. This protocol type is
 optimized to reduce the requirements placed on the functionality
 of the NF interior nodes of the domain. For example, the nodes
 that implement this protocol type do not have per flow
 responsibilities. This protocol can be either reservation-based or
 measurement-based. In the reservation-based PHR, each node keeps
 only one reservation state per each supported traffic class. In the
 measurement-based PHR no reservation states are installed and the
 resource availability is checked by measuring traffic (user) data
 load. In the NF interior nodes there is no NTLP state
 and there is no PDR functionality. Note that these NF interior
 nodes are NTLP stateless nodes.

 The second protocol type is denoted as Per Domain Reservation
 (PDR) and is responsible for the resource reservation signaling
 on the NF edge nodes. The PDR is used by NF edge nodes
 (ingress and egress) but not by the interior nodes. This
 protocol introduces strict and complex requirements on the
 functionality implemented on the edge nodes. An example of such
 functionality is the mapping of the "global" traffic parameters
 signalled by the e2e service level (see Figure 2) to "local"
 parameters that are useful to the intra-domain scheme.
 Note that in the NF edge nodes (NF ingress and NF egress) a
 NTLP state is maintained and both PDR and PHR functionalities
 are active.

 * the e2e service level is located above the PDR/PHR level and
 includes a set of upper-level signaling functions that are specific
 to particular signaling applications. Such functions could, for
 example, be end to end resource reservation signaling, security,
 policy, billing, etc.

 The interface between the RSVPv2 NSLP and NTLP can be based on an API
 (Application Program Interface) and for the time being, is out of
 scope of this memo.

 As shown in Figure 2, the two NSLP hierarchical levels might be
 applied on different NSIS entities.

 This architecture for NSIS (e.g., RSVPv2) signaling can be provided
 by using:

Westberg, et al. Expires October 2003 [Page 21]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 *) a single end-to-end NSIS (e.g., RSVPv2) protocol that supports both
 NLSP hierarchical levels
 *) two independent NSIS (e.g., RSVPv2) protocols: the e2e service
 level is supported by an end-to-end NSIS protocol, and the PDR/PHR
 level is supported by another edge-to-edge NSIS (e.g., RSVPv2)
 protocol.

 |------| |-------| |-------| |------|
 | e2e |<--| e2e |<------------------------->| e2e |<->| e2e |
 service|<->|service| |service|<->|service
		-------		-------		------				
		-------		-------		-------		-------		
		PDR/PHR	<->	PHR	<->	PHR	<->	PDR/PHR		
		-------		-------		-------		-------		

 | | | | | | | | |
 |------| |-------| |-------| |-------| |-------| |------| V
 | level|<->| level |<->| level |<->| level |<->| level |<->|level |NTLP
NTLP	<->	NTLP	<->	NTLP	<->	NTLP	<->	NTLP	<->	NTLP
st.ful		st.ful		st.less		st.less		st.full		st.ful
------		-------		-------		-------		-------		------
 NI NF NF NF NF NR
 (edge) (interior) (interior) (edge)

 NTLP st.ful : NTLP stateful
 NTLP st.less : NTLP stateless

 Figure 2: Two levels used for the RSVPv2 NSLP

 The hierarchical level separation can be provided by supporting a
 hierarchical object structure. In other words, the NSIS protocol
 objects should be structured and positioned within the NSIS messages
 in a hierarchical way, i.e., first the "NTLP level" objects, then the
 "PDR/PHR" objects and finally the "e2e service" objects.

4.1. RSVPv2 NSLP protocol features provided by the intra-domain level

 The RSVPv2 NSLP protocol functions provided by the intra-domain level
 are composed by the protocol functions provided by the PDR and PHR
 protocol parts (similar to [RMD-frame], [RODA], [RIMA]).

Westberg, et al. Expires October 2003 [Page 22]

Internet Draft Proposal for RSVPv2-NSLP April 2003

4.1.1. PDR protocol part functions

 The RSVPv2 NSLP PHR and PDR protocol parts that implement the RSVPv2
 NSLP intra-domain level are listed below.

 A PDR protocol part implements all or a subset of the following
 functions:

 * Admission control and/or resource reservation signaling within
 a domain (i.e., on the edge nodes).

 * Mapping of external QoS request provided by the e2e service level
 to a traffic class identifier, e.g., Diffserv Code Point
 (DSCP).

 * Modification of an already installed RSVPv2-NSLP reservation state.

 * Notification of the NF ingress node IP address to the NF egress
 node.

 * Notification of resource availability in all the nodes
 located in the communication path from the NF ingress to the
 NF egress nodes.

 * Severe congestion handling. Due to a route change or a
 link failure, a severe congestion situation may occur.
 The NF egress node is notified by PHR when such a severe
 congestion situation occurs. Using PDR, the egress node
 notifies the NF ingress node about this severe congestion
 situation. The NF ingress node resolves this situation by using
 a predefined policy, e.g., refusing new incoming flows and
 terminating a portion of the affected flows.

 * Uni / bi-directional reservation. Both unidirectional as well
 as bi-direction reservations SHOULD be possible

 * Notification that lost signalling messages (containing PHR and PDR
 information) occurred in the communication path from the ingress
 to the egress nodes.

4.1.2. PHR protocol part functions

 A RSVPv2-NSLP PHR protocol part implements all or a subset of the
 following functions:

Westberg, et al. Expires October 2003 [Page 23]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 * Admission control and/or resource reservation signaling within a
 node.

 * Management of one reservation state (i.e., PHR state) per traffic
 class by using a combination of the reservation soft state and
 explicit release signaling principles (see e.g., [RODA]). Note that
 the PHR state is maintained by using the NTLP soft state principle.

 Each NF node in the communication path from an NF ingress node to an
 NF egress node keeps only one reservation state per traffic class.

 The reservation signaling is done in terms of resource units,
 which may be based on a single parameter, such as bandwidth,
 or on more sophisticated parameters. These resources are
 requested dynamically per traffic class (e.g., per DSCP) and
 reserved on demand on all nodes in the communication path from an
 NF ingress node to an NF egress node. This concept is denoted as
 reservation based "PHR".

 * Measurement of the user traffic load (see e.g., [RIMA]). This
 PHR function is used to check the availability of resources before
 flows are admitted and without installing any reservation state.
 That is, the resource management function that is used is actually
 a Measurement Based Admission Control (MBAC) algorithm, which
 performs measurements on the traffic (user) data load. The main
 advantage of this PHR group is that the PHR functionality
 that is executed at the edge and interior nodes will not
 have to maintain any reservation states. This concept is denoted
 as measurement based "PHR".

 * Stores a pre-configured threshold value on maximal allowable
 traffic load (or resource units) per traffic class, e.g., PHB.
 When the resource management function (RMF) that is used
 in combination with this PHR protocol function maintains a
 reservation state per traffic class it also has to maintain a
 threshold for each traffic class (e.g., PHB) that specifies the
 maximum number of reservable resource units. This threshold could,
 for example, be statically configured.
 When the resource management function (RMF) that is used
 in combination with this PHR protocol function is an MBAC algorithm
 it also has to maintain one state per traffic class that stores the
 measured user traffic load associated to the traffic class, e.g., PHB
 and another state per traffic class, e.g., PHB that stores the

Westberg, et al. Expires October 2003 [Page 24]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 maximum allowable traffic load per traffic class, e.g., PHB.

 * Severe congestion notification. This situation occurs as
 a result of route changes or a link failure. The PHR
 has to notify the NF edges about the occurrence of this
 situation.

 Once detected the severe congestion should be signalled to the
 NF(edges).
 As previously mentioned, the NF(egress) node will first be notified,
 after which the NF(egress) will notify the NF(ingress) node using the
 NSLP PDR functionality.

 Below is a list of several notification methods that can be used:

 * Greedy marking: all user data packets which pass through
 a severe congested interior node and are associated with a
 certain traffic class, e.g., DSCP, will be remarked into a
 another traffic class, e.g., a domain specific (DSCP)

 * Proportional marking: this method is similar to the previous
 method, with the difference that the number of the remarked
 packets is proportional to the detected overload

 * PHR message marking: only PHR objects that
 pass through a severely congested interior node will be
 marked. The marking is done by setting a special flag in
 the "PHR" object, i.e., "S" (see [RODA]).

 The last method can only be applied on the reservation-based "PHR"
 concept, while the other two can be applied on both "PHR" concept
 types. A comparison between different severe congestion solutions is
 given in [CsTa02]. Note that in the RMD NSLP the PHR and PDR
 protocol parts have to be generated and discarded at the edge nodes
 (ingress and egress nodes) and not at the end hosts.

4.2. RSVPv2 NSLP protocol features provided by the e2e service level

 The e2e service level protocol features that are used by this NSLP
 should satisfy all or a subset of the application signaling
 requirements provided in [Bru03]. The detailed description of these
 features will be included in the next updated versions of this draft.

Westberg, et al. Expires October 2003 [Page 25]

Internet Draft Proposal for RSVPv2-NSLP April 2003

5. RSVPv2 NSLP specification

 RSVPv2 NSLP is considered in this draft to be primarily optimised for
 unicast and sender initiated signaling. This section provides a first
 step in the RSVPv2 NSLP specification.

5.1. RSVPv2 NSLP Object Classes structure

 As described in [WeKa03] the NTLP message format consists of a common
 header, followed by a body consisting of a number of variable-length,
 typed transport layer "objects". The application layer (NSLP)
 "objects" are placed always after the transport layer "objects". Note
 that the application layer (NSLP) "objects" are opaque and
 transparent to NTLP. The NTLP message format is depicted in Figure 3.

 0 1 2 3
 +-------------+-------------+-------------+-------------+
 | |
 + Common Header +
 | |
 +-------------+-------------+-------------+-------------+
 | |
 // (Transport layer objects content) //
 | |
 +-------------+-------------+-------------+-------------+
 | |
 // Application layer (RSVPv2 NSLP) objects content) //
 | |
 +-------------+-------------+-------------+-------------+

 Figure 3: NTLP message format

 The Application layer (RSVPv2 NSLP) depicted in Figure 3 contains
 RSVPv2 NSLP messages. The RSVPv2 NSLP messages and their meaning is
 introduced in Table 1. Furthermore, the same table identifies the
 NTLP message that will transport a NSLP message.

Westberg, et al. Expires October 2003 [Page 26]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Table 1: NSLP messages

 Meaning of the NSLP message NSLP Message Type NTLP Message Type
 __________________________ _____________ _________________

 Initiation NslpPathInit PATH
 Initiation NslpResvInit RESV
 Modification NslpPathMod PATH
 Modification NslpResvMod RESV
 Refresh NslpPathRef PATH
 Refresh NslpResvRef RESV
 Path Tear down NslpPathTear PATHTEAR
 Resv Tear down NslpResvTear RESVTEAR
 Path Error report NslpPathErr PATHERROR
 Resv Error report NslpResvErr RESVERROR
 Resv Confirm NslpResvConfirm RESVCONFIRM

 In order to have a flexible and modular RSVPv2 NSLP object class
 structure, we propose a grouping of signalling information into
 RSVPv2 NSLP object classes, called RSVPv2 NSLP Object_Classes. These
 will contain objects that are defined globally and/or locally. A
 locally defined object will allow signalling of information relevant
 to nodes belonging to a certain domain, while the globally defined
 objects will be used anywhere on the Internet. The globally defined
 objects are denoted as "e2e service objects" and the locally defined
 objects are denoted as ""PDR/PHR" objects.

 In the RSVPv2 NSLP structure the following RSVPv2 NSLP Object_Classes
 are defined:

 * Service_Class

 This object class carries the information related to the
 service desired from the network, i.e. QoS. This class
 includes all information related to the requested/expected
 network service. The resource reservation is related
 to the QoS request as well as to the response on this
 QoS request. This object class is flexible in order to
 support different kinds of QoS requests for different kinds
 of networking scenarios such as a end-to-edge (proxy) scenario,
 bi-directional reservations, receiver-initiated, etc.

Westberg, et al. Expires October 2003 [Page 27]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 * Session_ID_Class

 This object class is common for the NTLP and NSLP. In [Weka03]
 this object class is denoted as Session object.
 This class includes information related to the
 identification of NTLP states. This object will contain
 a session identifier.

 The session identifier has to identify a NTLP state
 and has to remain unchanged for the complete duration of a
 data flow. Moreover, the Session_ID_Class identifier has to
 be associated with the flow ID information included in the
 Flow_Specification_Class object. In other words, for the
 duration of a data flow, the session identifier
 remains the same while the flow ID information associated
 with the same data flow might change. For example, in a
 mobile IP scenario, during handover the IP address of a
 mobile node might change, causing a change in the flow ID
 of an ongoing data flow. However, the session
 identifier associated with that data flow should not change.

 * Flow_Specification_Class

 This object class specifies the relation of the addressing
 (IP address/mask/port) to the reservation and if/how the
 reservation is shared between many addresses. In general,
 Flow_Specification contains information that identifies
 a particular data flow for which the specific service
 is requested from the network. For example, a flow
 ID consisting of a combination of source IP address,
 destination IP address, Source port, Destination port,
 Protocol number will be typical information belonging to
 the Flow_Specification_Class. This class should also contain
 an NSLP identifier, which identifies the NSLP type.

 * Security_class

 This object class includes information related to the
 protection, authorization and authentication of the
 information in the message. This object class is optional.

 * Error_message_class

 This class includes information related to the errors that

Westberg, et al. Expires October 2003 [Page 28]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 occur during reservation state processing. This object class
 can be considered as common for the NTLP and NSLP. In [Weka03]
 this object class is denoted as Error_Spec object.

5.1.1. RSVPv2 NSLP Message Structure

 The exact object structure and the object sequence will have to be
 defined for each network scenario by a pre-defined "profile" (see

Section 3.2). A profile can be either standardized or it could be an
 agreement between two or more participants.

 Based on the above defined RSVPv2 object-class structure the format
 of the RSVPv2 NSLP messages may be as follows:

 <NslpPathInit> | <NslpPathMod> | <NslpResvInit> | <NslpResvMod> |
 <NslpPathTear> | <NslpResvTear> | <NslpResvConfirm> ::=
 <Service_Class>
 <Session_ID_Class>
 <Flow_Specification_Class>
 [<Security_class>]

 <NslpPathErr> | <NslpResvErr> ::=
 <Service_Class>
 <Session_ID_Class>
 <Flow_Specification_Class>
 [<Security_class>]
 <Error_message_class>

5.2. RSVPv2-NSLP Objects in RSVPv2-NSLP Object_Classes

 This section presents a generic method of mapping globally and
 locally defined RSVPv2 NSLP objects into RSVPv2 NSLP classes. Based
 on the definitions of the RSVPv2 NSLP object classes, an RSVPv2 NSLP
 Object_Class might contain globally and locally defined objects.
 Below is shown a possible way of mapping globally and locally defined
 objects into the RSVPv2 NSLP Object_Classes. The locally defined

Westberg, et al. Expires October 2003 [Page 29]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 objects are the "PHR" (Per Hop Reservation) and "PDR" (Per Domain
 Reservation). These objects are used for intra-domain signaling and
 are described in more detail in the Appendix.

 Service_Class:
 [<PHR>]
 [<PDR>]
 <any globally defined e2e service objects>

 Flow_Specification_Class:
 <any globally defined e2e service Flow_Specification objects>

 Session_ID_Class:
 <any globally defined e2e service session ID objects>

 Security_Class:
 <any globally defined e2e service Security objects>

 Error_Message_Class:
 <any globally defined e2e service Error_Message objects>

 where:

 [] is optional for unicast and multicast support and
 sender-initiated and receiver-initiated approach

5.2.1. Example of mapping of RSVPv1 [RFC2205] objects in
 RSVPv2 object_classes"

 This section gives an example of mapping the RSVPv1 objects into the
 RSVPv2 object_classes when RSVPv1 is optimized for unicast and sender
 initiated signaling.

 If RSVPv1 is to be optimized for unicast and sender initiated
 signaling certain changes in the mandatory usage of RSVPv1 objects
 have to be provided. Based on the RSVPv2 object-class structure an
 example of a possible mapping of current RSVPv1 objects in RSVPv2
 NSLP object structure is given.

 The mandatory objects that will be needed in an sender-initiated NSLP
 RSVPv2 optimized for unicast are:

https://datatracker.ietf.org/doc/html/rfc2205

Westberg, et al. Expires October 2003 [Page 30]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 * SESSION

 It contains the IP destination address (DestAddress), the
 IP protocol id, and some form of generalized destination
 port, to define a specific session for the other objects
 that follow. This object contains information that is used
 to define the flow ID.

 * SENDER_TSPEC

 Defines the traffic characteristics of a sender's data
 flow. Required in a Path message. This object is used to
 specify the QoS service required by the sender.

 * SENDER_TEMPLATE

 Contains a sender IP address and perhaps some additional
 de-multiplexing information to identify a sender. Required
 in a Path message. This object contains information that
 is used to define the flow ID.

 * TIME_VALUES

 Contains the value for the refresh period R used by the
 creator of the message. Required in every Path and Resv
 message.

 * ERROR_SPEC

 Specifies an error in a PathErr, ResvErr, or a confirmation
 in a ResvConf message.

 * POLICY_DATA

 Carries information that will allow a local policy module to
 decide whether an associated reservation is administratively
 permitted. May appear in Path, Resv, PathErr, or ResvErr
 message. The use of POLICY_DATA objects is not fully
 specified at this time; a future document will fill this gap.

 * INTEGRITY

 Carries cryptographic data to authenticate the originating
 node and to verify the contents of this RSVPv1 message. The
 use of the INTEGRITY object is described in [RFC2747].

https://datatracker.ietf.org/doc/html/rfc2747

Westberg, et al. Expires October 2003 [Page 31]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Based on the definitions of the RSVPv2 object classes, some of the
 RSVPv1 objects (see [RFC2205]) can be re-used in a RSVPv2 NSLP
 object-class structure. During the RSVPv2 NSLP design phase the
 RSVPv1 objects may be changed or removed completely and also some
 other objects may be defined as well. The goal is to reuse as much
 as possible of RSVPv1 objects. Based on the description of RSVPv2
 NSLP object classes and the current RSVPv1 objects the mapping of
 RSVPv1 objects into the RSVPv2 NSLP object-class structure is rather
 simple. This mapping is given below and it is done for all RSVPv1
 objects. Note that the Service_Class contains the PHR and PDR
 objects that are locally defined objects and are used for intra-
 domain signaling.

 Service_Class:
 [<PHR>]
 [<PDR>]
 <SENDER_TSPEC>
 {<ADSPEC>}
 [FLOWSPEC]
 {<RESV_CONFIRM>}
 [<POLICY_DATA>]

 Flow_Specification_Class:
 <SESSION>
 <SENDER_TEMPLATE>
 <TIME_VALUES>
 <NSLP_ID>
 {<FILTER_SPEC>}
 {<STYLE>}
 {<SCOPE>}

 Session_ID_Class:
 <SESSION>
 <NSLP_ID>

 Security_Class:
 [<INTEGRITY>]

 Error_Message_Class:
 <ERROR_SPEC>

 where:

 {} is mandatory only for multicast support and
 receiver-initiated approach

https://datatracker.ietf.org/doc/html/rfc2205

Westberg, et al. Expires October 2003 [Page 32]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 [] is optional for unicast and multicast support and
 sender-initiated and receiver-initiated approach
 <NSLP_ID> is a new object that identifies the ID of the NSLP
 protocol level.

5.2.2. PDR/PHR objects

 The PHR and PDR objects are locally defined objects that are used for
 intra-domain signaling. The information contained in these objects
 is similar to the information contained in the PHR and PDR messages
 described in [RMD-frame] and [RODA].

 The PDR and PHR information is encapsulated into two different NSLP
 RSVPv2 object. The Appendix provides an example of PHR and PDR object
 specifications

5.3. RSVPv2-NSLP functionality on nodes used for inter-domain
signaling

 This section describes the RSVPV2-NSLP functionality on the different
 nodes used for inter-domain signaling. These nodes are NI (NSIS
 Initiator), NF (NSIS Forwarder) and NR (NSIS Responder). Note that
 this functionality is used in the examples provided in Section 6.

5.3.1. NI (NSIS Initiator) functionality

 The NI (NSIS Initiator) functionality can be characterized as
 unidirectional and bi-directional reservation functionality.

5.3.1.1. Unidirectional functionality

 The "e2e service" functionality of the NI(sender), after creating an
 NSLP reservation state, it generates an NslpPathInit message (see

Section 5.1.1). The flow ID, the ID of the NSLP protocol and the
 time values can be included in the Flow_Specificaton_Class (e.g.,
 <Session>, <Sender_template>, <Time_Values>, <NSLP_ID> objects). The
 session ID and the ID of the NSLP protocol can be included in the
 Session_ID_Class (e.g.,<Session> and <NSLP_ID> objects). The
 information that is related tothe service desired from the network,
 i.e., requested QoS, can be included into the Service_Class object
 class (e.g., <Sender_Tspec> and <Flowspec> objects). Moreover, the

Westberg, et al. Expires October 2003 [Page 33]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Service_Class object specifies the directionality of the reservation,
 i.e., in this case uni-directional. The NslpPathInit is encapsulated
 into a NTLP PATH message (see [RFC2205]) and sent towards the
 NR(receiver).

 The NI(sender) can receive a NslpResvInit message that is
 encapsulated into a RESV message. This message is associated with a
 NslpPathInit message that is sent earlier and that is used for a uni-
 directional reservation. The "e2e service" functionality of the
 NslpResvInit message specifies that the reservation initiated by the
 NslpPathInit message was successful. In this case the NI(sender),
 after processing the NslpResvInit message, it can start transmitting
 traffic user data. The "e2e service" functionality of the NI(sender)
 can receive a NslpPathErr message that is encapsulated into a
 PATHERROR message, that is associated with a NslpPathInit message
 sent earlier, and which is used for a uni-directional reservation.
 The NslpPathErr message can specify that the reservation initiated by
 the NslpPathInit message was unsuccessful. In this case the
 NI(sender), after processing the NslpPathError message, it has to
 delete the reservation state.

 The RSVPv2-NSLP refresh procedure is a pure NTLP refresh procedure,
 meaning that a refresh NTLP PATH message that is periodically sent
 through all the NTLP stateful nodes located between NI (sender) and
 NR (receiver). If a NTLP state in a NTLP stateful is not refreshed
 on time then the NTLP functionality at this node informs the
 RSVPv2-NSLP state that the refresh procedure is unsuccessful. Note
 that the refresh NTLP PATH message may optionally carry a NslpPathRef
 message. In this case the information carried by the NslpPathRef
 message is similar to the information carried by the NslpPathInit
 message, (see Section 5.1.1).

 The NI(sender) can receive a NslpResvRef message that is encapsulated
 into a RESV message. This message is associated with a NslpPathRef
 message that is sent earlier and that is used for a uni-directional
 reservation. The "e2e service" functionality of the NslpResvRef
 message specifies that the reservation initiated by the NslpPathRef
 message was successful.

 The RSVPv2-NSLP "e2e service" functionality of the NI(sender) can
 inform the NTLP functionality of the same node to start a tear down
 procedure for the specific flow. A NTLP PATHTEAR message is created
 that is sent towards the NR (receiver). This message will tear down
 all the NTLP and RSVPv2-NSLP states that are associated with the

https://datatracker.ietf.org/doc/html/rfc2205

Westberg, et al. Expires October 2003 [Page 34]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Session_ID_Class of all NTLP stateful nodes that process the NTLP
 PATHTEAR message. Note that the NTLP PATHTEAR message may optionally
 carry a NSLPPathTear message. In this case the information carried by
 the NslpPathTear message is similar to the information carried by the
 NslpPathInit message, (see Section 5.1.1).

 The RSVPv2-NSLp protocol supports the modification of a reservation
 procedure. The "e2e service" functionality includes the request for
 modification of the reservation into a NslpPathMod message. This NSLP
 message is encapsulated into a NTLP PATH message and it is sent hop-
 by-hop towards the NR(receiver). The flow ID of the flow that has to
 be modified is included in the Flow_Specificaton_Class. The
 information that has to be modified is included into the
 Service_Class object class. (e.g., <Sender_Tspec> and <Flowspec>
 objects).

 The NI(sender) receives a NslpResvMod message that is encapsulated
 into a NTLP RESV message (see Section 5.1.1). This message is
 associated with a NslpPathMod message that is sent earlier and that
 is used for a uni-directional reservation. The "e2e service"
 functionality of the NslpResvMod message specifies that the
 modification of the reservation requested by the NslpPathMod message
 was successful. In this case the NI(sender), after processing the
 NslpResvMod message, it can adjust the transmitted traffic user data
 to the modified reservation.

 The "e2e service" functionality of the NI(sender) can receive a
 NslpPathErr message that is associated with a NslpPathMod message
 sent earlier. The NslpPathErr message can specify that the
 modification procedure initiated by the NslpPathMod message was not
 successful. In this case the "e2e functionality" of the NI (sender)
 will identify the modification type of the NslpPathErr message. If
 the modification procedure required a higher amount of reservation,
 then the reservation asociated to the modified flow will have to be
 reset to the reservation or to the amount (or type) of reservation
 that was stored before the modification procedure started.

5.3.1.2. Bidirectional functionality

 The bi-directional reservation functionality supported by the
 NI(sender) is similar to a combination of two unidirectional
 reservation functionalities that are accomplished in opposite
 directions. Such a unidirectional reservation functionality is

Westberg, et al. Expires October 2003 [Page 35]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 described in Section 5.3.1.1. The main differences of the bi-
 directional reservation functionality with the combination of two
 unidirectional reservation functionalities accomplished in opposite
 directions are as follows:

 * the reservation state specifies a bi-directional reservation
 * the Service_Class object specifies that the reservation is
 bi-directional
 * the NI(sender) does not receive the NslpResvInit, NslpResvRef and
 NslpResvMod messages
 * the success of the reservation procedure is reported to the NI(sender)
 using the NslpPathInit that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathRef that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathMod that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)

5.3.2. NF (NSIS Forwarder) functionality

 The NF (NSIS Forwarder) functionality can be characterized as
 unidirectional and bi-directional reservation functionality.

5.3.2.1. Unidirectional functionality

 The NslpPathInit is encapsulated into a NTLP PATH message (see
 [RFC2205]). The NTLP PATH message is processed by all NTLP stateful
 NF nodes that is passing through, up to the NR (receiver). Each node
 that processes the NTLP PATH message will create a NTLP state and
 will activate the RSVPv2-NSLP "e2e service" functionality by using
 the transported NslpPathInit information and it will create an
 RSVPv2-NSLP reservation state. This RSVPv2-NSLP reservation state
 will be associated to a flow ID. Note that the NTLP states have to
 store back-ward routing information, which are used by NTLP messages
 that are transported hop-by-hop in the backward direction towards the
 NI(sender). The NslpResvInit which is encapsulated into a RESV
 message will only be processed by the RSVPv2-NSLP "e2e service"
 functionality at each NF hop that is passing by and that is
 supporting the "e2e service" functionality.

 The used RSVPv2-NSLP refresh procedure is a pure NTLP refresh

https://datatracker.ietf.org/doc/html/rfc2205

Westberg, et al. Expires October 2003 [Page 36]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 procedure, meaning that a refresh NTLP PATH message is periodically
 sent through all the NTLP stateful nodes located between NI (sender)
 and NR (receiver). If a NTLP state in a NTLP stateful is not
 refreshed on time then the NTLP functionality at this node informs
 the RSVPv2-NSLP state that the refresh procedure is unsuccessful.
 Note that the refresh NTLP PATH message may optionally carry a
 NSLPPathRef message.

 The NTLP RESV message used during the refresh procedure is processed
 at each NF hop towards the NI (sender). This message will be used to
 report information related to how the NTLP PATH message has been
 processed along the path. Note that the refresh NTLP RESV message
 may optionally carry a NSLPResvRef message. The NslpPathRef and
 NslpResvRef messages are processed by the RSVPv2-NSLP "e2e service"
 functionality at each NF hop that are passing by and that is
 supporting the "e2e service" functionality.

 The NF node processes a NTLP PATHTEAR message that is tearing down
 all the NTLP and RSVPv2-NSLP states that are associated with the
 Session_ID_Class of all NTLP stateful nodes that process the NTLP
 PATHTEAR message. Note that the NTLP PATHTEAR message may optionally
 carry a NslpPathTear message. The NslpPathTear message will be
 processed by the "e2e service" functionality.

 When one of the NF nodes is not able to satisfy a NslpPathInit
 request the RSVPv2-NSLP "e2e service" functionality of this
 particular NF(router) will generate an NslpPathErr to report to
 NI(sender) that the NslpPathInit request could not be satisfied.
 This NslpPathErr message will be encapsulated into a NTLP PATHERROR
 message and it will be sent hop-by-hop towards the NI(sender). This
 message will be processed hop-by-hop by the RSVPv2-NSLP "e2e
 service" functionality. Each NF (router) that processes this
 NslpPathError message will have to to delete its associated
 reservation state. Note that similar to [RFC2205] the NslpPathErr
 could be created due to other errors in the router. The type of this
 error must be included into the Error_Message_Class (see Section

5.1.1). Note that the reservation state is only deleted when the
 NSlpPathErr message is associated to a NslpPathInit message.

 When one of the NF nodes is not able to satisfy a NslpPathMod request
 the RSVPv2-NSLP "e2e service" functionality of this particular
 NF(router) will generate an NslpPathErr to report to NI(sender) that
 the NslpPathMod request could not be satisfied. This message will be
 encapsulated into a NTLP PATHERROR message and it will be sent

https://datatracker.ietf.org/doc/html/rfc2205

Westberg, et al. Expires October 2003 [Page 37]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 towards the NI(sender). The NslpPathMod message will not be forwarded
 further. The "e2e functionality" of the NF intermediate nodes will
 identify the modification type of the NslpPathErr message. If the
 modification procedure required a higher amount of reservation, then
 the nodes that modified the reservation will have to reset the
 reservation to the amount (or type) of reservation that was stored
 before the modification procedure started.

 Each NTLP stateful node can process a NslpPathMod message that is
 carried by a modification NTLP PATH message. The RSVPv2-NSLP
 functionality identifies the flow that has to be modified by using
 its flow ID information carried by the NslpPathMod message. By using
 the information contained in the Service_Class, the RSVPv2-NSLP
 functionality is modifying the service information stored into the
 RSVPv2-NSLP state. The "e2e service" functionality of each NF node
 has to process a NslpResvMod message which is used to report
 information related to how the NslpPathMod message has been processed
 along the path. This NslpResvMod message is encapsulated into a NTLP
 RESV message and sent towards the NI(sender).

5.3.2.2. Bidirectional functionality

 The bi-directional reservation functionality supported by the
 NF(router) is similar to a combination of two unidirectional
 reservation functionalities that are accomplished in opposite
 directions. Such a unidirectional reservation functionality is
 described in Section 5.3.2.1. The main differences of the bi-
 directional reservation functionality with the combination of two
 unidirectional reservation functionalities accomplished in opposite
 directions are as follows:

 * the reservation state specifies a bi-directional reservation
 * the Service_Class object specifies that the reservation is
 bi-directional
 * the NF(router) does not process the NslpResvInit, NslpResvRef and
 NslpResvMod messages
 * the success of the reservation procedure is reported to the NI(sender)
 using the NslpPathInit that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathRef that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathMod that is sent hop-by-hop from NR(receiver)

Westberg, et al. Expires October 2003 [Page 38]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 towards the NI(sender)

5.3.3. NR (NSIS Responder) functionality

 The NR (NSIS Responder) functionality can be characterized as
 unidirectional and bi-directional reservation functionality.

 The NR(receiver) can receive a NslpPathInit message that is
 encapsulated into a NTLP PATH message. The NR (receiver) processes
 the NTLP PATH message, creates a NTLP state and activates the
 RSVPv2-NSLP "e2e service" functionality by using the transported
 NslpPathInit information and it will create an RSVPv2-NSLP
 reservation state. This RSVPv2-NSLP reservation state will be
 associated to a flow ID. Note that the NTLP states have to store
 back-ward routing information. The "e2e service" functionality
 creates a NslpResvInit message that is used to report information
 related to how the NslpPathInit has been processed along the path.
 This NslpResvInit will be encapsulated into a RESV message and it
 will be sent on a hop-by-hop basis in the backward direction towards
 the NI(sender).

 The RSVPv2-NSLP refresh procedure supported by the NR(receiver) is a
 pure NTLP refresh procedure, meaning that a refresh NTLP PATH message
 is periodically sent through all the NTLP stateful nodes located
 between NI (sender) and NR (receiver). If a NTLP state in a NTLP
 stateful is not refreshed on time then the NTLP functionality at this
 node informs the RSVPv2-NSLP state that the refresh procedure is
 unsuccesful. Note that the refresh NTLP PATH message may optionally
 carry a NSLPPathRef message. The NR (receiver) that receives a
 refresh NTLP PATH message will create a refresh NTLP RESV message
 that will be sent towards the NI (sender). This message will be used
 to report information related to how the NTLP PATH message has been
 processed along the path. Note that the refresh NTLP RESV message
 may optionally carry a NSLPResvRef message.

 A NTLP PATHTEAR message can be received by the NR (receiver). This
 message will tear down all the NTLP and RSVPv2-NSLP states that are
 associated with the Session_ID_Class of the NR (receiver) that
 process the NTLP PATHTEAR message. Note that the NTLP PATHTEAR
 message may optionally carry a NSLPPathTear message.

 When the NR(receiver) is not able to satisfy a NslpPathInit request
 the RSVPv2-NSLP "e2e service" functionality of the NR(receiver) will
 generate an NslpPathErr to report to NI(sender) that the NslpPathInit

Westberg, et al. Expires October 2003 [Page 39]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 request could not be satisfied. This NslpPathErr message will be
 encapsulated into a NTLP PATHERROR message and it will be sent hop-
 by-hop towards the NI(sender). Note that similar to [RFC2205] the
 NslpPathErr could be created due to other errors in the router. The
 type of this error must be included into the Error_Message_Class (see

Section 5.1.1). When the NSlpPathErr message is associated to a
 NslpPathInit message then its associated reservation state will be
 deleted.

 The NR (receiver) can receive the NslpPathMod message which is
 carried by the modification NTLP PATH message. The RSVPv2-NSLP
 functionality identifies the flow that has to be modified by using
 its flow ID information carried by the NslpPathMod message. By using
 the information contained in the Service_Class, the RSVPv2-NSLP
 functionality is modifying the service information stored into the
 RSVPv2-NSLP state. Subsequently the RSVPv2-NSLP "e2e service"
 functionality at the NR(receiver) creates a NslpResvMod message that
 will be used to report information related to how the NslpPathMod
 message has been processed along the path. This NslpResvMod message
 will be encapsulated into a NTLP RESV message and sent hop-by-hop
 towards the NI(sender).

 When the NR(receiver) is not able to satisfy a NslpPathMod request
 the RSVPv2-NSLP "e2e service" functionality of this node will
 generate an NslpPathErr to report to NI(sender) that the NslpPathMod
 request could not be satisfied. This message will be encapsulated
 into a NTLP PATHERROR message and it will be sent towards the
 NI(sender). In this case the "e2e functionality" of the NR
 (receiver) will identify the modification type of the NslpPathErr
 message. If the modification procedure required a higher amount of
 reservation, then the reservation asociated to the modified flow will
 have to be reseted to the reservation or to the amount (or type) of
 reservation that was stored before the modification procedure
 started.

5.3.3.1. Bidirectional functionality

 The bi-directional reservation functionality supported by the
 NR(receiver) is similar to a combination of two unidirectional
 reservation functionalities that are accomplished in opposite
 directions. Such a unidirectional reservation functionality is
 described in Section 5.3.3.1. The main differences of the bi-
 directional reservation functionality with the combination of two
 unidirectional reservation functionalities accomplished in opposite

https://datatracker.ietf.org/doc/html/rfc2205

Westberg, et al. Expires October 2003 [Page 40]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 directions are as follows:

 * the reservation state specifies a bi-directional reservation
 * the Service_Class object specifies that the reservation is
 bi-directional
 * the NR(receiver) does not process the NslpResvInit, NslpResvRef and
 NslpResvMod messages
 * the success of the reservation procedure is reported to the NI(sender)
 using the NslpPathInit that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathRef that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathMod that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)

5.4. RSVPv2-NSLP functionality on nodes used for intra-domain
signaling

 This section describes the RSVPV2 functionality on the different
 nodes used for intra-domain signaling. These nodes are NF (ingress),
 NF (interior) and NF (egress). These intra-domain signaling
 procedures are using the NSIS protocol which consists of one NTLP
 level and two NSLP hierarchical levels (see Figure 2).

 Intra-domain signaling is where the RSVPv2-NSLP signaling messages
 are originated, processed and terminated within the same domain.
 RSVPv2-NSLP is considered in this section to be optimized for unicast
 and sender-initiated protocol.

 The Intra-domain signaling procedures are mainly using RSVPv2-NSLP
 PHR/PDR objects, (see Section 5.2.2) that are originated, processed
 and terminated within the same domain. Note that this functionality
 is used in the examples provided in Section 7.

5.4.1. NI (NSIS Initiator) functionality

 The NI (NSIS Initiator) functionality can be characterized as
 unidirectional and bi-directional reservation functionality.

Westberg, et al. Expires October 2003 [Page 41]

Internet Draft Proposal for RSVPv2-NSLP April 2003

5.4.1.1. Unidirectional functionality

 The unidirectional functionality supported by the NI(sender) used in
 this type of scenarios is identical to the functionality supported by
 the NI(sender) used in the inter-domain signaling scenario (see

Section 5.3.1.1).

5.4.1.2. Bidirectional functionality

 The bi-directional functionality supported by the NI(sender) used in
 this type of scenarios is identical to the functionality supported by
 the NI(sender) used in the inter-domain signaling scenario (see

Section 5.3.1.2).

5.4.2. Functionality of NF (NSIS Forwarder) located outside NSIS
intra-domain

 The functionality of the NF (NSIS Forwarder) located outside the NSIS
 intra-domain can be characterized as unidirectional and as bi-
 directional reservation functionality.

5.4.2.1. Unidirectional functionality

 The unidirectional functionality supported by the NF located outside
 the NSIS intra-domain and used in this type of scenarios is identical
 to the functionality supported by the NF(router) used in the inter-
 domain signaling scenario (see Section 5.3.2.1).

5.4.2.2. Bidirectional functionality

 The bi-directional functionality supported by the NF located outside
 the NSIS intra-domain and used in this type of scenarios is identical
 to the functionality supported by the NF(router) used in the inter-
 domain signaling scenario (see Section 5.3.2.2).

5.4.3. NF (ingress) functionality

 The NF (ingress) functionality can be characterized as unidirectional
 and bi-directional reservation functionality.

Westberg, et al. Expires October 2003 [Page 42]

Internet Draft Proposal for RSVPv2-NSLP April 2003

5.4.3.1. Unidirectional functionality

 When an NslpPathInit arrives at the ingress node of a domain, i.e.,
 NF(ingress), the RSVPv2-NSLP "e2e service" functionality creates a
 RSVPv2-NSLP Path reservation state. Subsequently, the RSVPv2-NSLP
 "PDR" protocol functionality is activated (see Figure 2) classifying
 the flow (i.e., Flow_Specification_Class) that is associated with the
 NslpPathInit message into an appropriate traffic class, e.g.,
 Diffserv class. The RSVPv2-NSLP PDR functionality uses the
 RSVPv2-NSLP path state created by the NslpPathInit message and it
 introduces additional information that can be used to associate the
 PHR and PDR objects with the flow that created the RSVPv2-NSLP Path
 reservation state in the NF(ingress) node. The RSVPv2-NSLP PDR
 functionality is subsequently using the Service_Class (e.g.,
 <SENDER_Tspec> object) and translates the requested bandwidth
 parameter into a number of resource units. If the QoS request is
 satisfied locally, then the ingress node will generate a reservation
 request PHR object denoted as "PHR_Resource_Request" and a
 reservation request PDR object denoted as "PDR_Reservation_Request",
 (see Section 5.2.2). The PDR object MAY contain information such as
 the IP address of the NF(ingress) node and the per-flow specification
 ID. These PHR and PDR objects are locally defined objects which are
 included into the Service_Class object class carried by the
 NslpPathInit message. The NslpPathInit message is encapsulated into
 a NTLP PATH message and is sent towards the NR(receiver). Note that
 the "PDR/PHR" functionality of the NF(ingress) node should
 temporarily store the TTL value, included in the IP header of any
 message, in the PDR state associated to the NTLP PATH message. The
 variable that temporarily stores the TTL value is denoted in this
 text as PDR_TTL_I.

 The NF(ingress) can receive a NslpResvInit message that is
 encapsulated into a RESV message. This message is associated with a
 NslpPathInit message that is sent earlier and that is used for a uni-
 directional reservation. The "e2e service" functionality by
 extracting the Service_Class object from the NslpResvInit message, it
 can deduce that the reservation was successful. Moreover, the
 RSVPv2-NSLP "PDR" functionality of the NF(ingress) node is extracting
 the "PDR_Reservation_Report" PDR object from the Service_Class object
 class of the NslpResvInit message. If the initial reservation
 request was successful the RSVP-NSLP functionality encapsulates the
 NslpResvInit message into the NTLP RESV message and it is sent
 towards the NI(sender).

 The intra-domain RSVPv2-NSLP refresh procedure is a combination of a

Westberg, et al. Expires October 2003 [Page 43]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NTLP and a RSVPv2-NSLP "PHR/PDR" procedure. When a refresh NTLP PATH
 message is received by a NF(ingress) node the NTLP functionality will
 activate the RSVPv2-NSLP "PHR/PDR" functionality that is carried by
 the NslpPathRef message. By using the Flow_Specification_Class
 object class the "PDR" functionality can identify the RSVPv2-NSLP
 path state. The RSVPv2-NSLP "PDR" functionality of the NF(ingress)
 node will generate a refresh request PHR object denoted as
 "PHR_Refresh_Update" and a refresh request PDR object denoted as
 "PDR_Refresh_Request", (see Section 5.2.2). The PDR object MAY
 contain information such as the IP address of the NF(ingress) node
 and the per-flow specification ID. These PHR and PDR objects are
 locally defined objects which are included into the Service_Class
 object class carried by the NslpPathRef message.

 The NF(ingress) can receive a NslpResvRef message that is
 encapsulated into a RESV message. This message is associated with a
 NslpPathRef message that is sent earlier and that is used for a uni-
 directional reservation. The "e2e service" functionality by
 extracting the Service_Class object from the NslpResvRef message, it
 can deduce that the refresh procedure was successful. Moreover, the
 RSVPv2-NSLP "PDR" functionality of the NF(ingress) node is extracting
 the "PDR_Refresh_Report" PDR object from the Service_Class object
 class of the NslpResvRef message. If the refresh procedure was
 successful the RSVP-NSLP functionality encapsulates the NslpResvRef
 message into the NTLP RESV message and it is sent towards the
 NI(sender).

 The NTLP functionality of the NF(ingress) can receive a NTLP PATHTEAR
 message sent by the NI(sender). The NTLP PATHTEAR message may
 optionally carry a NslpPathTear message. The NTLP functionality
 activates the RSVPv2-NSLP "PDR/PHR" functionality, that is related to
 the Session_ID_Class class object, and that is using the "PDR"
 object. The RSVPv2-NSLP "PDR" functionality of the NF(ingress) node
 will generate a release request "PHR" object denoted as
 "PHR_Release_Request" and a release request PDR object denoted as
 "PDR_Release_Request", (see Section 5.2.2). The PDR object may
 contain information such as the IP address of the NF(ingress) node
 and the per-flow specification ID. These PHR and PDR objects are
 locally defined objects which are included into the Service_Class
 object class carried by a NslpPathTear message. All the RSVPv2-NSLP
 and NTLP reservations, in the NF(ingress) node that are associated to
 the Session_ID_Class object class will be released.

 During an unsuccessful procedure, the NTLP functionality of the

 NF(ingress) node can receive the a PATHERROR message that will

Westberg, et al. Expires October 2003 [Page 44]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 activate the RSVPv2-NSLP "PDR" functionality. Due to the "M" marked
 "PDR_Reservation_Report" object the "PDR" functionality will activate
 the RSVPv2-NSLP "e2e service". The RSVPv2-NSLP "e2e service"
 functionality of the NF(ingress) node will generate a NslpPathErr
 message that will be sent hop-by-hop to the NI(sender) and will be
 encapsulated into a NTLP PATHERROR message. This message will inform
 the NI(sender) that the reservation request was not successful.
 Simultaneously, the NF(ingress) node will start a partial explicit
 release procedure, for releasing the unnecessarily reserved RSVP-NSLP
 resources in some NF(interior) nodes for the rejected flow. In this
 case, the RSVP-NSLP "PDR" functionality of the NF(ingress) node will
 generate a "PHR_Release_Request" object, and it will include the
 amount of the requested resources specified the PDR state. Moreover,
 the RSVPv2-NSLP "PDR" functionality will create the
 "PDR_Reservation_Request" PDR object. The RSVPv2-NSLP "PDR"
 functionality of the NF(ingress) node can calculate the number of
 NF(interior) nodes that processed and reserved RSVPv2-NSLP resources.
 This number can be calculated by subtracting the value included in
 the PDR_TTL field that was included in the received
 "PDR_Reservation_Report" PDR object from the value included in the
 PDR_TTL_I variable that has been stored into the RSVPv2-NSLP state
 when the initial NslpPathInit message has been sent towards the
 NF(egress) node. This calculated value will be included in the TTL -
 IP header field of the NTLP PATHTEAR message which is generated by
 the NF(ingress) node and which transports the "PHR_Resource_Release"
 object. The "PHR_Release_Request" and "PDR_Release_Request" objects
 are included into a NslpPathTear message. The NslpPathTear message is
 transported by a NTLP PATHTEAR message.

 A NTLP PATH message that encapsulates the NslpPathMod message can be
 received by the NTLP functionality of the NF(ingress) node. The NTLP
 functionality activates the RSVP-NSLP "PDR/PHR" functionality, which
 is associated with the Session_ID_Class object class.

 When the modification request requires an increase on the number of
 reserved resources stored in the RSVPv2-NSLP state, then the
 RSVPv2-NSLP "PHR" functionality of the NF(ingress) node will have to
 subtract the old and already reserved number of resources from the
 number of resources included in the new modification request. The
 result of this subtraction should be introduced within a
 "PHR_Resource_Request" PHR object as the requested resources value.
 Furthermore, the number of resources that were reserved for a certain
 flow in the RSVPv2-NSLP state should also be replaced with the number
 of resources included in the modification request.

 The RSVPv2-NSLP "PDR" functionality will create a

Westberg, et al. Expires October 2003 [Page 45]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 "PDR_Modification_Request" PDR object. These two objects will be
 included into the Service_Class of the NslpPathMod message. The
 NslpPathMod message is encapsulated into a modification NTLP PATH
 message and is sent towards the NF(egress) node.

 When the modification request requires a decrease on the number of
 reserved resources stored in the RSVPv2-NSLP path state, then the
 RSVPv2-NSLP "PHR" functionality of the NF(ingress) node will have to
 subtract the number of resources included in the new modification
 request from the old and already reserved number of resources. The
 result of this subtraction should be introduced in an RSVPv2-NSLP
 "PHR_Release_Request" PHR object. Furthermore, the number of
 resources that were reserved in the RSVPv2-NSLP path state for a
 certain flow should also be replaced with the number of resources
 included in the modification request. The RSVPv2-NSLP "PDR"
 functionality will create a "PDR_Modification_Request" PDR object.
 These two objects will be encapsulated into a modification NTLP PATH
 message. This message will be sent towards the NF(egress) node.

 The NF(ingress) can receive a NslpResvMod message that is
 encapsulated into a RESV message. This message is associated with a
 NslpPathMod message that is sent earlier and that is used for a uni-
 directional reservation. The "e2e service" functionality by
 extracting the Service_Class object from the NslpResvMod message, it
 can deduce that the modification procedure was successful. Moreover,
 the RSVPv2-NSLP "PDR" functionality of the NF(ingress) node is
 extracting the "PDR_Refresh_Report" PDR object from the Service_Class
 object class of the NslpResvRef message. If the modification
 procedure was successful the RSVP-NSLP functionality encapsulates the
 NslpResvMod message into the NTLP RESV message and it is sent towards
 the NI(sender).

 If the modification procedure is not successful, the NTLP
 functionality of the NF(ingress) node can receive a PATHERROR
 message. This message carries a NslpPathErr message. The "e2e
 functionality" of the NF (ingress) will identify the modification
 type of the NslpPathErr message. The NslpPathErr message could
 either carry a "PDR_Modification_Report" or not. When the
 NslpPathErr message carries a "PDR_Modification_Report", the RSVP-
 NSLP "PDR" functionality will detect the "M" marked
 "PDR_Modification_Report" object and it will activate the RSVPv2-NSLP
 "e2e service". When the NslpPathErr message does not carry a
 "PDR_Modification_Report" message, the RSVPv2-NSLP "e2e service" is
 directly activated. The RSVPv2-NSLP "e2e service" functionality of

 the NF(ingress) node will generate a NslpPathErr message that will be

Westberg, et al. Expires October 2003 [Page 46]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 sent hop-by-hop to the NI(sender) and will be encapsulated into a
 NTLP PATHERROR message. This message will inform the NI(sender) that
 the modification request was not successful. If the modification
 procedure required a higher amount of reservation, then the
 NF(ingress) node has to start a partial explicit release, for
 releasing the unnecessarily reserved RSVP-NSLP resources in some
 NF(interior) nodes for the modified flow. The number of
 unnecessarily reserved resources is found by the RSVPv2-NSLP "PHR"
 functionality that subtracts the old and already reserved number of
 resources from the number of resources included in the new
 modification request. The partial explicit release procedure is
 further accomplished in the same as the partial explicit release
 procedure used during the unsuccessful reservation procedure.

 The NTLP signaling messages and subsequently the "PHR" and "PDR"
 objects might be dropped, for example due to route or link failure.
 The "PHR" objects that need to be sent reliable are:
 PHR_Resource_Request
 PHR_Refresh_Update

 The reliable delivery of the "PHR_Resource_Request" object is
 provided by using the functionality provided by the RSVPv2-NSLP "PDR"
 functionality located in the NF(ingress) node. The RSVPv2-NSLP "PDR"
 functionality of the NF(ingress) node sends the
 "PHR_Resource_Request" object towards the NF(egress) node and it
 starts a timer. If the reply, e.g., "PDR_Reservation_Report" object,
 does not arrive in a predefined time it assumes that the
 "PHR_Resource_Request" object is lost. The reliable deliver of the
 "PHR_Refresh_Update" object is provided in a similar way. A timer at
 the NF(ingress) node is started when the "PHR_Refresh_Update" is sent
 towards the NF(egress) node. If the reply, e.g., "PDR_Refresh_Report"
 object, does not arrive in a predefined time it assumes that the
 "PHR_Refresh_Update" object is lost.

 During a severe congestion situation, the NF(ingress) node can
 receive the PDR_Congestion_Report object. This object is included
 into a NslpPathErr message that is carried by a NTLP PATHERROR. The
 RSVPv2-NSLP PDR functionality of the NF(ingress) node is extracting
 the Pdrop blocking probability from the PDR_Congestion_Report
 message. Depending on the used policy the NF(ingress) node might
 terminate the flow, i.e., for a higher blocking probability there is
 a higher chance that the flow is terminated. If a flow needs to be
 terminated, then for this flow, the NF(ingress) node will generate a
 "PHR_Release_Request" object that will be included into the

 Service_Class of the NslpPathTear message. This message will be

Westberg, et al. Expires October 2003 [Page 47]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 transported by a NTLP PATHTEAR message towards the NF(egress).
 Furthermore, the RSVPv2-NSLP "e2e service" functionality in the
 NF(ingress) node will create a NslpPathErr that will be encapsulated
 into a NTLP PATHERROR that will be sent towards the NI(sender) to
 notify that an error occurred.

5.4.3.2. Bidirectional functionality

 The bi-directional reservation functionality supported by the
 NF(ingress) is similar to a combination of two unidirectional
 reservation functionalities that are accomplished in opposite
 directions. Such a unidirectional reservation functionality is
 described in Section 5.4.3.1. The main differences of the bi-
 directional reservation functionality with the combination of two
 unidirectional reservation functionalities accomplished in opposite
 directions are as follows:

 * the reservation state specifies a bi-directional reservation
 * the Service_Class object specifies that the reservation is
 bi-directional
 * the NF(ingress) does not receive the NslpResvInit, NslpResvRef and
 NslpResvMod messages
 * the success of the reservation procedure is reported to the NI(sender)
 using the NslpPathInit that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathRef that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathMod that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the PDR_Reservation_Report object used to report a successful
 reservation procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)
 * the PDR_Refresh_Report object used to report a successful refresh
 procedure is carried by the NslpPathInit that is sent hop-by-hop
 from NF(egress) towards the NF(ingress)
 * the PDR_Modification_Report object used to report a successful
 modification procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)
 * the NF(egress) node can initiate an explicit partial release
 procedure towards the NF(ingress) node.

Westberg, et al. Expires October 2003 [Page 48]

Internet Draft Proposal for RSVPv2-NSLP April 2003

5.4.4. NF (interior) functionality

 The NF (interior) functionality can be characterized as
 unidirectional and bi-directional reservation functionality.

5.4.4.1. Unidirectional functionality

 The initiation NTLP PATH message is processed by all NTLP stateless
 NF(interior) nodes that is passing through, up to the NF (egress).
 Each stateless NF(interior) node that processes the NTLP PATH message
 it will not create a NTLP state but it will activate the RSVPv2-NSLP
 functionality by using the transported NslpPathInit message. The
 RSVPv2-NSLP "PHR" functionality of these NF(interior) nodes will use
 the information included in the PHR object ("PHR_Resource_Request")
 and it will identify the ID of the traffic class, e.g., Diffserv
 class. If there is enough bandwidth capacity, it will reserve the
 requested resources. The NF(interior) node reserves the requested
 resources by e.g., adding the requested amount to the total amount of
 reserved resources for that traffic class, e.g., Diffserv class.

 It is possible that one of the NTLP stateless NF(interior) is not
 able to satisfy the request carried by the "PHR_Resource_Request" PHR
 object. The RSVPv2-NSLP "PHR" functionality of this NF(interior) node
 will mark the "M" field of the "PHR_Resource_Request" object. The
 RSVPv2-NSLP "PHR" functionality will also include the number of
 previous NF(interior) nodes that successfully processed the
 RSVPv2-NSLP "PHR_Resource_Request" PHR object (see Appendix). This
 number can, for example, be identified by the TTL (Time-To-Live)
 value included in the IP header of the received NTLP PATH message.
 Note that each time that an IP packet passes a node, its TTL value is
 decreased by one. In particular, the NF(interior) node that is not
 admitting the reservation request initiated by the
 "PHR_Resource_Request" PHR object will copy the TTL value included in
 the IP header of the received NTLP PATH message that carries the
 "PHR_Resource_Request" object into the "PDR_TTL" field of
 "PDR_Reservation_Request" PDR object. Moreover, the "T" field of the
 "PHR" object (see Appendix) is set to "1". These "PHR" and "PDR"
 objects are included in the NslpPathInit message. The NslpPathInit
 message is encapsulated into a NTLP PATH message. This NslpPathInit
 message is sent towards the NF(egress) node, which will be
 transported by a NTLP PATH message. Any NF(interior) node receiving a
 PATH message will activate the RSVPv2-NSLP "PHR" functionality. If
 the "PHR_Resource_Request" PHR object is "M" marked, then the
 RSVPv2-NSLP "PHR" functionality will not further process the "PHR"

Westberg, et al. Expires October 2003 [Page 49]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 object.

 The refresh NTLP PATH message is processed by all NTLP stateless
 NF(interior) nodes that is passing through, up to the NF (egress).
 Each node that processes the refresh NTLP PATH message it will
 refresh the NTLP state associated with the session ID, i.e.,
 information included into the Session_ID_Class object class. The
 NTLP level functionality of the NTLP stateless NF(interior) nodes
 receiving the refresh NTLP PATH message will activate the RSVPv2-NSLP
 "PHR" functionality. The RSVPv2-NSLP "PHR" functionality of these
 NF(interior) nodes will use the information included in the PHR
 object ("PHR_Refresh_Request") and it will identify the ID of the
 traffic class, e.g., Diffserv class. This object will refresh the
 requested resources included in the "PHR_Refresh_Update" object.

 The NTLP PATHTEAR message is processed by all NTLP stateless
 NF(interior) nodes that is passing through, up to the NF (egress).
 Each node that processes the PATHTEAR message will activate the
 RSVPv2-NSLP "PHR" functionality by using the transported RSVPv2-NSLP
 "PHR" object. The NTLP functionality in the NTLP stateless
 NF(interior) node that receives the PATHTEAR message will pass the
 NslpPathTear message to the RSVPv2-NSLP functionality. The
 NslpPathTear message contains the "PHR_Release_Request" and
 "PDR_Release_Request" PHR and PDR objects, respectively. The
 RSVPv2-NSLP "PHR" functionality of this NF(interior) node will use
 the information included in the PHR object ("PHR_Release_Request")
 and it will identify the ID of the traffic class, e.g., Diffserv
 class. This object will subtract the requested resources included in
 the "PHR_Release_Request" object from the total reserved amount of
 resources stored in the traffic class state. Moreover, its TTL value
 of the NTLP PATHTEAR message is decremented by one. If this value
 becomes zero, the "PHR_Resource_Release" object reached an
 NF(interior) node that marked the "PHR_Resource_Request" object
 during an unsuccessful procedure and the NTLP PATHTEAR message will
 be dropped. Otherwise, the NTLP PATHTEAR message propagates towards
 the NR(receiver).

 Each stateless NF(interior) node that receives the modification NTLP
 PATH message will activate the RSVPv2-NSLP "PHR" functionality. The
 RSVPv2-NSLP "PHR" functionality of each stateless NF(interior)node
 processes the "PHR_Resource_Request" and "PHR_Release_Request"
 objects included in the modification NTLP PATH message as typical
 "PHR_Resource_Request" and "PHR_Release_Request" objects,
 respectively.

Westberg, et al. Expires October 2003 [Page 50]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 After detecting the severe congestion situation, the RSVPv2-NSLP
 "PHR" functionality of the NF(interior) node will notify the
 NF(egress) node by using remarking of user data bytes that pass
 through the node. Proportionally to the detected overload the
 NF(interior) node will remark a number of user data bytes which are
 passing through a severe congested interior node and are associated
 with a certain traffic class, e.g., DSCP, into a domain specific
 DSCP.

5.4.4.2. Bidirectional functionality

 The bi-directional reservation functionality supported by the
 NF(interior) is similar to a combination of two unidirectional
 reservation functionalities that are accomplished in opposite
 directions. Such a unidirectional reservation functionality is
 described in Section 5.4.4.1. The main differences of the bi-
 directional reservation functionality with the combination of two
 unidirectional reservation functionalities accomplished in opposite
 directions are as follows:

 * the PDR_Reservation_Report object used to report a successful
 reservation procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)
 * the PDR_Refresh_Report object used to report a successful refresh
 procedure is carried by the NslpPathInit that is sent hop-by-hop
 from NF(egress) towards the NF(ingress)
 * the PDR_Modification_Report object used to report a successful
 modification procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)
 * the NF(egress) node can initiate an explicit partial release
 procedure towards the NF(ingress) node.

5.4.5. NF (egress) functionality

 The NF (egress) functionality can be characterized as unidirectional
 and bi-directional reservation functionality.

Westberg, et al. Expires October 2003 [Page 51]

Internet Draft Proposal for RSVPv2-NSLP April 2003

5.4.5.1. Unidirectional functionality

 The behavior of the NF(egress) node on admission or rejection of the
 NslpPathInit message that contains the "PHR_Resource_Request" object
 is the same as in the NF(interior) nodes. After processing the
 "PHR_Resource_Request" object, the RSVPv2-NSLP functionality of the
 NF(egress) node uses the "PDR_Reservation_Request" object and
 creates/identifies the flow specification ID and the state associated
 with it. Subsequently, the RSVPv2-NSLP "e2e service" functionality
 is activated and by using the information contained in the
 Flow_Specification_Class it will create an RSVPv2-NSLP Path
 reservation. If the request is admitted, the RSVPv2-NSLP "PDR"
 functionality of the NF(egress) node will report the successful
 reservation to the RSVPv2-NSLP "PDR" functionality of the NF(ingress)
 node by using a "PDR_Reservation_Report" PDR object. This object is
 temporarilty stored until a NslpresvInit message arrives that is
 carried by a NTLP RESV message, that was sent by the NR(receiver) and
 that is associated with an earlier processed NslpPathInit message.
 This "PDR_Reservation_Report" PDR object will be included into the
 Service_Class object class of the NslpResvInit message. The NTLP
 PATH message is forwarded towards the NR (receiver). Note that this
 NTLP PATH message will not include the "PDR/PHR" object information.
 If the "PHR_Resource_Request" PHR object is "M" marked, then the
 RSVPv2-NSLP "PHR" functionality will activate the RSVPv2-NSLP "PDR"
 functionality which will create and "M" mark the
 "PDR_Reservation_Report" object. Moreover, if the "T" field value
 included in the "PHR" object is "1" then the PDR_TTL value that was
 included by the NF(interior) node into the "PDR_Reservation_Request"
 object will be copied into the PDR_TTL value of the
 "PDR_Reservation_Report" object. The "PDR" object will be included
 in an NslpPathErr message. The NslpPathErr message will be
 encapsulated into a NTLP PATHERROR message. The NslpPathError message
 will only be processed by the NF(ingress) node.

 When the NF(egress) node receives a NslpPathError message which is
 carried by a PATHERROR message will have to identify the error type.
 If the NSlpPathErr message is associated to a NslpPathInit message
 then the NslpPathErr will have to be encapsulated into a NTLP
 PATHERROR message and sent towards the NI(sender). Moreover, its
 associated RSVPv2-NSLP state has to be deleted. The NTLP PATHERROR
 message will be processed within the NSIS intra-domain only by the
 NF(ingress) node. If the NslpPathErr message is associated to a
 NslpPathMod request, then then the NslpPathErr will have to be
 encapsulated into a NTLP PATHERROR message and sent towards the

 NI(sender). Moreover, if the modification procedure required a higher

Westberg, et al. Expires October 2003 [Page 52]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 amount of reservation, then the nodes that modified the reservation
 will have to reset the reservation to the amount (or type) of
 reservation that was stored before the modification procedure
 started.

 The NF(egress) node can receive a NslpResvInit message, carried by a
 NTLP RESV message which was sent by the NR(receiver) and is
 associated with an earlier processed NslpPathInit message. The
 RSVPv2-NSLP "PDR" functionality of the NF(egress) node will report
 the successful reservation to the RSVPv2-NSLP "PDR" functionality of
 the NF(ingress) node by using a "PDR_Reservation_Report" PDR object.
 This object will be included into the Service_Class object class of
 the NslpResvInit message. Note that this message is processed in a
 NSIS intra-domain only by the NF(egress) and NF(ingress) nodes. The
 NF(interior)nodes are not processing this message.

 The NF(egress) node can receive a refresh NTLP PATH message. The
 NF(egress) node that processes the refresh NTLP PATH message it will
 refresh the NTLP state associated with the session ID included into
 the Session_ID_Class object class. Furthermore, it will activate the
 RSVPv2-NSLP "PHR" functionality by using the transported RSVPv2-NSLP
 "PHR" object. The behavior of the RSVPv2-NSLP "PHR" functionality in
 the NF(egress) node is similar to the RSVPv2-NSLP "PHR" functionality
 provided in the NF(interior) nodes. If the refresh is admitted, the
 RSVPv2-NSLP "PDR" functionality of the NF(egress) node will report
 the successful refresh procedure to the RSVPv2-NSLP "PDR"
 functionality of the NF(ingress) node by using a "PDR_Refresh_Report"
 PDR object. This object is temporarilty stored until a NslpResvRef
 message arrives that is carried by a NTLP RESV message, that was sent
 by the NR(receiver) and that is associated with an earlier processed
 NslpPathRef message. This "PDR_Refresh_Report" PDR object will be
 included into the Service_Class object class of the NslpResvRef
 message. The NTLP PATH message is forwarded towards the NR
 (receiver). Note that this NTLP PATH message will not include the
 "PDR/PHR" object information.

 The NF(egress) node can receive a NslpResvRef message, carried by a
 NTLP RESV message which was sent by the NR(receiver) and is
 associated with an earlier processed NslpPathRef message. The
 RSVPv2-NSLP "PDR" functionality of the NF(egress) node will report
 the successful refresh PDR/PHR procedure to the RSVPv2-NSLP "PDR"
 functionality of the NF(ingress) node by using a "PDR_Refresh_Report"
 PDR object. This object will be included into the Service_Class
 object class of the NslpResvRef message. Note that this message is

 processed in a NSIS intra-domain only by the NF(egress) and

Westberg, et al. Expires October 2003 [Page 53]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NF(ingress) nodes. The NF(interior) nodes are not processing this
 message.

 The NF(egress) node that processes the PATHTEAR message it will
 activate the RSVPv2-NSLP "PHR" functionality by using the transported
 "PHR" object. The behavior of the RSVPv2-NSLP "PHR" functionality in
 the NF(egress) node is similar to the RSVPv2-NSLP "PHR" functionality
 provided in the NF(interior) nodes. Furthermore, the NTLP state is
 released and the PATHTEAR message is forwarded towards the NR
 (receiver). Note that this PATHTEAR message will not include the
 "PDR/PHR" objects.

 The behavior of the NF(egress) node related to the modification
 procedure is the same as in the NF(interior) nodes. After receiving
 the modification NTLP PATH message the RSVPv2-NSLP is processing
 either the "PHR_Resource_Request" or "PHR_Release_Request" object.
 After that the RSVPv2-NSLP functionality of the NF(egress) node uses
 the "PDR_Modification_Request" object and identifies the flow
 specification ID and the RSVPv2-NSLP state associated with it.
 Subsequently, the RSVPv2-NSLP "e2e service" functionality is
 activated and by using the information contained in the
 Flow_Specification_Class it will modify the reservation stored into
 the RSVPv2-NSLP path state. If the modification is admitted, the
 RSVPv2-NSLP "PDR" functionality of the NF(egress) node will report
 the successful modification procedure to the RSVPv2-NSLP "PDR"
 functionality of the NF(ingress) node by using a
 "PDR_Modification_Report" PDR object. This object is temporarily
 stored until a NslpResvMod message arrives that is carried by a NTLP
 RESV message, which was sent by the NR(receiver) and that is
 associated with an earlier processed NslpPathMod message. This
 "PDR_Modification_Report" PDR object will be included into the
 Service_Class object class of arriving NslpResvMod message. The
 modification NTLP PATH message is forwarded towards the NR
 (receiver). Note that this NTLP PATH message will not include the
 "PDR/PHR" object information.

 The NF(egress) node can receive a NslpResvMod message, carried by a
 NTLP RESV message which was sent by the NR(receiver) and is
 associated with an earlier processed NslpPathMod message. The
 RSVPv2-NSLP "PDR" functionality of the NF(egress) node will report
 the successful modification procedure PDR/PHR procedure to the
 RSVPv2-NSLP "PDR" functionality of the NF(ingress) node by using a
 "PDR_Modification_Report" PDR object. This object will be included
 into the Service_Class object class of the NslpResvMod message. Note

 that this message is processed in a NSIS intra-domain only by the

Westberg, et al. Expires October 2003 [Page 54]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NF(egress) and NF(ingress) nodes. The NF(interior) nodes are not
 processing this message.

 During a severe congestion situation marked data packets arrive at
 the NF(egress) node. When the marked packets arrive at the NF(egress)
 node, the NF(egress) node will generate a "PDR_Congestion_Report"
 object and send it to the NF(ingress) node containing the over-
 allocation volume of the flow in question, e.g., a blocking
 probability. The "PDR_Congestion_Report" PDR object should be
 included into a NslpPathErr and transported by a NTLP PATHERROR
 message. For each flow ID, the RSVPv2-NSLP PDR functionality at the
 NF(egress) node will count the number of marked bytes (# marked
 bytes) and the number of unmarked bytes (#unmarked bytes). Based on
 this information the RSVPv2-NSLP PDR functionality at the NF(egress)
 node will have to calculate the blocking estimation of data. The
 NF(egress) node will actually calculate the blocking probability
 (Pdrop), which will be used by an NF(ingress) node to block this
 particular flow. The blocking probability is calculated as the ratio
 between the dropped bytes and the maximum number of bytes that can be
 supported by the interior node:

 Pdrop = (# marked bytes)/(# marked bytes + # unmarked bytes)

 This blocking probability will be included in the
 "PDR_Congestion_Report" object that will be sent to the NF(ingress).

5.4.5.2. Bidirectional functionality

 The bi-directional reservation functionality supported by the
 NF(egress) is similar to a combination of two unidirectional
 reservation functionalities that are accomplished in opposite
 directions. Such a unidirectional reservation functionality is
 described in Section 5.4.5.1. The main differences of the bi-
 directional reservation functionality with the combination of two
 unidirectional reservation functionalities accomplished in opposite
 directions are as follows:

 * the reservation state specifies a bi-directional reservation
 * the Service_Class object specifies that the reservation is
 bi-directional
 * the NF(egress) does not process the NslpResvInit, NslpResvRef and
 NslpResvMod messages
 * the success of the reservation procedure is reported to the NI(sender)

Westberg, et al. Expires October 2003 [Page 55]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 using the NslpPathInit that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathRef that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathMod that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the PDR_Reservation_Report object used to report a successful
 reservation procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)
 * the PDR_Refresh_Report object used to report a successful refresh
 procedure is carried by the NslpPathInit that is sent hop-by-hop
 from NF(egress) towards the NF(ingress)
 * the PDR_Modification_Report object used to report a successful
 modification procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)
 * the NF(egress) node can initiate an explicit partial release
 procedure towards the NF(ingress) node.

5.4.6. NR (NSIS Responder) functionality

 The NR (NSIS Responder) functionality can be characterized as
 unidirectional and bi-directional reservation functionality.

5.4.6.1. Unidirectional functionality

 The unidirectional functionality supported by the NR(receiver) used
 in this type of scenarios is identical to the functionality supported
 by the NR(receiver) used in the inter-domain signaling scenario (see

Section 5.3.3.1).

5.4.6.2. Bidirectional functionality

 The bi-directional functionality supported by the NR(receiver) used
 in this type of scenarios is identical to the functionality supported
 by the NR(receiver) used in the inter-domain signaling scenario (see

Section 5.3.3.2).

Westberg, et al. Expires October 2003 [Page 56]

Internet Draft Proposal for RSVPv2-NSLP April 2003

6. Example of RSVPv2-NSLP Inter-domain signaling procedures

 This section gives a brief description of the main flow diagram used
 by the RSVPv2-NSLP protocol for inter-domain signaling procedures.
 RSVPv2-NSLP is considered in this section to be optimized for unicast
 and sender-initiated protocol. This means that the NslpPathInit
 initiates and activates a reservation in each node that is passing
 through. The Inter-domain signaling procedures are mainly using
 globally defined objects, i.e., e2e service objects, see Figure 1.

6.1. Normal operation for uni-directional reservation

 This section presents examples of RSVPv2-NSLP inter-domain signaling
 procedures for RSVPv2-NSLP normal operation, i.e., successful
 reservation and operation without failures. In this example only the
 uni-directional feature is considered and it is assummed that no
 intra-domain signaling procedures are used.

 Figure 4 shows the main flow diagram used by the RSVPv2-NSLP
 protocol. The NI(sender), after creating an NSLP reservation state,
 generates an NslpPathInit. The flow ID, the ID of the NSLP protocol
 and the time values can be included in the Flow_Specificaton_Class
 (e.g., <Session>, <Sender_template>, <Time_Values>, <NSLP_ID>
 objects). The session ID and the ID of the NSLP protocol can be
 included in the Session_ID_Class (e.g., <Session> and <NSLP_ID>
 objects). The information that is related to the service desired
 from the network, i.e., requested QoS, can be included into the
 Service_Class object class (e.g., <Sender_Tspec> and <Flowspec>
 objects).

 The NslpPathInit is encapsulated into a NTLP PATH message (see
 [RFC2205]). The NTLP PATH message is processed by all NTLP stateful
 nodes that is passing through, up to the NR (receiver). Each node
 that processes the NTLP PATH message will create a NTLP state and
 will activate the RSVPv2-NSLP "e2e service" functionality by using
 the transported NslpPathInit information and it will create an
 RSVPv2-NSLP reservation state. This RSVPv2-NSLP reservation state
 will be associated to a flow ID. Note that the NTLP states have to
 store back-ward routing information, which are used by NTLP messages
 that are transported hop-by-hop in the backward direction towards the
 NI(sender).

 When the NR(receiver) receives NslpPathInit the RSVPv2-NSLP "e2e
 service" functionality creates an NslpResvInit message that is used

https://datatracker.ietf.org/doc/html/rfc2205

Westberg, et al. Expires October 2003 [Page 57]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 to report information related to how the NslpPathInit has been
 processed along the path. This NslpResvInit will be encapsulated
 into a RESV message and it will only be processed by the RSVPv2-NSLP
 "e2e service" functionality at each hop that is passing by and that
 is supporting the "e2e service" functionality.

 After the successful reception of the NslpResvInit message the
 NI(sender) can start transmitting traffic user data.

 Figure 4 also shows how the refresh procedure is performed. The
 RSVPv2-NSLP refresh procedure is a pure NTLP refresh procedure,
 meaning that a refresh NTLP PATH message that is periodically sent
 through all the NTLP stateful nodes located between NI (sender) and
 NR (receiver). If a NTLP state in a NTLP stateful is not refreshed
 on time then the NTLP functionality at this node informs the
 RSVPv2-NSLP state that the refresh procedure is unsuccesful. Note
 that the refresh NTLP PATH message may optionally carry a NSLPPathRef
 message. NR (receiver) will create a refresh NTLP RESV message that
 will be sent towards the NI (sender). This message will be used to
 report information related to how the NTLP PATH message has been
 processed along the path. Note that the refresh NTLP RESV message
 may optionally carry a NSLPResvRef message.

Westberg, et al. Expires October 2003 [Page 58]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NI (sender) NF (router) NF (router) NR (receiver)
NTLP stateful NTLP stateful NTLP stateful NTLP stateful
 PATH(NslpPathInit) | | |
 |------------------->| | |
 | | | |
 | |PATH(NslpPathInit) | |
 | |------------------->| PATH(NslpPathInit) |
 | | |------------------->|
 | | | RESV(NslpResvInit) |
 | | RESV(NslpResvInit) |<-------------------|
 | |<-------------------| |
 |RESV(NslpResvInit) | | |
 |<-------------------| | |
 | | Traffic(user) Data | |
 |------------------->|------------------->|------------------->|
 | | | |
 |PATH([NslpPathRef]) | | |
 |------------------->| | |
 | | | |
 | |PATH([NslpPathRef]) | |
 | |------------------->|PATH([NslpPathRef]) |
 | | |------------------->|
 | | | RESV([NslpResvRef])|
 | | RESV([NslpResvRef])|<-------------------|
 | |<-------------------| |
 |RESV([NslpResvRef])| | |
 |<-------------------| | |

 Figure 4: Inter-domain signaling normal operation for successful
 reservation

Figure 5 depicts the RSVPv2-NSLP tearing down procedure. In Figure 5
The RSVPv2-NSLP "e2e service" functionality of the NI(sender) informs
the NTLP functionality of the same node to start a tear down procedure
for the specific flow. A NTLP PATHTEAR message is created that is sent
towards the NR (receiver). This message will tear down all the NTLP and
RSVPv2-NSLP states that are associated with the Session_ID_Class of all
NTLP stateful nodes that process the NTLP PATHTEAR message. Note that
the NTLP PATHTEAR message may optionally carry a NSLPPathTear message.

Westberg, et al. Expires October 2003 [Page 59]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NI (sender) NF (router) NF (router) NR (receiver)
NTLP stateful NTLP stateful NTLP stateful NTLP stateful
 |PATHTEAR([NslpPathTear]) | | |
 |------------------->| | |
 | |PATHTEAR([NslpPathTear]) |
 | |------------------->|PATHTEAR([NslpPathTear])
 | | |------------------->|

Figure 5: Inter-domain signaling normal operation for tearing down a
 reservation initiated by NI (sender)

Figure 6 shows the main flow diagram used by the RSVPv2-NSLP protocol in
case of an unsuccessful reservation assuming that no intra-domain
signaling procedures are used. In this situation only the uni-
directional feature is considered. In this situation the NslpPathInit
and NTLP PATH messages are created and transmitted in the same way as
during the successful reservation. The main difference is related to
the fact that one of the NF(routers) is not able to satisfy the
NslpPathInit request. In this situation this RSVPv2-NSLP "e2e service"
functionality of this particular NF(router) will generate an NslpPathErr
to report to NI(sender) that the NslpPath request could not be
satisfied. This NslpPathErr message will be encapsulated into a NTLP
PATHERROR message and it will be sent hop-by-hop towards the NI(sender).
This message will be processed hop-by-hop by the RSVPv2-NSLP "e2e
service" functionality.

NI (sender) NF (router) NF (router) NR (receiver)
NTLP stateful NTLP stateful NTLP stateful NTLP stateful
 PATH(NslpPathInit) | | |
 |------------------->| | |
 | | | |
 | | PATH(NslpPathInit) | |
 | |------------------->| |
 | | | |
 | PATHERROR(NslpPathErr) | |
 | |<-------------------| |
 |PATHERROR(NslpPathErr) | |
 |<-------------------| | |

 Figure 6: Inter-domain signaling normal operation for unsuccessful
 reservation

Westberg, et al. Expires October 2003 [Page 60]

Internet Draft Proposal for RSVPv2-NSLP April 2003

Figure 7 shows the main flow diagram used by the RSVPv2-NSLP protocol in
case of a modification of a reservation procedures assuming that no
intra-domain signaling procedures are used. In this situation only the
uni-directional feature is considered. The modification of the
reservation is included in a new NslpPathMod message. This NSLP message
is encapsulated into a NTLP PATH message and it is sent hop-by-hop
towards the NR(receiver). The flow ID of the flow that has to be
modified is included in the Flow_Specificaton_Class. The information
that has to be modified that is included into the Service_Class object
class. (e.g., <Sender_Tspec> and <Flowspec> objects).

The NslpPathMod information is read by each NTLP stateful node that
processes the NTLP PATH message. The RSVPv2-NSLP functionality
identifies the flow that has to be modified by using its flow ID
information carried by the NslpPathMod message. By using the
information contained in the Service_Class, the RSVPv2-NSLP
functionality is modifying the service information stored into the
RSVPv2-NSLP state.

Subsequently the RSVPv2-NSLP "e2e service" functionality at the
NR(receiver) will create an NslpResvMod that will be used to report
information related to how the NslpPathMod message has been processed
along the path. This NslpResvMod message will be encapsulated into a
NTLP RESV message and sent hop-by-hop towards the NI(sender).

When a NSIS node is not able to satisfy a NslpPathMod request the
RSVPv2-NSLP "e2e service" functionality of this node will generate an
NslpPathErr to report to NI(sender) that the NslpPathMod request could
not be satisfied. This message will be encapsulated into a NTLP
PATHERROR message and it will be sent towards the NI(sender). In this
case the "e2e functionality" of any NSIS node will identify the
modification type of the NslpPathErr message. If the modification
procedure required a higher amount of reservation, then the reservation
asociated to the modified flow will have to be reseted to the
reservation or to the amount (or type) of reservation that was stored
before the modification procedure started.

Westberg, et al. Expires October 2003 [Page 61]

Internet Draft Proposal for RSVPv2-NSLP April 2003

NI (sender) NF (router) NF (router) NR (receiver)
NTLP stateful NTLP stateful NTLP stateful NTLP stateful
 PATH(NslpPathMod) | | |
------------------->		
	PATH(NslpPathMod)	
	------------------->	PATH(NslpPathMod)
		------------------->
		RESV(NslpResvMod)
	RESV(NslpResvMod)	<-------------------
	<-------------------	
RESV(NslpResvMod)		
<-------------------		

 Figure 7: Inter-domain signaling normal operation for modification of
 reservation

6.2. Normal operation for bi-directional reservation

 This section gives one example of inter-domain signaling for a
 successful and one example of inter-domain signaling for an
 unsuccessful bi-directional reservation. Figure 8 shows the flow
 diagram of inter-domain signaling used by the RSVPv2-NSLP protocol in
 case of a successful bi-directional reservation.

 The bi-directional successful reservation is similar to a combination
 of two unidirectional successful reservations that are accomplished
 in opposite directions. The main differences of the bi-directional
 successful reservation procedure with the combination of two
 unidirectional successful reservations accomplished in opposite
 directions are as follows:

 * the reservation state specifies a bi-directional reservation
 * the Service_Class object specifies that the reservation is
 bi-directional
 * the NSIS aware nodes do not receive the NslpResvInit, NslpResvRef and
 NslpResvMod messages
 * the success of the reservation procedure is reported to the NI(sender)
 using the NslpPathInit that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathRef that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)

Westberg, et al. Expires October 2003 [Page 62]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 using the NslpPathMod that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)

 Figure 9 shows the flow diagrams of inter-domain signaling used by
 the RSVPv2-NSLP protocol in case of a unsuccessful bi-directional
 reservation. The bi-directional unsuccessful reservation is similar
 to a combination of two unidirectional unsuccessful reservations that
 are accomplished in opposite directions. The main differences of the
 bi-directional unsuccessful procedure with the combination of two
 unidirectional successful reservations accomplished in opposite
 directions are as follows:

 * the reservation state specifies a bi-directional reservation
 * the Service_Class object specifies that the reservation is
 bi-directional
 * the NSIS aware nodes do not process the NslpResvInit, NslpResvRef and
 NslpResvMod messages

Westberg, et al. Expires October 2003 [Page 63]

Internet Draft Proposal for RSVPv2-NSLP April 2003

NI (sender) NF (router) NF (router) NR (receiver)
NTLP stateful NTLP stateful NTLP stateful NTLP stateful
 PATH(NslpPathInit) | | |
 |------------------->| | |
 | | PATH(NslpPathInit) |
 | |-->|
 | | | |
 | | | PATH(NslpPathInit)|
 | | |<-------------------|
 | PATH(NslpPathInit) | |
 |<--| |
 | | | |
 | | | |
 | | Traffic(user) Data | |
 |------------------->|-->|
 | | | |
 | | Traffic(user) Data | |
 |<--|<-------------------|
 | | | |
 | | | |
 |PATH([NslpPathRef]) | | |
 |------------------->| | |
 | |PATH([NslpPathRef]) | |
 | |-->|
 | | | |
 | | | PATH([NslpPathRef])|
 | PATH([NslpPathRef]) |<-------------------|
 |<--| |
 | | | |

 Figure 8: Inter-domain signaling for bi-directional
 reservation in case of a successful reservation

Westberg, et al. Expires October 2003 [Page 64]

Internet Draft Proposal for RSVPv2-NSLP April 2003

NI (sender) NF (router) NF (router) NR (receiver)
NTLP stateful NTLP stateful NTLP stateful NTLP stateful
 PATH(NslpPathInit) | | |
 |------------------->| | |
 | | PATH(NslpPathInit) |
 | |-->|
 | | | |
 | | | PATH(NslpPathInit)|
 | | |<-------------------|
 | | | |
 | | PATHERROR(NslpPathErr)|
 | | |------------------->|
 | | PATHERROR(NslpPathErr) |
 | |<--|
 | PATHERROR(NslpPathErr) | |
 |<-------------------| | |

 Figure 9: Inter-domain signaling for bi-directional reservation in case of
 an unsuccessful reservation

7. Example of RSVPv2-NSLP Intra-domain signaling procedures

 This section gives a brief description of the main flow diagram used
 by the RSVPv2-NSLP protocol for intra-domain signaling procedures.
 These intra-domain signaling procedures are using the NSIS protocol
 which consists of one NTLP level and two NSLP hierarchical levels
 (see Figure 2).

 Intra-domain signaling is where the RSVPv2-NSLP signaling messages
 are originated, processed and terminated within the same domain.
 RSVPv2-NSLP is considered in this section to be optimized for unicast
 and sender-initiated protocol.

 The Intra-domain signaling procedures are mainly using RSVPv2-NSLP
 PHR/PDR objects, (see Section 5.2.2) that are originated, processed
 and terminated within the same domain.

7.1. Normal operation for uni-directional reservation

 This section presents examples of RSVPv2 intra-signaling procedures
 for RSVPv2-NSLP normal operation, i.e., operation without failures.

Westberg, et al. Expires October 2003 [Page 65]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Figure 10 shows the main flow diagram intra-domain signaling used by
 the RSVPv2-NSLP protocol in case of a successful reservation. In
 this situation only the uni-directional feature is considered. Note
 that the same figure shows how the RSVPv2-NSLP inter-domain and
 intra-domain signaling can inter-operate. When an NslpPathInit
 arrives at the ingress node of a domain, i.e., NF(ingress) (see
 Figure 10), the RSVPv2-NSLP "e2e service" functionality creates a
 RSVPv2-NSLP Path reservation state. Subsequently, the RSVPv2-NSLP
 "PDR" protocol functionality is activated (see Figure 2) classifying
 the flow (i.e., Flow_Specification_Class) that is associated with the
 NslpPathInit message into an appropriate traffic class, e.g.,
 Diffserv class. The RSVPv2-NSLP PDR functionality uses the
 RSVPv2-NSLP path state created by the NslpPathInit message and it
 introduces additional information that can be used to associate the
 PHR and PDR objects with the flow that created the RSVPv2-NSLP Path
 reservation state in the NF(ingress) node. The RSVPv2-NSLP PDR
 functionality is subsequently using the Service_Class (e.g.,
 <SENDER_Tspec> object) and translates the requested bandwidth
 parameter into a number of resource units. If the QoS request is
 satisfied locally, then the ingress node will generate a reservation
 request PHR object denoted as "PHR_Resource_Request" and a
 reservation request PDR object denoted as "PDR_Reservation_Request",
 (see Section 5.2.2). The PDR object MAY contain information such as
 the IP address of the NF(ingress) node and the per-flow specification
 ID. These PHR and PDR objects are locally defined objects which are
 included into the Service_Class object class carried by the
 NslpPathInit message. The NslpPathInit message is encapsulated into
 a NTLP PATH message. The NTLP PATH message is processed by all NTLP
 stateless NF(interior) nodes that is passing through, up to the NF
 (egress). Each stateless NF(interior) node that processes the NTLP
 PATH message it will not create a state but it will activate the
 RSVPv2-NSLP functionality by using the transported NslpPathInit
 message. The RSVPv2-NSLP "PHR" functionality of these NF(interior)
 nodes will use the information included in the PHR object
 ("PHR_Resource_Request") and it will identify the ID of the traffic
 class, e.g., Diffserv class. If there is enough bandwidth capacity,
 it will reserve the requested resources. The NF(interior) node
 reserves the requested resources by e.g., adding the requested amount
 to the total amount of reserved resources for that traffic class,
 e.g., Diffserv class.

 The behavior of the NF(egress) node on admission or rejection of the
 NslpPathInit message that contains the "PHR_Resource_Request" object
 is the same as in the NF(interior) nodes. After processing the

 "PHR_Resource_Request" object, the RSVPv2-NSLP functionality of the

Westberg, et al. Expires October 2003 [Page 66]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NF(egress) node uses the "PDR_Reservation_Request" object and
 creates/identifies the flow specification ID and the state associated
 with it. Subsequently, the RSVPv2-NSLP "e2e service" functionality
 is activated and by using the information contained in the
 Flow_Specification_Class it will create an RSVPv2-NSLP Path
 reservation. The NTLP PATH message is forwarded towards the NR
 (receiver), and it will be processed by all NTLP stateful nodes that
 is passing through as an inter-domain signaling procedure, see

Section 6. Note that this NTLP PATH message will not include the
 "PDR/PHR" object information.

 When the NR(receiver) receives the NTLP PATH message, similar to the
 procedure used in Section 6, it will create a NTLP state and it will
 activate the RSVPv2-NSLP "e2e service" functionality by using the
 NslpPathInit message. It will create a RSVPv2-NSLP path reservation
 state which will be identified by using the information contained in
 the Flow_Specification_Class object class.

 Subsequently the RSVPv2-NSLP "e2e service" functionality will create
 an NslpResvInit message that will be used to report information
 related to how the NslpPathInit has been processed along the path.
 This NslpResvInit will be encapsulated into a RESV message and it
 will only be processed by the RSVPv2-NSLP "e2e service" functionality
 at each hop that is passing by and that is supporting the "e2e
 service" functionality. Note that this message is processed in a
 domain only by the NF(egress) and NF(ingress) nodes. The NF(interior)
 nodes are not processing this message. Moreover, the RSVPv2-NSLP
 "PDR" functionality of the NF(egress) node will report the successful
 reservation to the RSVPv2-NSLP "PDR" functionality of the NF(ingress)
 node by using a "PDR_Reservation_Report" PDR object. This object
 will be included into the Service_Class object class of the
 NslpResvInit message.

 After the successful reception of the NslpResvInit message, the
 NI(sender) can start transmitting traffic user data. Figure 10 also
 shows how the refresh procedure is performed.

 The inter-domain RSVPv2-NSLP refresh procedure is a pure NTLP refresh
 procedure, see Section 6. However, the intra-domain RSVPv2-NSLP
 refresh procedure is a combination of a NTLP and a RSVPv2-NSLP
 "PHR/PDR" procedure. When a refresh NTLP PATH message is received by
 a NF(ingress) node the NTLP functionality will activate the
 RSVPv2-NSLP "PHR/PDR" functionality that is carried by the
 NslpPathRef message. By using the Flow_Specification_Class object
 class the "PDR" functionality can identify the RSVPv2-NSLP path

Westberg, et al. Expires October 2003 [Page 67]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 state. The RSVPv2-NSLP "PDR" functionality of the NF(ingress) node
 will generate a refresh request PHR object denoted as
 "PHR_Refresh_Update" and a refresh request PDR object denoted as
 "PDR_Refresh_Request", (see Section 5.2.2). The PDR object MAY
 contain information such as the IP address of the NF(ingress) node
 and the per-flow specification ID. These PHR and PDR objects are
 locally defined objects which are included into the Service_Class
 object class carried by the NslpPathRef message.

 The refresh NTLP PATH message is processed by all NTLP stateless
 NF(interior) nodes that is passing through, up to the NF (egress).
 Each node that processes the refresh NTLP PATH message it will
 refresh the NTLP state associated with the session ID, i.e.,
 information included into the Session_ID_Class object class. The
 NTLP level functionality of the NTLP stateless NF(interior) nodes
 receiving the refresh NTLP PATH message will activate the RSVPv2-NSLP
 "PHR" functionality.

 The RSVPv2-NSLP "PHR" functionality of these NF(interior) nodes will
 use the information included in the PHR object
 ("PHR_Refresh_Request") and it will identify the ID of the traffic
 class, e.g., Diffserv class. This object will refresh the requested
 resources included in the "PHR_Refresh_Update" object.

 The NF(egress) node that processes the refresh NTLP PATH message it
 will refresh the NTLP state associated with the session ID included
 into the Session_ID_Class object class. Furthermore, it will activate
 the RSVPv2-NSLP "PHR" functionality by using the transported
 RSVPv2-NSLP "PHR" object.

 The behavior of the RSVPv2-NSLP "PHR" functionality in the NF(egress)
 node is similar to the RSVPv2-NSLP "PHR" functionality provided in
 the NF(interior) nodes.

 Subsequently, the refresh NTLP PATH message is forwarded towards the
 NR (receiver), and it will be processed by all NTLP stateful nodes
 that is passing through as an inter-domain signaling procedure, see

Section 6. Note that this refresh NTLP PATH message will not include
 the "PDR/PHR" objects.

 When the NF(responder) receives the refresh NTLP PATH message, it
 will refresh the NTLP state and it will invoke the RSVPv2-NSLP "e2e
 service" functionality.

 If a NTLP state in a NTLP stateful is not refreshed on time then the

Westberg, et al. Expires October 2003 [Page 68]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NTLP functionality at this node informs the RSVPv2-NSLP state that
 the refresh procedure is unsuccessful.

 Note that the refresh NTLP PATH message may optionally carry a
 NSLPPathRef message. NR (receiver) will create a NTLP RESV message
 that will be sent towards the NI (sender). This message will be used
 to report information related to how the NTLP PATH message has been
 processed along the path. Note that the refresh NTLP RESV message
 may optionally carry a NSLPResvRef message. Note that this message is
 processed in a domain only by the NF(egress) and NF(ingress) nodes.
 The NF(interior) nodes are not processing this message. Moreover,
 the RSVPv2-NSLP "PDR" functionality of the NF(egress) node will
 report the successful refresh PDR/PHR procedure to the RSVPv2-NSLP
 "PDR" functionality of the NF(ingress) node by using a
 "PDR_Refresh_Report" PDR object. This object will be included into
 the Service_Class object class of the NslpResvRef message.

Westberg, et al. Expires October 2003 [Page 69]

Internet Draft Proposal for RSVPv2-NSLP April 2003

NF (ingress) NF (interior) NF (interior) NF (egress)
NTLP stateful NTLP stateless NTLP stateless NTLP stateful
 | | | |
PATH(NslpPathInit) | | |
--->|PATH(NslpPathInit): | | |
 |PHR_Resource_Request| | |
 |PDR_ResReq |PATH(NslpPathInit): | |
 |------------------->|PHR_Resource_Request| |
 | |PDR_ResReq |PATH(NslpPathInit): |
 | |------------------->|PHR_Resource_Request|
 | | |PDR_ResReq |
 | | |------------------->|
 | | | PATH(NslpPathInit)
 | | | |----->
 | | | RESV(NslpResvInit)
 | | | |<------
 | |RESV (NslpResvInit) | |
 | |PDR_Reservation_Report |
 |<---|
RESV(NslpResvInit) | | |
<---| | | |
 | | Traffic(user) Data | |
--->|------------------->|------------------->|------------------->|--->
 | | | |
PATH([NslpPathRef]) | | |
--->| | | |
 PATH(NslpPathRef): | | |
 |PHR_Refresh_Update | | |
 |PDR_RefReq |PATH(NslpPathRef): | |
 |------------------->|PHR_Refresh_Update | |
 | |PDR_RefReq |PATH(NslpPathRef):
 | |------------------->|PHR_Refresh_Update |
 | | |PDR_RefReq |
 | | |------------------->|
 | | | PATH([NslpPathRef])
 | | | |----->
 | | | RESV([NslpResvRef])
 | | | |<------
 | |RESV(NslpResvRef): | |
 | |PDR_Refresh_Report | |
 |<---|
RESV ([NslpResvRef]) | | |
<---| | | |
 (PDR_ResReq) - represents the "PDR_Reservation_Request" PDR object.

 This PDR object is processed only by the

Westberg, et al. Expires October 2003 [Page 70]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NF(ingress) and NF(egress) nodes.

 (PDR_RefReq) - represents the PDR_Refresh_Request PDR object
 This PDR object is processed only by the NF(ingress) and
 NF(egress) nodes.

 Figure 10: Intra-domain signaling normal operation for successful
 reservation

 Figure 11 depicts the intra-domain RSVPv2-NSLP tearing down
 procedure. A NTLP PATHTEAR message, is received by the NTLP
 functionality in the NF(ingress) node. Note that the NTLP PATHTEAR
 message may optionally carry a NSLPPathTear message. The NTLP
 functionality activates the RSVPv2-NSLP "PDR/PHR" functionality, that
 is related to the Session_ID_Class class object, and that is using
 the "PDR" object. The RSVPv2-NSLP "PDR" functionality of the
 NF(ingress) node will generate a release request "PHR" object denoted
 as "PHR_Release_Request" and a release request PDR object denoted as
 "PDR_Release_Request", (see Section 5.2.2). The PDR object may
 contain information such as the IP address of the NF(ingress) node
 and the per-flow specification ID.

 These PHR and PDR objects are locally defined objects which are
 included into the Service_Class object class carried by a
 NslpPathTear message. All the RSVPv2-NSLP and NTLP reservations, in
 the NF(ingress) node that are associated to the Session_ID_Class
 object class will be released. The NTLP PATHTEAR message is
 processed by all NTLP stateless NF(interior) nodes that is passing
 through, up to the NF (egress). Each node that processes the PATHTEAR
 message will activate the RSVPv2-NSLP "PHR" functionality by using
 the transported RSVPv2-NSLP "PHR" object. The NTLP functionality in
 the NTLP stateless NF(interior) node that receives the PATHTEAR
 message will pass the NslpPathTear message to the RSVPv2-NSLP
 functionality. The NslpPathTear message contains the
 "PHR_Release_Request" and "PDR_Release_Request" PHR and PDR objects,
 respectively.

 The RSVPv2-NSLP "PHR" functionality of this NF(interior) node will
 use the information included in the PHR object
 ("PHR_Release_Request") and it will identify the ID of the traffic
 class, e.g., Diffserv class. This object will subtract the requested
 resources included in the "PHR_Release_Request" object from the total
 reserved amount of resources stored in the traffic class state.

 The NF(egress) node that processes the PATHTEAR message it will it

Westberg, et al. Expires October 2003 [Page 71]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 will activate the RSVPv2-NSLP "PHR" functionality by using the
 transported "PHR" object.

 The behavior of the RSVPv2-NSLP "PHR" functionality in the NF(egress)
 node is similar to the RSVPv2-NSLP "PHR" functionality provided in
 the NF(interior) nodes. Furthermore, the NTLP state is released and
 the PATHTEAR message is forwarded towards the NR (receiver), and it
 will be processed by all NTLP stateful nodes that is passing through
 as an inter-domain signaling procedure, see Section 6. Note that
 this PATHTEAR message will not include the "PDR/PHR" objects.

NF (ingress) NF (interior) NF (interior) NF (egress)
 NTLP stateful NTLP stateless NTLP stateless NTLP stateful
 | | | |
 | | Traffic(user) Data | |
-->|------------------->|------------------->|------------------->|--->
 | | | |
PATHTEAR([NslpPathTear])| | |
-->| | | |
 PATHTEAR(NslpPathTear): | |
PHR_Release_Request		
PDR_RelReq	PATHTEAR(NslpPathTear):	
------------------->	PHR_Release_Request	
	PDR_RelReq PATHTEAR(NslpPathTear):	
	------------------->	PHR_Release_Request
		PDR_RelReq
		------------------->
		PATHTEAR([NslpPathTear])

 (PDR_RelReq) - represents the PDR_Release_Request object. This object is
 processed only by the NF(ingress) and NF(egress) nodes.

 Figure 11: Intra-domain signaling normal operation for explicit release

 Figure 12 shows the main intra-domain flow diagram used by the
 RSVPv2-NSLP protocol in case of an unsuccessful reservation. In this
 situation only the uni-directional feature is considered. In this
 situation the RSVPv2-NSLP and NTLP messages are created and
 transmitted in the same way as during the successful reservation.
 The main difference is related to the fact that one of the NTLP
 stateless NF(interior) is not able to satisfy the request carried by
 the "PHR_Resource_Request" PHR object. The RSVPv2-NSLP "PHR"
 functionality of this NF(interior) node will mark the "M" field of

Westberg, et al. Expires October 2003 [Page 72]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 the "PHR_Resource_Request" object. The RSVPv2-NSLP "PHR"
 functionality will also include the number of previous NF(interior)
 nodes that successfully processed the RSVPv2-NSLP
 "PHR_Resource_Request" PHR object (see Appendix). This number can,
 for example, be identified by the TTL (Time-To-Live) value included
 in the IP header of the received NTLP PATH message. Note that each
 time that an IP packet passes a node, its TTL value is decreased by
 one. Furthermore, note that the NF(ingress) node should temporarily
 store the TTL value included in the IP header of any message in the
 PDR state associated to the NTLP PATH message. In case of an
 unsuccessful reservation, this information, that we denote as
 PDR_TTT_I will be used in combination with the value included in the
 PDR_TTL field (see Appendix) of a receiving "PDR" reporting object.
 The PDR_TTL field is generated and sent by a NF(interior) node that
 could not successfully process the "PHR" object, e.g., admit the
 requested "PHR" reservation. The NF(Ingress) node using this
 information can calculate how many NF(interior) nodes, before the
 NF(interior) node, rejected the "PHR_Resource_Request" object.

 In particular, the NF(interior) node that is not admitting the
 reservation request initiated by the "PHR_Resource_Request" PHR
 object will copy the TTL value included in the IP header of the
 received NTLP PATH message that carries the "PHR_Resource_Request"
 object into the "PDR_TTL" field of "PDR_Reservation_Request" PDR
 object. Moreover, the "T" field of the "PHR" object (see Appendix) is
 set to "1". These "PHR" and "PDR" objects are included in the
 NslpPathInit message. The NslpPathInit message is encapsulated into
 a NTLP PATH message.

 This NslpPathInit message is sent towards the NF(egress) node, which
 will be transported by a NTLP PATH message. Any NF(interior) node
 receiving a PATH message will activate the RSVPv2-NSLP "PHR"
 functionality. If the "PHR_Resource_Request" PHR object is "M"
 marked, then the RSVPv2-NSLP "PHR" functionality will not further
 process the "PHR" object. The NF(egress) node receiving a NTLP PATH
 message will activate the RSVPv2-NSLP "PHR" functionality. If the
 "PHR_Resource_Request" PHR object is "M" marked, then the RSVPv2-NSLP
 "PHR" functionality will activate the RSVPv2-NSLP "PDR" functionality
 which will create and "M" mark the "PDR_Reservation_Report" object.
 Moreover, if the "T" field value included in the "PHR" object is "1"
 then the PDR_TTL value that was included by the NF(interior) node
 into the "PDR_Reservation_Request" object will be copied into the
 PDR_TTL value of the "PDR_Reservation_Report" object. The "PDR"
 object will be included in an NslpPathErr message. The NslpPathErr

 message will be encapsulated into a NTLP PATHERROR message. The

Westberg, et al. Expires October 2003 [Page 73]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NslpPathError message will only be processed by the NF(ingress) node.
 The NTLP functionality of the NF(ingress) node that receives the
 PATHERROR message will activate the RSVPv2-NSLP "PDR" functionality.
 Due to the "M" marked "PDR_Reservation_Report" object the "PDR"
 functionality will activate the RSVPv2-NSLP "e2e service". The
 RSVPv2-NSLP "e2e service" functionality of the NF(ingress) node will
 generate a NslpPathErr message that will be sent hop-by-hop to the
 NI(sender) and will be encapsulated into a NTLP PATHERROR message.
 This message will inform the NI(sender) that the reservation request
 was not successful.

 Simultaneously, the NF(ingress) node will start a partial explicit
 release procedure, for releasing the unnecessarily reserved RSVP-NSLP
 resources in some interior nodes for the rejected flow. In this
 case, the RSVP-NSLP "PDR" functionality of the NF(ingress) node will
 generate a "PHR_Release_Request" object, and it will include the
 amount of the requested resources specified the PDR state. Moreover,
 the RSVPv2-NSLP "PDR" functionality will create the
 "PDR_Reservation_Request" PDR object.

 The RSVPv2-NSLP "PDR" functionality of the NF(ingress) node can
 calculate the number of NF(interior) nodes that processed and
 reserved RSVPv2-NSLP resources.

 This number can be calculated by subtracting the value included in
 the PDR_TTL field that was included in the received
 "PDR_Reservation_Report" PDR object from the value included in the
 PDR_TTL_I variable that has been stored into the RSVPv2-NSLP state.
 This calculated value will be included in the TTL - IP header field
 of the NTLP PATHTEAR message which is generated by the NF(ingress)
 node and which transports the "PHR_Resource_Release" object. The
 "PHR_Release_Request" and "PDR_Release_Request" objects are included
 into a NslpPathTear message. The NslpPathTear message is transported
 by a NTLP PATHTEAR message.

 The RSVPv2-NSLP "PHR" functionality of any node that receives a
 "PHR_Resource_Release" object must identify the traffic class, e.g.,
 DSCP and release the requested resources associated with it. This
 can be achieved by e.g., subtracting the amount of requested
 resources, included in the "PHR_Release_Request" object, from the
 total reserved amount of resources stored in the traffic class state.
 Moreover, its TTL value of the NTLP PATHTEAR message is decremented
 by one. When this value becomes zero, the "PHR_Resource_Release"
 object reached the interior node that marked the
 "PHR_Resource_Request" object and it will be dropped. This means that

Westberg, et al. Expires October 2003 [Page 74]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 this PHR object will not release any resources in this node.

NF (ingress) NF (interior) NF (interior) NF (egress)
NTLP stateful NTLP stateless NTLP stateless NTLP stateful
 | | | |
PATH(NslpPathInit) | | |
--->|PATH(NslpPathInit): | | |
 |PHR_Resource_Request| | |
 |PDR_ResReq |PATH(NslpPathInit): | |
 |------------------->|PHR_Resource_Request| |
 | |PDR_ResReq |PATH(NslpPathInit): |
 | |------------------->M PHR_Resource_Request (M
 | | M marked)
 | | M PDR_ResReq |
 | | M------------------->|
 | |PATHERROR(NslpPathErr): |
 | |PDR_Reservation_Report |
 |<---|
PATHERROR(NslpPathErr) | | |
<---| | | |
 |PATHTEAR(NslpPathTear): | | |
 |PHR_Resource_Release| | |
 |PDR_RelReq | | |
 |------------------->| | |

 (PDR_ResReq*) - represents the "PDR_Reservation_Request" PDR object.
 This PDR object is processed only by the
 NF(ingress) and NF(egress) nodes.

 (PDR_RelReq*) - represents the PDR_Release_Request object. This object is
 processed only by the NF(ingress) and NF(egress) nodes.

 Figure 12: Intra-domain signaling normal operation for unsuccessful
 reservation

 Figure 11 and Figure 12 show the intra-domain main flow diagram used
 by the RSVPv2-NSLP protocol for a modification of a reservation
 procedure. In this situation only the uni-directional feature is
 considered.

 The request for modification of the reservation is included into the
 NslpPathMod message. A NTLP PATH message that encapsulates the
 NslpPathMod message is received by the NTLP functionality of the
 NF(ingress) node. The NTLP functionality activates the RSVP-NSLP
 "PDR/PHR" functionality, which is associated with the

Westberg, et al. Expires October 2003 [Page 75]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Session_ID_Class object class. When the modification request
 requires an increase on the number of reserved resources stored in
 the RSVPv2-NSLP state (see Figure 13), then the RSVPv2-NSLP "PHR"
 functionality of the NF(ingress) node will have to subtract the old
 and already reserved number of resources from the number of resources
 included in the new modification request. The result of this
 subtraction should be introduced within a "PHR_Resource_Request" PHR
 object as the requested resources value. Furthermore, the number of
 resources that were reserved for a certain flow in the RSVPv2-NSLP
 state should also be replaced with the number of resources included
 in the modification request.

 The RSVPv2-NSLP "PDR" functionality will create a
 "PDR_Modification_Request" PDR object. These two objects will be
 included into the Service_Class of the NslpPathMod message.

 The RSVPv2-NSLP "PHR" functionality of each stateless NF(interior)
 node processes the PHR object as a "PHR_Resource_Request" object.
 Each stateless NF(interior) node that receives the modification NTLP
 PATH message will activate the RSVPv2-NSLP "PHR" functionality. If a
 RSVPv2-NSLP "PHR" functionality of any node is not able to reserve
 the number of requested resources, then the "PHR_Resource_Request"
 PHR object will be marked. In this situation the RSVPv2-NSLP PHR and
 PDR protocol functionality associated with an unsuccessful
 reservation procedure will be applied for this case (see Figure 12).

 The behavior of the NF(egress) node related to the modification
 procedure is the same as in the NF(interior) nodes. After processing
 the "PHR_Resource_Request" object, the RSVPv2-NSLP functionality of
 the NF(egress) node uses the "PDR_Modification_Request" object and
 identifies the flow specification ID and the RSVPv2-NSLP state
 associated with it. Subsequently, the RSVPv2-NSLP "e2e service"
 functionality is activated and by using the information contained in
 the Flow_Specification_Class it will modify the reservation stored
 into the RSVPv2-NSLP path state.

 The NTLP PATH message is forwarded towards the NR (receiver), and it
 will be processed by all NTLP stateful nodes that is passing through
 as an inter-domain signaling procedure, see Section 6. Note that
 this NTLP PATH message will not include the "PDR/PHR" object
 information.

 When the NR(receiver) receives the NTLP PATH message, similar to the
 procedure used in Section 6, it will create a it will activate the

Westberg, et al. Expires October 2003 [Page 76]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 RSVPv2-NSLP "e2e service" functionality by using the NslpPathMod
 message. By using the information contained in the
 Flow_Specification_Class it will modify the reservation stored into
 the RSVPv2-NSLP path state.

 Subsequently the RSVPv2-NSLP "e2e service" functionality will create
 an NslpResvMod message that will be used to report information
 related to how the NslpPathMod has been processed along the path.
 This NslpResvMod will be encapsulated into a RESV message and it will
 only be processed by the RSVPv2-NSLP "e2e service" functionality at
 each hop that is passing by and that is supporting the "e2e service"
 functionality. Note that this message is processed in a domain only
 by the NF(egress) and NF(ingress) nodes. The NF(interior) nodes are
 not processing this message. Moreover, the RSVPv2-NSLP "PDR"
 functionality of the NF(egress) node will report the successful
 reservation to the RSVPv2-NSLP "PDR" functionality of the NF(ingress)
 node by using a "PDR_Modification_Report" PDR object. This object
 will be included into the Service_Class object class of the
 NslpResvMod message.

Westberg, et al. Expires October 2003 [Page 77]

Internet Draft Proposal for RSVPv2-NSLP April 2003

NF (ingress) NF (interior) NF (interior) NF (egress)
NTLP stateful NTLP stateless NTLP stateless NTLP stateful
 | | | |
PATH(NslpPathMod) | | |
--->|PATH(NslpPathMod): | | |
 |PHR_Resource_Request| | |
 |PDR_ModReq |PATH(NslpPathMod): | |
 |------------------->|PHR_Resource_Request| |
 | |PDR_ModReq |PATH(NslpPathMod): |
 | |------------------->|PHR_Resource_Request|
 | | |PDR_ModReq |
 | | |------------------->|
 | | | PATH(NslpPathMod)
 | | | |----->
 | | | RESV(NslpResvMod)
 | | | |<------
 | |RESV (NslpResvMod) | |
 | |PDR_Modification_Report |
 |<---|
RESV(NslpResvMod) | | |
<---| | | |

 (PDR_ModReq*) - represents the "PDR_Modification_Request" PDR object.
 This PDR object is processed only by the
 NF(ingress) and NF(egress) nodes.

 Figure 13: Intra-domain signaling normal operation for modification of
 reservation when new number of resources is higher
 than number of already reserved resources

 When the modification request requires a decrease on the number of
 reserved resources stored in the RSVPv2-NSLP path state (see Figure
 14), then the RSVPv2-NSLP "PHR" functionality of the NF(ingress) node
 will have to subtract the number of resources included in the new
 modification request from the old and already reserved number of
 resources. The result of this subtraction should be introduced in an
 RSVPv2-NSLP "PHR_Release_Request" PHR object. Furthermore, the
 number of resources that were reserved in the RSVPv2-NSLP path state
 for a certain flow should also be replaced with the number of
 resources included in the modification request. The RSVPv2-NSLP
 "PDR" functionality will create a "PDR_Modification_Request" PDR
 object. These two objects will be encapsulated into a modification

Westberg, et al. Expires October 2003 [Page 78]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 NTLP PATH message. This message will be sent towards the NF(egress)
 node. The RSVPv2-NSLP "PHR" functionality of each NF node processes
 the PHR object as a "PHR_Resource_Release" object. Each NF(interior)
 node that receives the modification NTLP PATH message will activate
 the RSVPv2-NSLP "PHR" functionality. The RSVPv2-NSLP "PHR"
 functionality of these NF(interior) nodes will use the information
 included in the PHR object ("PHR_Release_Request") and it will
 identify the ID of the traffic class, e.g., Diffserv class. This
 object will subtract the requested resources included in the
 "PHR_Release_Request" object from the total reserved amount of
 resources stored in the traffic class state.

 The behavior of the NF(egress) node related to the modification
 procedure is the same as in the NF(interior) nodes. After processing
 the "PHR_Resource_Request" object, the RSVPv2-NSLP functionality of
 the NF(egress) node uses the "PDR_Modification_Request" object and
 identifies the flow specification ID and the RSVPv2-NSLP state
 associated with it. Subsequently, the RSVPv2-NSLP "e2e service"
 functionality is activated and by using the information contained in
 the Flow_Specification_Class, it will modify the reservation stored
 into the RSVPv2-NSLP path state.

 The rest part of the modification procedure depicted in Figure 14 is
 identical to the one described earlier and depicted in Figure 13.

Westberg, et al. Expires October 2003 [Page 79]

Internet Draft Proposal for RSVPv2-NSLP April 2003

NF (ingress) NF (interior) NF (interior) NF (egress)
NTLP stateful NTLP stateless NTLP stateless NTLP stateful
 | | | |
PATH(NslpPathMod) | | |
--->|PATH(NslpPathMod): | | |
 |PHR_Resource_Release| | |
 |PDR_ModReq |PATH(NslpPathMod): | |
 |------------------->|PHR_Resource_Release| |
 | |PDR_ModReq |PATH(NslpPathMod): |
 | |------------------->|PHR_Resource_Release|
 | | |PDR_ModReq |
 | | |------------------->|
 | | | PATH(NslpPathMod)
 | | | |----->
 | | | RESV(NslpResvMod)
 | | | |<------
 | |RESV (NslpResvMod) | |
 | |PDR_Modification_Report |
 |<---|
RESV(NslpResvMod) | | |
<---| | | |

 (PDR_ModReq*) - represents the PDR_Modification_Request object. This
 object is processed only by the NF(ingress) and NF(egress)
 nodes.

 Figure 14: Modification of reserved resources when new number of
 resources is lower than number of already reserved resources

7.2. Example of Fault Handling Operation

 Fault Handling Operation refers to the situations when there are
 errors in the network, such as loss of NTLP messages route change,
 link failure, etc. Two typical situations will be described: the loss
 of the PHR signalling messages and severe congestion. The fault
 handling operation described here is in general independent from the
 type of the example scenarios, thus it can be applied in both cases.

Westberg, et al. Expires October 2003 [Page 80]

Internet Draft Proposal for RSVPv2-NSLP April 2003

7.2.1. Loss of NTLP signalling messages

 The NTLP signaling messages and subsequently the "PHR" and "PDR"
 objects might be dropped, for example due to route or link failure.
 The loss of the "PHR" objects is especially problematic for the
 reservation-based "PHR" concept, see e.g., [RODA], since the dropped
 signalling messages might have reserved resources in some
 NF(interior) nodes in the communication path that will now not be
 used. This does not present a problem for the measurement-based
 "PHR" concept, see e.g., [RIMA], since there are no reservation
 states. The "PHR" objects that need to be sent reliable are:
 PHR_Resource_Request
 PHR_Refresh_Update

 The reliable delivery of the "PHR_Resource_Request" object is
 provided by using the functionality provided by the RSVPv2-NSLP "PDR"
 functionality located in the NF(ingress) node. The RSVPv2-NSLP "PDR"
 functionality of the NF(ingress) node sends the
 "PHR_Resource_Request" object towards the NF(egress) node and it
 starts a timer. If the reply, e.g., "PDR_Reservation_Report" object,
 does not arrive in a predefined time it assumes that the
 "PHR_Resource_Request" object is lost. The reliable deliver of the
 "PHR_Refresh_Update" object is provided in a similar way. A timer at
 the NF(ingress) node is started when the "PHR_Refresh_Update" is sent
 towards the NF(egress) node. If the reply, e.g., "PDR_Refresh_Report"
 object, does not arrive in a predefined time it assumes that the
 "PHR_Refresh_Update" object is lost.

7.2.2. Severe Congestion Handling operation

 Severe congestion can be detected by any NF(interior) node by using
 different methods. Moreover, the severe congestion situation can be
 notified by any NF(interior) node to NF(egress) nodes by using three
 approaches, i.e., "Greedy Marking", "Proportional Marking" and "PHR
 message marking". The "PHR message marking" can only be applied on
 the reservation-based "PHR" concept, while the other two methods can
 be applied on both "PHR" concept types.

 In this section the "Proportional Marking" severe congestion
 notification methods is used.

Westberg, et al. Expires October 2003 [Page 81]

Internet Draft Proposal for RSVPv2-NSLP April 2003

7.2.2.1. Proportional marking

 Using this severe congestion notification method, after detecting the
 severe congestion situation, the NF(interior) node will notify the
 NF(egress) node by using remarking of user data packets that pass
 through the node (see Figure 15). Proportionally to the detected
 overload the NF(interior) node will remark a number of user data
 packets which are passing through a severe congested interior node
 and are associated with a certain traffic class, e.g., DSCP, into a
 domain specific DSCP.

 When the marked packets arrive at the NF(egress) node, the NF(egress)
 node will generate a "PDR_Congestion_Report" object and send it to
 the NF(ingress) node containing the over-allocation volume of the
 flow in question, e.g., a blocking probability. The
 "PDR_Congestion_Report" PDR object should be included into a
 NslpPathErr and transported by a NTLP PATHERROR message. For each
 flow ID, the RSVPv2-NSLP PDR functionality at the NF(egress) node
 will count the number of marked bytes (# marked bytes) and the number
 of unmarked bytes (#unmarked bytes).

 Based on this information the RSVPv2-NSLP PDR functionality at the
 NF(egress) node will have to calculate the blocking estimation of
 data. The NF(egress) node will actually calculate the blocking
 probability (Pdrop), which will be used by an NF(ingress) node to
 block this particular flow.

 The blocking probability is calculated as the ratio between the
 dropped bytes and the maximum number of bytes that can be supported
 by the interior node:

 Pdrop = (# marked bytes)/(# marked bytes + # unmarked bytes)

 This blocking probability will be included in the
 "PDR_Congestion_Report" object that will be sent to the NF(ingress).

 The RSVPv2-NSLP PDR functionality of the NF(ingress) node after
 receiving the PDR_Congestion_Report object and based on the Pdrop
 blocking probability, and depending on the used policy, might
 terminate the flow, i.e., for a higher blocking probability there is
 a higher chance that the flow is terminated.

 If a flow needs to be terminated, then for this flow, the ingress
 node will generate a "PHR_Release_Request" object that will be
 included into the Service_Class of the NslpPathTear message. This

Westberg, et al. Expires October 2003 [Page 82]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 message will be transported by a NTLP PATHTEAR message towards the
 NF(egress). Furthermore, the RSVPv2-NSLP "e2e service" functionality
 in the NF(ingress) node will create a NslpPathErr that will be
 encapsulated into a PathError that will be sent towards the
 NI(sender) to notify that an error occured.

NF (ingress) NF (interior) NF (interior) NF (egress)
NTLP stateful NTLP stateless NTLP stateless NTLP stateful
(sent)
 user|(sent) user data | | |
 data| | | |
---->|------------------>| (sent) user data | user data |
 | |------------------->S(# marked bytes) |
 | | S------------------->|
 | | S(# unmarked bytes) |
 | | S------------------->|
 | |PATHERROR(NslpPathErr): |
 | PDR_Congestion_Report ("S" marked + Pdrop) |
 |<------------------|--------------------|--------------------|
Terminate | | |
flow?| | | |
Yes PATHTEAR(NslpPathTear): | |
 |PHR_Release_Request| | |
 |PDR_RelReq |PATHTEAR(NslpPathTear): |
 |------------------>|PHR_Release_Request |
 | |PDR_RelReq | PATHTEAR(NslpPathTear):
 | |------------------->|PHR_Release_Request |
 | | |PDR_RelReq |
 | | |------------------->|
 | | | |
 | | | |
PathErr(NslpPathErr) | | |
<----| | | |

 Figure 15: Intra-domain Severe Congestion handling Operation:
 with proportional marking

(PDR_RelReq*) - represents the PDR_Release_Request object. This object is
 processed only by the NF(ingress) and NF(egress) nodes.

Westberg, et al. Expires October 2003 [Page 83]

Internet Draft Proposal for RSVPv2-NSLP April 2003

7.3. Example of Adaptation to load sharing operation
 This procedure has to be based on the solutions provided by the NTLP
 protocol level on this issue. These NTLP protocol level solutions are
 not yet defined. Therefore, this procedure will be specified in a
 future version of this draft.

7.4. Normal operation for bi-directional reservation

 There are situations where, for example, the inter-domain signaling
 has to support in addition to the unidirectional reservations also
 bi-directional reservations. This section gives one example of inter-
 domain signaling for a successful and one example of inter-domain
 signaling for an unsuccessful bi-directional reservation.

 Figure 16 shows the flow diagram of intra-domain signaling used by
 the RSVPv2-NSLP protocol and the way how the RSVPv2-NSLP inter-domain
 and intra-domain signaling inter-operates in case of a successful bi-
 directional reservation.

 The bi-directional successful reservation is similar to a combination
 of two unidirectional successful reservations that are accomplished
 in opposite directions. The main differences of the bi-directional
 successful reservation procedure with the combination of two
 unidirectional successful reservations accomplished in opposite
 directions are as follows:

 * the reservation state specifies a bi-directional reservation
 * the Service_Class object specifies that the reservation is
 bi-directional
 * the NSIS aware nodes do not process the NslpResvInit, NslpResvRef and
 NslpResvMod messages
 * the success of the reservation procedure is reported to the NI(sender)
 using the NslpPathInit that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathRef that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the success of the refresh procedure is reported to the NI(sender)
 using the NslpPathMod that is sent hop-by-hop from NR(receiver)
 towards the NI(sender)
 * the PDR_Reservation_Report object used to report a successful
 reservation procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)

Westberg, et al. Expires October 2003 [Page 84]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 * the PDR_Refresh_Report object used to report a successful refresh
 procedure is carried by the NslpPathInit that is sent hop-by-hop
 from NF(egress) towards the NF(ingress)
 * the PDR_Modification_Report object used to report a successful
 modification procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)
 * the NF(egress) node can initiate an explicit partial release
 procedure towards the NF(ingress) node.

 Figure 17 and Figure 18 show the flow diagrams of intra-domain
 signaling used by the RSVPv2-NSLP protocol and the way how the
 RSVPv2-NSLP inter-domain and intra-domain signaling inter-operates in
 case of a unsuccessful bi-directional reservation.

 The bi-directional unsuccessful reservation is similar to a
 combination of two unidirectional unsuccessful reservations that are
 accomplished in opposite directions. The main differences of the bi-
 directional unsuccessful procedure with the combination of two
 unidirectional successful reservations accomplished in opposite
 directions are as follows:

 * the reservation state specifies a bi-directional reservation
 * the Service_Class object specifies that the reservation is
 bi-directional
 * the NSIS aware nodes do not process the NslpResvInit, NslpResvRef and
 NslpResvMod messages
 * the PDR_Reservation_Report object used to report a successful
 reservation procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)
 * the PDR_Refresh_Report object used to report a successful refresh
 procedure is carried by the NslpPathInit that is sent hop-by-hop
 from NF(egress) towards the NF(ingress)
 * the PDR_Modification_Report object used to report a successful
 modification procedure is carried by the NslpPathInit that is sent
 hop-by-hop from NF(egress) towards the NF(ingress)
 * the NF(egress) node can initiate an explicit partial release
 procedure towards the NF(ingress) node.

Westberg, et al. Expires October 2003 [Page 85]

Internet Draft Proposal for RSVPv2-NSLP April 2003

NF (ingress) NF (interior) NF (interior) NF (egress)
NTLP stateful NTLP stateless NTLP stateless NTLP stateful
 | | | |
PATH(NslpPathInit) | | |
--->| | | |
 |PATH(NslpPathInit): | | |
 |PHR_Resource_Request| | |
 |PDR_ResReq | PATH(NslpPathInit): |
 |------------------->| PHR_Resource_Request |
 | | PDR_ResReq | |
 | |-->|
 | | | PATH(NslpPathInit)
 | | | |-->
 | | PATH(NslpPathInit): |
 | | PDR_Reservation_Report |
 | | PHR_Resource_Request PATH(NslpPathInit)
 | PATH(NslpPathInit): PDR_ResReq |<---
 | PDR_Reservation_Report | | |
 | PHR_Resource_Request |<-------------------|
 | PDR_ResReq | | |
 |<--| |
 | | | |
 | | | |
 | | Traffic(user) Data | |
 ---|------------------->|-->|--->
 | | Traffic(user) Data | |
 <--|<--|<-------------------|----
 | | | |
 PATH(NslpPathRef) | | |
--->| | | |
 |PATH([NslpPathRef]):| | |
 |PHR_Refresh_Update | | |
 |PDR_Refreq | PATH([NslpPathRef]): |
 |------------------->| PHR_Refresh_Update |
 | | PDR_Refreq |
 | |-->|
 | | | PATH([NslpPathRef])
 | | PATH([NslpPathRef]): |--->
 | | PDR_Refresh_Report |
 | | PHR_Refresh_Update PATH([NslpPathRef])
 | | PDR_Refreq |<---
 | PATH([NslpPathRef]): |<-------------------|
 | PHR_Refresh_Report | |
 | PHR_Resource_Request | |

 | PDR_ResReq | |

Westberg, et al. Expires October 2003 [Page 86]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 |<--| |
 PATH([NslpPathRef]) | | |
 <--| | | |

 (PDR_ResReq) - represents the "PDR_Reservation_Request" PDR object.
 This PDR object is processed only by the
 NF(ingress) and NF(egress) nodes.

 (PDR_RefReq) - represents the PDR_Refresh_Request PDR object
 This PDR object is processed only by the NF(ingress) and
 NF(egress) nodes.

 Figure 16: Intra-domain signaling normal operation for successful
 bi-directional reservation

Westberg, et al. Expires October 2003 [Page 87]

Internet Draft Proposal for RSVPv2-NSLP April 2003

NF (ingress) NF (interior) NF (interior) NF (egress)
NTLP stateful NTLP stateless NTLP stateless NTLP stateful
 | | | |
PATH(NslpPathInit) | | |
--->| | | |
 |PATH(NslpPathInit): | | |
 |PHR_Resource_Request| | |
 |PDR_ResReq | PATH(NslpPathInit): |
 |------------------->M PHR_Resource_Request |
 | M PDR_ResReq | |
 | M-->|
 | PATHERROR(NslpPathErr): | |
 | PDR_Reservation_Report | |
 |<---|
PATHERROR(NslpPathErr) M | |
 <--| M | |
 |PATHTEAR(NslpPathTear): | |
 |PHR_Release_Request M | |
 |PDR_RelReq M | |
 |------------------->M | |
 (PDR_ResReq) - represents the "PDR_Reservation_Request" PDR object.
 This PDR object is processed only by the
 NF(ingress) and NF(egress) nodes.

 (PDR_RefReq) - represents the PDR_Refresh_Request PDR object
 This PDR object is processed only by the NF(ingress) and
 NF(egress) nodes.
 (PDR_RelReq) - represents the PDR_Release_Request PDR object
 This PDR object is processed only by the NF(ingress) and
 NF(egress) nodes.

 Figure 17: Intra-domain signaling normal operation for unsuccessful
 bi-directional reservation (rejection on path NF(ingress)
 towards NF(egress))

Westberg, et al. Expires October 2003 [Page 88]

Internet Draft Proposal for RSVPv2-NSLP April 2003

NF (ingress) NF (interior) NF (interior) NF (egress)
NTLP stateful NTLP stateless NTLP stateless NTLP stateful
 | | | |
PATH(NslpPathInit) | | |
--->| | | |
 |PATH(NslpPathInit): | | |
 |PHR_Resource_Request| | |
 |PDR_ResReq | PATH(NslpPathInit): |
 |------------------->| PHR_Resource_Request |
 | | PDR_ResReq | |
 | |-->|
 | | | PATH(NslpPathInit)
 | | | |-->
 | | PATH(NslpPathInit): |
 | | PHR_Reservation_Report |
 | PATH(NslpPathInit): PHR_Resource_Request PATH(NslpPathInit)
 | PDR_Reservation_Report PDR_ResReq |<---
 | PHR_Resource_Request M<-------------------|
 | PDR_ResReq | M |
 |<--M |
 | PATHERROR(NslpPathErr): M |
 | PDR_Reservation_Report M |
 |--->|
 | | M
PATHERROR(NslpPathErr)
 | | M |-->
 | | M
PATHTEAR(NslpPathTear):
 | | M PHR_Release_Request
 | | M PDR_Relreq
 | | M<-------------------|
 | PATHERROR(NslpPathErr): M |
 | PDR_Reservation_Report M |
 |<---|
PATHERROR(NslpPathErr) | M |
 <--| | M |
 |PATHTEAR(NslpPathTear): M |
 |PHR_Release_Request | M |
 |PDR_RelReq | PATHTEAR(NslpPathTear): |
 |------------------->| PHR_Release_Request |
 | | PDR_RelReq M |
 | |-->|
 (PDR_ResReq) - represents the "PDR_Reservation_Request" PDR object.
 This PDR object is processed only by the

 NF(ingress) and NF(egress) nodes.

 (PDR_RefReq) - represents the PDR_Refresh_Request PDR object

Westberg, et al. Expires October 2003 [Page 89]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 This PDR object is processed only by the NF(ingress) and
 NF(egress) nodes.
 (PDR_RelReq) - represents the PDR_Release_Request PDR object
 This PDR object is processed only by the NF(ingress) and
 NF(egress) nodes.

 Figure 18: Intra-domain signaling normal operation for unsuccessful
 bi-directional reservation (rejection on path NF(egress)
 towards NF(ingress))

8. Appendix - Examples of PHR and PDR object specifications

 This appendix provides examples of how PHR and PDR objects could be
 specified.

8.1. PHR objects
 RSVPv2 should support both IP versions, i.e., IPv4 and IPv6. The
 format of the PHR object that is based on both IPv4 and IPv6 versions
 is depicted in Figure 19. On top of the PHR specific information of
 the PHR object, the three (standard) RSVPv1 object fields are used,
 i.e., Length, Class-Num and C-type.

 0 31
 +-+
 | Length(bytes) | Class-Num | C-Type |
 +-
 | Unused |P-LEN| P-ID |S|M| C |T|Unused|
 +-+
 | Requested Resources | Delta T | Shared % |
 +-
 | |
 | |
 +-

 Figure 19: PHR object format based on IPv4 or IPv6

 Length
 (in octets): 16-bit field containing the total object length in
 octets. It must always be a multiple of 4 and at least
 4 octets.

Westberg, et al. Expires October 2003 [Page 90]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Class-Num: 8-bit field identifying the object class. Each object
 class has a name.

 C-Type: 8-bit field identifying the object type, unique within
 Class-Num. In this case a C-Type ID should be assigned
 to the PHR object.

 P-LEN 3-bit field. This specifies the length in
 (PHR length) octets of the specific PHR information data,
 without including the "Variable length" field.

 The value 0 specifies that this IP option
 field contains only data in the "Variable length"
 field.
 This data MUST begin on the next 32-bit word
 boundary after the P-LEN field (after the first
 "unused" field). In this case, the sender MUST
 set the "S", "M", "C", and "unused" fields to 0.
 The P-ID MUST have the value 1.

 If a receiver receives a packet with a P-LEN value
 of 0, it MUST ignore the values in the "S", "M",
 "C", and "unused" fields.

 P-ID (PHR type) 4-bit field. This specifies the PHR type.
 For the RODA PHR, the value MUST be 1.

 S 1-bit field. The sender MUST set the "S"
 (Severe field to 0. This field is set to 1
 Congestion) by an NF(interior) or NF(edge) node when a severe
 congestion situation occurs.

 M 1-bit field. The sender MUST set the "M"
 (Marked) field to 0. This field is set to 1 by an
 NF(interior) or NF(edge) node when the node cannot
 satisfy the "Requested Resources" value.

 C 3-bit field. This field specifies the
 (Object type) type of the PHR object.

 C Description

 0 Reserved
 1 "PHR_Resource_Request"
 2 "PHR_Refresh_Update"

Westberg, et al. Expires October 2003 [Page 91]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 3 "PHR_Release_Request"
 4-7 Unused

 "PHR_Resource_Request": initiate or update the
 traffic class reservation state on all nodes
 located on the communication path between the
 NF(ingress) and NF(egress) nodes according to an
 external SAPU Path request.

 "PHR_Refresh_Update": refresh the traffic class
 reservation soft state on all nodes located on
 the communication path between the NF(ingress) and
 NF(egress) nodes according to a resource reservation
 request that was successfully processed by the
 RSVPv2-NSLP PHR functionality during a previous refresh
 period.

 "PHR_Release_Request": explicitly release, by
 subtraction, the reserved resources for a particular
 flow from a traffic class reservation state.

 T 1-bit field. The NF(ingress) node MUST set
 (TTL active) the "T" field to 0. This field MAY be set to "1"
 by a node when the node will have to include the
 TTL value from the header of the IP packet into
 the "PDR_TTL" field of the PDR object.

 U A 3-bit field that is currently unused. Reserved for
 future PHR object extensions.

 Requested 16-bit field. This field specifies the requested
 Resources number of units of resources to be reserved by
 a node. The unit is not necessarily a simple
 bandwidth value. It may be defined in terms of
 any resource unit (e.g., effective bandwidth) to
 support statistical multiplexing at message level.

 Delta T 8 bit field. The value of this field MAY be set
 by any NF(ingress) node into (only)
 "PHR_Resource_Release" objects. It specifies a
 percentage that represents the ratio between a
 time lag, say T_lag, and the length of the refresh
 period, say T_period. Where, T_lag represents
 the difference between the departure time of the

Westberg, et al. Expires October 2003 [Page 92]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 previous sent "PHR_Refresh_Update" object and
 the departure time of the "PHR_Resource_Release"
 object. T_period represents the length of the
 refresh period. This information MAY be used by
 any node during an explicit release procedure.

 Shared % 8 bit field. This value MAY be used to specify if a
 (Shared load sharing situation occurred on a communication path
 percentage) or not. The ingress node sets this value to 100. If
 load sharing occurred in a node then the node
 will divide the shared percentage value to the
 number of equal cost paths.

 Variable this field is currently unused. Reserved for
 length future PHR object extensions.

8.2. PDR objects
 The format of the PDR object that is based on the IPv4 version is
 depicted in Figure 20. On top of the PDR specific information of the
 PDR object, the three (standard) RSVPv1 object fields are used, i.e.,
 Length, Class-Num and C-type.

Westberg, et al. Expires October 2003 [Page 93]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 0 31
 +-+
 | Length(bytes) | Class-Num | C-Type |
 +-+
 | PDRID |MsgType|S|M|B| Unused |F-Type |EP-Type| PDR-TTL |
 +-+
 | Reverse Requested Resources | Shared % |Dropping rate %|
 +-+
 | Ingress (Egress) Address (IPv4) |
 +-+
 | |
 | Flow-ID (length varies) |
 | |
 +-+
 | |
 | Variable length field |
 | |
 +-+

 Figure 20: PDR object format based on IPv4

 Length
 (in octets): 16-bit field containing the total object length in
 octets. It must always be a multiple of 4 and at least
 4 octets.

 Class-Num: 8-bit field identifying the object class. Each object
 class has a name.

 C-Type: 8-bit field identifying the object type, unique within
 Class-Num. In this case a C-Type ID should be assigned
 to the the PHR object.

 PDRID: 4-bit field identifying the ID of the PDR object. It is
 zero for an experimental protocol.

 MsgType: 4-bit field identifying the type of PDR object. See
 below for a table of recognized values.

 MsgType Description Sent with PHR object

 0 reserved
 1 PDR_Reservation_Request PHR_Resource_Request
 2 PDR_Refresh_Request PHR_Refresh_Update
 3 PDR_Release_Request PHR_Resource_Release

Westberg, et al. Expires October 2003 [Page 94]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 4 PDR_Reservation_Report
 5 PDR_Refresh_Report
 6 PDR_Release_Report
 7 PDR_Request_Info PHR_Resource_Request OR
 PHR_Refresh_Update OR
 PHR_Resource_Release OR
 PHR_Modification_Request
 8 PDR_Congestion_Report
 9 PDR_Modification_Request
 10 PDR_Modification_Report
 11-16 unused

 "PDR_Reservation_Request": generated by the NF(ingress)
 node in order to initiate or update the RSVPv2-NSLP PDR
state
 in the NF(egress) node

 "PDR_Refresh_Request": generated by the NF(ingress) node
 and sent to the NF(egress) node to refresh, in case
 needed, the RSVPv2-NSLP PDR states located in the NF(egress)
 node

 "PDR_Modification_Request": generated and sent by the
 NF(ingress) node to the NF(egress) node to modify the
 PDR states located in the NF(egress) node

 "PDR_Release_Request": generated and sent by the
 NF(ingress) node to the NF(egress) node to release the
 flows explicitly

 "PDR_Request_Info": an object that can be used as a
 common "PDR_Reservation_Request", "PDR_Refresh_Request",
 "PDR_Release_Request" and "PDR_Modification_Request"

 "PDR_Reservation_Report": generated and sent by the
 NF(egress) node to the NF(ingress) node to report that
 a "PHR_Resource_Request" PHR object and a
 "PDR_Reservation_Request" PDR object has been received
 and that the request has been admitted or rejected

 "PDR_Refresh_Report": generated and sent by the NF(egress)
 node in case needed, to the NF(ingress) node to report that
 a "PHR_Refresh_Update" PHR object and a
 "PDR_Refresh_Request" PDR object have been received and have
 been processed

Westberg, et al. Expires October 2003 [Page 95]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 "PDR_Congestion_Report": generated and sent by the
 NF(egress) node to the NF(ingress) node and used for severe
 congestion notification. They are only used when either the
 "greedy marking" or "proportional marking" severe
 congestion notification procedures are applied.

 "PDR_Modification_Report": generated and sent by the
 NF(egress) node to NF(ingress) node to report that the
 combination of either the "PHR_Resource_Request" PHR
 object and the "PDR_Modification_Request" PDR object or
 the "PHR_Release_Request" PHR object and the
 "PDR_Modification_Request" have been received and
 processed

 PDRID: 4-bit field. ID of the PDR object. It is
 zero for an experimental protocol.

 S (Severe : 1-bit field. specifies if a severe congestion
 Congestion) situation occured. It can also carry the "S" flag of
 the "PHR_Resource_Request" or "PHR_Refresh_Update"
 PHR objects.
 This flag only applies to "PDR_Reservation_Report",
 "PDR_Refresh_Report", "PDR_Congestion_Report" and
 "PDR_Modification_Report" objects.

 M (Marked): 1-bit field. Carries the "M" value of the
 "PHR_Resource_Request" or "PHR_Refresh_Update" PHR
 objects.
 This flag only applies to "PDR_Reservation_Report",
 "PDR_Refresh_Report", "PDR_Congestion_Report" and
 "PDR_Modification_Report" objects.

 B : 1-bit field. specifies that the "PHR" objects should be
 (Bi-directional used for bi-directional reservations in intra-domain
 reservation) signaling. Note that when the inter-domain signaling
 procedures are applied for bi-directional reservations
 it does not mean that the associated intra-domain
 signaling procedures should also use bi-directional
 reservations.

 F-Type: 4-bit field. The Flow-ID type identifier. Defined by the
 (Flow PDR protocol. It informs the NF(ingress) and NF(egress)
 Type) nodes what kind of data is contained in the Flow-ID and
 its length. Every NF(edge) node should be configured to
 process the F-Types.

Westberg, et al. Expires October 2003 [Page 96]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 EP-Type: 4-bit field. Identifies the used external protocol.
 (External Only useful when the intra-domain signaling procedures
 Protocol are used in combination with non-RSVPv2 inter-domain
 Type) signaling procedures. It informs the NF(ingress) and
 NF(egress) nodes what type of external protocol (EP)
 data is contained in the Variable length field. Every
 edge node MUST be configured to process the EP-Type. If
 this field is 0000 then the Variable length field can be
 used for other purposes, i.e., future specifications.

 PDR-TTL: 8-bit field. The TTL value introduced by a node that
 could not admit or process a "PHR_Resource_Request"
 object.

 Reverse : 16 bits. This field only applies when the "B" flag is
 Requested set to "1".
 Resources It specifies the requested number of
 units of resources that have to be reserved by a node
 in the reverse direction when the intra-domain signaling
 procedures require a bi-directional reservation procedure.
 The unit is not necessarily a simple bandwidth value: it
 may be defined in terms of any resource unit (e.g.,
 effective bandwidth) to support statistical multiplexing
 at packet level.

 Shared % : 8-bit field. This value specifies if a load sharing
 (Shared situation occurred on a communication path or not. The
 percentage): NF(ingress) node sets this value to 100. If load sharing
 occurred in a node then the node will have to divide the
 shared percentage value to the number of equal cost paths.

 Dropping : 8-bit field: This value specifies the dropping rate
 rate %: percentage and is used during severe congestion. The ingress
 (Dropping rate node will use this rate as a blocking probability, to
 percentage) terminate the particular flow.

 Ingress : 32-bit field. For the case that the PDR object is sent by
 (Egress) NF(ingress) to NF(egress) this field represents the
 Address NF(ingress) IP address. In the other direction this field
 represents the NF(egress) IP address.

 Flow-ID: Length depends on F-Type. It specifies the flow ID used
 by the PDR state.

 Variable : variable length field. It can be used either for

Westberg, et al. Expires October 2003 [Page 97]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 length including external protocol data or reserved for
 field future PDR object extensions.

 The format of the PDR object that is based on the IPv6 version is
 depicted in Figure 21. Note that the only difference between the PDR
 object format based on IPv4 and IPv6 versions is the Ingress (Egress)
 Address field, i.e., in IPv6 is this field 128 bits long, while in
 IPv4 is this field 32 bits long.

 0 31
 +-+
 | Length(bytes) | Class-Num | C-Type |
 +-+
 | PDRID |MsgType|S|M|B| Unused |F-Type |EP-Type| PDR-TTL |
 +-+
 | Reverse Requested Resources | Shared % |Dropping rate %|
 +-+
 | |
 | |
 | Ingress (Egress) Address (IPv6) |
 | |
 +-+
 | |
 | Flow-ID (length varies) |
 | |
 +-+
 | |
 | Variable length field |
 | |
 +-+

 Figure 21: PDR object format based on IPv6

9. References

 [BrLi01] Braden, R., Lindell, B., "A Two-Level Architecture for
 Internet Signaling", Internet Draft (work in progress),
 2001.

 [Bru03] Brunner, M., "Requirements for QoS Signaling Protocols",
draft-ietf-nsis-req-06.txt (work in progress), 2003

 [CsTa02] Csaszar, A., Takacs, A., Szabo, R., Rexhepi, V.,

https://datatracker.ietf.org/doc/html/draft-ietf-nsis-req-06.txt

Westberg, et al. Expires October 2003 [Page 98]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 Karagiannis, G., "Severe Congestion Handling
 with Resource Management in Diffserv On Demand",
 submitted to Networking 2002, May 19-24 2002,
 Pisa - ITALY.

 [Hanc03] Hancock, R., Freytsis, I., Karagiannis, G., Loughney, J.,
 Van den Bosch, S., "Next Steps in Signaling: Framework",
 Internet Draft, 2003, Work in progress.

 [RFC1633] Braden, R., Clark, D., Shenker, S., "Integrated
 Services in the Internet Architecture: an Overview",
 IETF RFC 1633, 1994.

 [RFC2002] Perkins, C., Editor, "IP Mobility Support", RFC 2002,
 October 1996.

 [RFC2205] Braden, R., Zhang, L., Berson, S., Herzog, A.,
 Jamin, S., "Resource ReSerVation Protocol (RSVP)
 -- Version 1 Functional Specification", IETF RFC

2205, 1997.

 [RFC2747] F. Baker, B. Lindell, M.Talwar. "RSVP Cryptographic
 Authentication", IETF RFC, January 2000.

 [RFC2475] Blake, S., Black, D., Carlson, M., Davies, E., Wang,
 Zh., Weiss, W., "An Architecture for Differentiated
 Services", IETF RFC 2475, 1998.

 [RFC3175] Baker, F., Iturralde, C. Le Faucher, F., Davie, B.,
 "Aggregation of RSVP for IPv4 and IPv6 Reservations",
 IETF RFC 3175, 2001.

 [RIMA] Westberg, L., Heijenk, G., Karagiannis, G., Oosthoek, S.,
 Partain, D., Rexhepi, V., Szabo, R., Wallentin, P.,
 el Allali, H.,"Resource Management in Diffserv
 Measurement-based Admission Control PHR", Internet draft
 Work in progress, 2002.

 [RODA] Westberg, L., Karagiannis, G., Kogel, de M., Partain, D.,
 Oosthoek, S., Jacobsson, M., Rexhepi, V., "Resource Management
 in Diffserv On DemAnd (RODA) PHR", Internet Draft,
 Work in progress.

 [RMD-frame] Westberg, L., Jacobsson, M., Karagiannis, G., Rexhepi, V.,
 Partain, D., Oosthoek, S., Szabo, R., Wallentin, P.,

https://datatracker.ietf.org/doc/html/rfc1633
https://datatracker.ietf.org/doc/html/rfc2002
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/rfc2475
https://datatracker.ietf.org/doc/html/rfc3175

Westberg, et al. Expires October 2003 [Page 99]

Internet Draft Proposal for RSVPv2-NSLP April 2003

 "Resource Management in Diffserv
 Framework", Internet draft, Work in progress.

 [NSIS-ML1] Braden, B., "Re: What's in the charter of NSIS",
http://www1.ietf.org/mail-archive/working-groups/
nsis/current/msg01368.html

 [PAN-SSP] Pan, P., Murphy, J., "A Network Architecture
 for Simplified Signaling Protocol", IETF Internet
 Draft, draft-pan-signal-req-00.txt, Work in Progress,
 May 2002.

 [RANISSUE] Partain, D., Karagiannis, G., Wallentin, P.,
 Westberg, L.,"ResourceReservation Issues in
 Cellular Radio Access Networks", Internet Draft,

draft-westberg-rmd-cellular-issues-01.txt, Work
 in Progress, June 2002.

 [WeKa03] Westberg, L., Karagiannis, G., Rexhepi, V.,
 "Using RSVPv1 as NTLP (NSIS Transport layer Protocol):
 suggestions for modifications on RFC2205", Internet
 Draft, Work in Progress,

draft-westberg-nsis-rsvp-as-ntlp-01.txt, February 2003.

http://www1.ietf.org/mail-archive/working-groups/nsis/current/msg01368.html
http://www1.ietf.org/mail-archive/working-groups/nsis/current/msg01368.html
https://datatracker.ietf.org/doc/html/draft-pan-signal-req-00.txt
https://datatracker.ietf.org/doc/html/draft-westberg-rmd-cellular-issues-01.txt
https://datatracker.ietf.org/doc/html/rfc2205
https://datatracker.ietf.org/doc/html/draft-westberg-nsis-rsvp-as-ntlp-01.txt

Westberg, et al. Expires October 2003 [Page 100]

Internet Draft Proposal for RSVPv2-NSLP April 2003

10. Authors' Addresses

 Lars Westberg
 Ericsson Research
 Torshamnsgatan 23
 SE-164 80 Stockholm
 Sweden
 EMail: Lars.Westberg@era.ericsson.se

 Attila Bader
 Traffic Lab
 Ericsson Hungary Ltd.
 Laborc u. 1
 H-1037 Budapest
 Hungary
 EMail: Attila.Bader@eth.ericsson.se

 Georgios Karagiannis
 University of Twente
 P.O. BOX 217
 7500 AE Enschede
 The Netherlands
 EMail: karagian@cs.utwente.nl

 David Partain
 Ericsson Radio Systems AB
 P.O. Box 1248
 SE-581 12 Linkoping
 Sweden
 EMail: David.Partain@ericsson.com

 Vlora Rexhepi
 Ericsson EuroLab Netherlands B.V.
 Institutenweg 25
 P.O.Box 645 7500 AP Enschede
 The Netherlands
 EMail: Vlora.Rexhepi@eln.ericsson.se

Westberg, et al. Expires October 2003 [Page 101]

