
Workgroup:

Common Authentication Technology Next

Generation

Internet-Draft:

draft-whited-kitten-password-storage-02

Published: 28 April 2020

Intended Status: Experimental

Expires: 30 October 2020

Authors: S. Whited

Best practices for password hashing and storage

Abstract

This document outlines best practices for handling user passwords

and other authenticator secrets in client-server systems making use

of SASL.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 October 2020.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info


Table of Contents

1.  Introduction

1.1.  Conventions and Terminology

2.  SASL Mechanisms

3.  Client Best Practices

3.1.  Mechanism Pinning

3.2.  Storage

4.  Server Best Practices

4.1.  Additional SASL Requirements

4.2.  Storage

4.3.  Authentication and Rotation

5.  KDF Recommendations

5.1.  Argon2

5.2.  Bcrypt

5.3.  PBKDF2

5.4.  Scrypt

6.  Password Complexity Requirements

7.  Internationalization Considerations

8.  Security Considerations

9.  IANA Considerations

10. References

10.1.  Normative References

10.2.  Informative References

Appendix A.  Acknowledgments

Author's Address

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶



Pepper

Mechanism pinning

1. Introduction

Following best practices when hashing and storing passwords for use

with SASL impacts a great deal more than just a users identity. It

also effects usability, backwards compatibility, and

interoperability by determining what authentication and

authorization mechanisms can be used.

1.1. Conventions and Terminology

Various security-related terms are to be understood in the sense

defined in [RFC4949]. Some may also be defined in [NISTSP63-3]

Appendix A.1 and in [NISTSP132] section 3.1.

Throughout this document the term "password" is used to mean any

password, passphrase, PIN, or other memorized secret.

Other common terms used throughout this document include:

A secret added to a password hash like a salt. Unlike a

salt, peppers are secret and not unique. They must not be stored

alongside the hashed password.

A security mechanism which allows SASL clients to

resist downgrade attacks. Clients that implement mechanism

pinning remember the perceived strength of the SASL mechanism

used in a previous successful authentication attempt and

thereafter only authenticate using mechanisms of equal or higher

perceived strength.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. SASL Mechanisms

For clients and servers that support password based authentication

using SASL [RFC4422] it is RECOMMENDED that the following mechanisms

be implemented:

SCRAM-SHA-256 [RFC7677]

SCRAM-SHA-256-PLUS [RFC7677]

System entities SHOULD NOT invent their own mechanisms that have not

been standardized by the IETF or another reputable standards body.

Similarly, entities SHOULD NOT implement any mechanism with a usage

¶

¶

¶

¶

¶

¶

¶

¶

* ¶

* ¶



status of "OBSOLETE", "MUST NOT be used", or "LIMITED" in the IANA

SASL Mechanisms Registry [IANA.sasl.mechanisms].

The SASL mechanisms discussed in this document do not negotiate a

security layer. Because of this a strong security layer such as TLS

[RFC8446] MUST be negotiated before SASL mechanisms can be

advertised or negotiated.

3. Client Best Practices

3.1. Mechanism Pinning

Clients often maintain a list of preferred SASL mechanisms,

generally ordered by perceived strength to enable strong

authentication. To prevent downgrade attacks by a malicious actor

that has successfully man in the middled a connection, or

compromised a trusted server's configuration, clients SHOULD

implement "mechanism pinning". That is, after the first successful

authentication with a strong mechanism, clients SHOULD make a record

of the authentication and thereafter only advertise and use

mechanisms of equal or higher perceived strength.

The following mechanisms are ordered by their perceived strength

from strongest to weakest with mechanisms of equal strength on the

same line. The remainder of this section is merely informative. In

particular this example does not imply that mechanisms in this list

should or should not be implemented.

EXTERNAL

SCRAM-SHA-1-PLUS, SCRAM-SHA-256-PLUS

SCRAM-SHA-1, SCRAM-SHA-256

PLAIN

DIGEST-MD5, CRAM-MD5

The EXTERNAL mechanism defined in [RFC4422] appendix A is placed at

the top of the list. However, its perceived strength depends on the

underlying authentication protocol. In this example, we assume that 

TLS [RFC8446] services are being used which can provide a strong

authenticator assurance level.

The channel binding ("-PLUS") variants of SCRAM are listed above

their non-channel binding cousins, but may not always be available

depending on the type of channel binding data available to the SASL

negotiator.

¶

¶

¶

¶

1. ¶

2. ¶

3. ¶

4. ¶

5. ¶

¶

¶



The PLAIN mechanism sends the username and password in plain text,

but does allow for the use of a strong key derivation function for

the stored version of the password on the server.

Finally, the DIGEST-MD5 and CRAM-MD5 mechanisms are listed last

because they use weak hashes and ciphers and prevent the server from

storing passwords using a strong key derivation function. For a list

of problems with DIGEST-MD5 see [RFC6331].

3.2. Storage

Clients SHOULD always store authenticators in a trusted and

encrypted keystore such as the system keystore, or an encrypted

store created specifically for the clients use. They SHOULD NOT

store authenticators as plain text.

If clients know that they will only ever authenticate using a

mechanism such as SCRAM where the original password is not needed

after the first authentication attempt they SHOULD store the SCRAM

bits or the hashed and salted password instead of the original

password. However, if backwards compatibility with servers that only

support the PLAIN mechanism or other mechanisms that require using

the original password is required, clients MAY choose to store the

original password so long as an appropriate keystore is used.

4. Server Best Practices

4.1. Additional SASL Requirements

Servers MUST NOT support any mechanism that would require

authenticators to be stored in such a way that they could be

recovered in plain text from the stored information. This includes

mechanisms that store authenticators using reversable encryption,

obsolete hashing mechanisms such as MD5, and hashes that are

unsuitable for use with authenticators such as SHA256.

4.2. Storage

Servers MUST always store passwords only after they have been salted

and hashed. A distinct salt SHOULD be used for each user, and each

SCRAM family supported. Salts MUST be generated using a

cryptographically secure random number generator. The salt MAY be

stored in the same datastore as the password. If it is stored

alongside the password, it SHOULD be combined with a pepper stored

in the application configuration, an environment variable, or some

other location other than the datastore containing the salts.

The following restrictions MUST be observed when generating salts

and peppers:

¶

¶

¶

¶

¶

¶

¶



Parameter Value

Minimum Salt Length 16 bytes

Minimum Pepper Length 32 bytes

Table 1: Common Parameters

4.3. Authentication and Rotation

When authenticating using PLAIN or similar mechanisms that involve

transmitting the original password to the server the password MUST

be hashed and compared against the salted and hashed password in the

database using a constant time comparison.

Each time a password is changed a new random salt MUST be created

and the iteration count and pepper (if applicable) MUST be updated

to the latest value required by server policy.

If a pepper is used, consideration should be taken to ensure that it

can be easily rotated. For example, multiple peppers could be

stored. New passwords and reset passwords would use the newest

pepper and a hash of the pepper using a cryptographically secure

hash function such as SHA256 could then be stored in the database

next to the salt so that future logins can identify which pepper in

the list was used. This is just one example, pepper rotation schemes

are outside the scope of this document.

5. KDF Recommendations

When properly configured, the following commonly used KDFs create

suitable password hash results for server side storage. The

recommendations in this section may change depending on the hardware

being used and the security level required for the application.

With all KDFs proper tuning is required to ensure that it meets the

needs of the specific application or service. For persistent login

an iteration count or work factor that adds approximately a quarter

of a second to login may be an acceptable tradeoff since logins are

relatively rare. By contrast, verification tokens that are generated

many times per second may need to use a much lower work factor.

5.1. Argon2

Argon2 [ARGON2ESP] is the 2015 winner of the Password Hashing

Competition and has been recomended by OWASP for password hashing.

Security considerations, test vectors, and parameters for tuning

argon2 can be found in [I-D.irtf-cfrg-argon2]. They are copied here

for easier reference.

¶

¶

¶

¶

¶

¶

¶



Parameter Value

Degree of parallelism (p) 1

Memory size (m) 32*1024

Number of iterations (t) 1

Algorithm type (y) Argon2id (2)

Table 2: Argon Parameters

5.2. Bcrypt

bcrypt [BCRYPT] is a Blowfish-based KDF that is the current OWASP

recommendation for password hashing.

Parameter Value

Recommended Cost 12

Maximum Password Length 64

Table 3: Bcrypt Parameters

5.3. PBKDF2

PBKDF2 [RFC8018] is used by the SCRAM family of SASL mechanisms.

Parameter Value

Minimum iteration count (c) 10,000

Hash SHA256

Output length (dkLen) 64 (or length of chosen hash, hLen)

Table 4: PBKDF2 Parameters

5.4. Scrypt

The [SCRYPT] KDF is designed to be memory-hard and sequential

memory-hard to prevent against custom hardware based attacks.

Security considerations, test vectors, and further notes on tuning

scrypt may be found in [RFC7914].

Parameter Value

N 32768 (N=2^15)

r 8

p 1

Table 5: Scrypt Parameters

6. Password Complexity Requirements

Before any other password complexity requirements are checked, the

preparation and enforcement steps of the OpaqueString profile of 

[RFC8265] SHOULD be applied (for more information see the

¶

¶

¶

¶



Internationalization Considerations section). Entities SHOULD

enforce a minimum length of 8 characters for user passwords. If

using a mechanism such as PLAIN where the server performs hashing on

the original password, a maximum length between 64 and 128

characters MAY be imposed to prevent denial of service (DoS)

attacks. Entities SHOULD NOT apply any other password restrictions.

In addition to these password complexity requirements, servers 

SHOULD maintain a password blacklist and reject attempts by a

claimant to use passwords on the blacklist during registration or

password reset. The contents of this blacklist are a matter of

server policy. Some common recommendations include lists of common

passwords that are not otherwise prevented by length requirements,

passwords present in known breaches (when paired with the same email

or other uniquely identifying information) to prevent reuse of

compromised passwords, and password that match commonly used

patterns such as "any single repeated character".

7. Internationalization Considerations

The PRECIS framework (Preparation, Enforcement, and Comparison of

Internationalized Strings) defined in [RFC8264] is used to enforce

internationalization rules on strings and to prevent common

application security issues arrising from allowing the full range of

Unicode codepoints in usernames, passwords, and other identifiers.

The OpaqueString profile of [RFC8265] is used in this document to

ensure that codepoints in passwords are treated carefully and

consistently. This ensures that users typing certain characters on

different keyboards that may provide different versions of the same

character will still be able to log in. For example, some keyboards

may output the full-width version of a character while other

keyboards output the half-width version of the same character. The

Width Mapping rule of the OpaqueString profile addresses this and

ensures that comparison succeeds and the claimant is able to be

authenticated.

8. Security Considerations

This document contains recommendations that are likely to change

over time. It should be reviewed regularly to ensure that it remains

accurate and up to date. Many of the recommendations in this

document were taken from [OWASP.CS.passwords], [NISTSP63b], and 

[NISTSP132].

The "-PLUS" variants of SCRAM support channel binding to their

underlying security layer, but lack a mechanism for negotiating what

type of channel binding to use. In [RFC5802] the tls-unique

[RFC5929] channel binding mechanism is specified as the default, and

it is therefore likely to be used in most applications that support

¶

¶

¶

¶



[IANA.sasl.mechanisms]

[RFC2119]

[RFC4949]

[RFC5929]

[RFC7627]

[RFC8174]

[ARGON2ESP]

channel binding. However, in the absence of the TLS extended master

secret fix [RFC7627] the tls-unique and tls-server-endpoint channel

binding data does not provide enough information to uniquely

identify a session. Before advertising a channel binding SCRAM

mechanism, entities MUST ensure that the TLS extended master secret

fix is in place or that the connection has not been renegotiated.

For TLS 1.3 [RFC8446] no channel binding types are currently

defined. Channel binding SASL mechanisms MUST NOT be advertised or

negotiated over a TLS 1.3 channel until such types are defined.

9. IANA Considerations

This document has no actions for IANA.

10. References

10.1. Normative References

IETF, "Simple Authentication and Security

Layer (SASL) Mechanisms", November 2015, <https://

www.iana.org/assignments/sasl-mechanisms/sasl-

mechanisms.xhtml>. 

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>. 

Shirey, R., "Internet Security Glossary, Version 2", FYI

36, RFC 4949, DOI 10.17487/RFC4949, August 2007, 

<https://www.rfc-editor.org/info/rfc4949>. 

Altman, J., Williams, N., and L. Zhu, "Channel Bindings

for TLS", RFC 5929, DOI 10.17487/RFC5929, July 2010, 

<https://www.rfc-editor.org/info/rfc5929>. 

Bhargavan, K., Ed., Delignat-Lavaud, A., Pironti, A.,

Langley, A., and M. Ray, "Transport Layer Security (TLS)

Session Hash and Extended Master Secret Extension", RFC

7627, DOI 10.17487/RFC7627, September 2015, <https://

www.rfc-editor.org/info/rfc7627>. 

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, 

May 2017, <https://www.rfc-editor.org/info/rfc8174>. 

10.2. Informative References

¶

¶

¶

https://www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xhtml
https://www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xhtml
https://www.iana.org/assignments/sasl-mechanisms/sasl-mechanisms.xhtml
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4949
https://www.rfc-editor.org/info/rfc5929
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc8174


[BCRYPT]

[I-D.irtf-cfrg-argon2]

[NISTSP132]

[NISTSP63-3]

[NISTSP63b]

[OWASP.CS.passwords]

[RFC4422]

[RFC5802]

Biryukov, A., Dinu, D., and D. Khovratovich, "Argon2: New

Generation of Memory-Hard Functions for Password Hashing

and Other Applications", Euro SnP 2016, March 2016, 

<https://www.cryptolux.org/images/d/d0/Argon2ESP.pdf>. 

Provos, N. and D. Mazières, "A Future-Adaptable Password

Scheme", USENIX 1999 https://www.usenix.org/legacy/event/

usenix99/provos/provos.pdf, June 1999. 

Biryukov, A., Dinu, D., Khovratovich, D., and S.

Josefsson, "The memory-hard Argon2 password hash and

proof-of-work function", Work in Progress, Internet-

Draft, draft-irtf-cfrg-argon2-10, 25 March 2020, 

<https://tools.ietf.org/html/draft-irtf-cfrg-argon2-10>. 

Turan, M., Barker, E., Burr, W., and L. Chen, 

"Recommendation for Password-Based Key Derivation Part 1:

Storage Applications", NIST Special Publication SP

800-132, DOI 10.6028/NIST.SP.800-132, December 2010, 

<https://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-132.pdf>. 

Grassi, P., Garcia, M., and J. Fenton, "Digital

Identity Guidelines", NIST Special Publication SP

800-63-3, DOI 10.6028/NIST.SP.800-63-3, June 2017, 

<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-63-3.pdf>. 

Grassi, P., Fenton, J., Newton, E., Perlner, R.,

Regenscheid, A., Burr, W., Richer, J., Lefkovitz, N.,

Danker, J., Choong, Y., Greene, K., and M. Theofanos, 

"Digital Identity Guidelines: Authentication and

Lifecycle Management", NIST Special Publication SP

800-63b, DOI 10.6028/NIST.SP.800-63b, June 2017, 

<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/

NIST.SP.800-63b.pdf>. 

Manico, J., Saad, E., Maćkowski, J., and R.

Bailey, "Password Storage", OWASP Cheat Sheet Password

Storage, April 2020, <https://cheatsheetseries.owasp.org/

cheatsheets/Password_Storage_Cheat_Sheet.html>. 

Melnikov, A., Ed. and K. Zeilenga, Ed., "Simple

Authentication and Security Layer (SASL)", RFC 4422, DOI

10.17487/RFC4422, June 2006, <https://www.rfc-editor.org/

info/rfc4422>. 

Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,

"Salted Challenge Response Authentication Mechanism

https://www.cryptolux.org/images/d/d0/Argon2ESP.pdf
https://tools.ietf.org/html/draft-irtf-cfrg-argon2-10
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63b.pdf
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://www.rfc-editor.org/info/rfc4422
https://www.rfc-editor.org/info/rfc4422


[RFC6331]

[RFC7677]

[RFC7914]

[RFC8018]

[RFC8264]

[RFC8265]

[RFC8446]

[SCRYPT]

(SCRAM) SASL and GSS-API Mechanisms", RFC 5802, DOI

10.17487/RFC5802, July 2010, <https://www.rfc-editor.org/

info/rfc5802>. 

Melnikov, A., "Moving DIGEST-MD5 to Historic", RFC 6331, 

DOI 10.17487/RFC6331, July 2011, <https://www.rfc-

editor.org/info/rfc6331>. 

Hansen, T., "SCRAM-SHA-256 and SCRAM-SHA-256-PLUS Simple

Authentication and Security Layer (SASL) Mechanisms", RFC

7677, DOI 10.17487/RFC7677, November 2015, <https://

www.rfc-editor.org/info/rfc7677>. 

Percival, C. and S. Josefsson, "The scrypt Password-Based

Key Derivation Function", RFC 7914, DOI 10.17487/RFC7914,

August 2016, <https://www.rfc-editor.org/info/rfc7914>. 

Moriarty, K., Ed., Kaliski, B., and A. Rusch, "PKCS #5:

Password-Based Cryptography Specification Version 2.1", 

RFC 8018, DOI 10.17487/RFC8018, January 2017, <https://

www.rfc-editor.org/info/rfc8018>. 

Saint-Andre, P. and M. Blanchet, "PRECIS Framework:

Preparation, Enforcement, and Comparison of

Internationalized Strings in Application Protocols", RFC

8264, DOI 10.17487/RFC8264, October 2017, <https://

www.rfc-editor.org/info/rfc8264>. 

Saint-Andre, P. and A. Melnikov, "Preparation,

Enforcement, and Comparison of Internationalized Strings

Representing Usernames and Passwords", RFC 8265, DOI

10.17487/RFC8265, October 2017, <https://www.rfc-

editor.org/info/rfc8265>. 

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, 

August 2018, <https://www.rfc-editor.org/info/rfc8446>. 

Percival, C., "Stronger key derivation via sequential

memory-hard functions", BSDCan'09 http://www.tarsnap.com/

scrypt/scrypt.pdf, May 2009. 

Appendix A. Acknowledgments

The author would like to thank the civil servants at the National

Institute of Standards and Technology for their work on the Special

Publications series. U.S. executive agencies are an undervalued

national treasure, and we should all work to protect them and the p

Thanks also to Cameron Paul for his review and suggestions.

¶

¶

https://www.rfc-editor.org/info/rfc5802
https://www.rfc-editor.org/info/rfc5802
https://www.rfc-editor.org/info/rfc6331
https://www.rfc-editor.org/info/rfc6331
https://www.rfc-editor.org/info/rfc7677
https://www.rfc-editor.org/info/rfc7677
https://www.rfc-editor.org/info/rfc7914
https://www.rfc-editor.org/info/rfc8018
https://www.rfc-editor.org/info/rfc8018
https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8264
https://www.rfc-editor.org/info/rfc8265
https://www.rfc-editor.org/info/rfc8265
https://www.rfc-editor.org/info/rfc8446


Author's Address

Sam Whited

Atlanta, GA

United States of America

Email: sam@samwhited.com

URI: https://blog.samwhited.com/

mailto:sam@samwhited.com
https://blog.samwhited.com/

	Best practices for password hashing and storage
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology

	2. SASL Mechanisms
	3. Client Best Practices
	3.1. Mechanism Pinning
	3.2. Storage

	4. Server Best Practices
	4.1. Additional SASL Requirements
	4.2. Storage
	4.3. Authentication and Rotation

	5. KDF Recommendations
	5.1. Argon2
	5.2. Bcrypt
	5.3. PBKDF2
	5.4. Scrypt

	6. Password Complexity Requirements
	7. Internationalization Considerations
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Acknowledgments
	Author's Address


