
Network Working Group J. Whitehead
Internet-Draft U.C. Santa Cruz
Intended status: Informational February 27, 2006
Expires: August 31, 2006

Design Considerations for State Identifiers in HTTP and WebDAV
draft-whitehead-http-etag-00

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 31, 2006.

Copyright Notice

 Copyright (C) The Internet Society (2006).

Abstract

 This document discusses design considerations for state identifiers
 in the Hypertext Transfer Protocol (HTTP) and related protocols such
 as WebDAV.

Editorial Note

 Discussion of this draft and comments to the editors should be sent
 to the ietf-http-wg@w3.org [1] mailing list, which is archived at

Whitehead Expires August 31, 2006 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

 <http://lists.w3.org/Archives/Public/ietf-http-wg/>.

Table of Contents

1. Introduction . 3
1.1. Entity Identifiers in HTTP 3

 1.2. Problems with Entity Identifiers as Substitute State
 Identifiers . 4

2. Requirements for State Identifiers and Entity Identifiers . . 6
2.1. Caching Requirements 6
2.2. End-to-End Integrity Check Requirements 6
2.3. Authoring Requirements 6
2.4. Implementation Driven Requirements 7

3. Current Implementation Behaviors and their Implications . . . 8
4. Ambiguities in the HTTP and WebDAV Specifications 8

 4.1. Confusion over the meaning of the Etag returned in a
 PUT response . 8

4.2. Confusion over Semantics of Strong Etags 9
5. Dimensions of a Solution 9
5.1. Julian's suggestion 9
5.2. Lisa's suggestion . 10
5.3. Jim's suggestion . 10

6. References . 11
 Author's Address . 12
 Intellectual Property and Copyright Statements 13

http://lists.w3.org/Archives/Public/ietf-http-wg/

Whitehead Expires August 31, 2006 [Page 2]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

1. Introduction

 In distributed systems such as the World Wide Web, it is useful to
 assign unique identifiers to individual states of network resources.
 The basic idea is that each time the state of a network resource
 changes, its associated state identifier changes too. State
 identifiers have the quality that they uniquely identify a particular
 state of a network resource; only one identifier will ever be
 associated with a given network resource state. These state
 identifiers can be used to support caching and remote authoring of
 network resources.

 In caching, each cache locally stores a state identifier along with
 its cached copy of a network resource, and uses the state identifier
 to query whether the cached copy is up-to-date. If the cache's local
 state identifier is different from the current state identifier of
 the original network resource, it indicates the cached copy is stale,
 and needs to be refreshed. If the cached and original state
 identifiers are the same, it indicates the local copy is up-to-date.

 In remote authoring, a remote authoring tool wishes to update the
 state of a network resource. A typical authoring session involves
 retrieving the current state of the network resource, some editing,
 then writing the new state of the network resource back to its
 original location. There are two concerns during remote authoring.
 One is that another author might try to modify the same network
 resource at the same time, leading to the lost update problem. State
 identifiers are used to detect this problem. The authoring
 application stores a local copy of the network resource's state
 identifier at the beginning of the authoring session. When the
 application goes to write the new resource state, it compares the
 local state identifier with the current state identifier of the
 network resource. If they are the same, the network resource has not
 been modified, and the write can proceed without danger of overwrite.
 The second concern is the remote authoring client wants to know that
 the network resource has been stored in the same form it was
 submitted. There are many document formats, such as XML, that can
 remain semantically equivalent in the face of multiple kinds of
 changes to the actual octets stored. The authoring application would
 like to know if it can continue to use its local copy of the network
 resource, or if it instead needs to reload its local copy from the
 original.

1.1. Entity Identifiers in HTTP

 Version 1.1 of the Hypertext Transfer Protocol (HTTP) [RFC2616]
 supports two identifiers, the Entity Tag (Etag) and the Content-MD5
 hash (MD5-hash). Etags are used in HTTP 1.1 for caching, and the Web

https://datatracker.ietf.org/doc/html/rfc2616

Whitehead Expires August 31, 2006 [Page 3]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

 Distributed Authoring and Versioning (WebDAV) authoring protocol uses
 Etags in conjunction with locks to avoid the lost update problem and
 keep local client state in synch with the authoring server. The MD5-
 hash is used to perform end-to-end message integrity checks. A key
 difference between Etags and MD5-hashes is the Etag is not required
 to be computable from the contents of the on-the-wire representation
 of a resource, while an MD5-hash is. A consquence is that Etags are
 less computationally inexpensive to produce than MD5-hashes.

 Within HTTP, there are no provisions for directly interacting with
 the state of a network resource. Instead, clients can retrieve
 representations of a network resource using the GET method, and can
 write representations using PUT. The representation retrieved using
 GET can be the result of an arbitrary computational process, or can
 be the result of applying a wide range of transformations to a
 persistently stored resource. Similarly, a server may apply a range
 of transformations to a representation submitted with PUT before
 creating a persistently stored resource. A resource representation
 on the wire is known as an entity, and both Etags and MD5-hashes are
 unique identifiers for this entity.

 In the most general case, Etags and MD5-hashes are not state
 identifiers, since they uniquely identify only for the on-the-wire
 representation of a resource, and do not necessarily identify the
 actual resource state. Etags and MD5-hashes are entity identifiers.
 For caching, this is usually acceptable, since the cache only wants
 to ensure that the client-visible representation of the resource is
 maintained up-to-date.

1.2. Problems with Entity Identifiers as Substitute State Identifiers

 For authoring, the distinction between entity identifiers and state
 identifiers is problematic. Since authoring applications modify the
 state of the network resource, the information provided by entity
 identifiers does not provide sufficient feedback on the progress of
 authoring applications. Changes to the state of a resource must be
 inferred from changes in entity identifiers.

 Adding to this core difficulty are many accidental ones. HTTP does
 not clearly specify the behavior of Etags and PUT. There is no
 requirement that a successful PUT response return an Etag or Content-
 MD5 header (it is a MAY level requirement for just one of 3 possible
 response codes). While many servers do return the Etag header, this
 is not universal. If no Etag is received in the PUT response,
 clients must perform an additional request to retrieve it.
 Unfortunately, there is no mechanism clients can use to determine if
 the retrieved Etag represents the one assigned to the PUT entity they
 submitted, or the Etag of an entity submitted subsequently by another

Whitehead Expires August 31, 2006 [Page 4]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

 client. Since an arbitrary transformation could have taken place on
 the PUT entity before it was persistently stored, even an MD5-hash
 would be unreliable. This is moot, since there is no mechanism that
 clients can use to force a server to return an MD5-hash.

 The HTTP specification is also unclear on what Etag should be
 returned in the response to a PUT. The current specification states
 that for a 201 Created response, "indicating the current value of the
 entity tag for the requested variant just created" (Section 10.2.2),
 while there is no statement concerning use of Etag with 200 or 204
 responses, the other possible responses to a successful PUT. Given
 the specification ambiguity, it is conceivable that servers might
 return the Etag for the submitted entity, rather than the Etag for
 the current GET response for the resource.

 Several HTTP servers use filesystem last modified timestamps as their
 mechanism for computing Etags. This has the advantage of fast
 recall; a simple system call retrieves a resource Etag, and does not
 require any computation on the state of the resource itself, or
 retrieval of a precomputed Etag from a database. However, since
 servers can process multiple write operations within the time span of
 the minimum granularity of the operating system clock, such servers
 return a provisional Etag immediately, and then upgrade this to a
 permanent Etag later. This requires clients to perform an additional
 network request to retrieve the final version of the Etag.
 Unfortunately, there is no mechanism clients can use to distinguish
 between the Etag having been changed due to promotion to a permanent
 Etag, or the Etag having been changed due to another authoring client
 modifying the resource. As before, MD5-hashes are unreliable.

 This combination of the essential different between state identifiers
 and entity identifiers, and the several accidental difficulties in
 specifying and implementing entity identifiers have combined to
 create substantial difficulty for authoring clients using the WebDAV
 protocol. These difficulties make it impossible, in the general
 case, for authoring clients to have any confidence that they have
 successfully written an updated resource to a remote server. Since
 this the core operation supported by remote authoring clients, this
 problem has broad ramifications for the adoption and use of HTTP-
 based remote authoring.

 In the remainder of this document we describe the requirements for
 clients and servers for state and entity identifiers. When then
 document several current behaviors by HTTP servers that contribute to
 the difficulty of using the current entity identifiers. Following,
 we note several specification ambiguities that contribute to the
 problem. We then outline the characteristics of a broad solution to
 the problem. Our goal is for this document to be used as a statement

Whitehead Expires August 31, 2006 [Page 5]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

 of goals for a subsequent protocol specification that substantially
 addresses the concerns raised herein.

2. Requirements for State Identifiers and Entity Identifiers

 Three scenarios that drive requirements for state identifiers and
 entity identifiers are caching, end-to-end message integrity checks,
 and authoring. Additionally, implementation concerns also provide
 requirements.

2.1. Caching Requirements

 The following two requirements drive the existence of weak and strong
 Etags. While the complete set of requirements for HTTP caches is
 quite broad, the requirements below are the ones specifically related
 to entity identifiers and state identifiers.

 A client must be able to determine if its cached copy of the GET
 response for a resource is octet-for-octet the same as the current
 GET response, without having to re-retrieve the current GET response.

 A client must be able to determine if its cached copy of the GET
 response for a resource is semantically equivalent to the current GET
 response, without having to re-retrieve the current GET response.
 Two responses might be considered semantically equivalent even if not
 octet-for-octet equivalent if, for example, they had minor
 differences in HTML encoding, or some automatically updated value
 like a hit counter was considered semantically irrelevant.

2.2. End-to-End Integrity Check Requirements

 The following requirement drives the existence of the MD5-hash.

 A client or server must be able to determine if an HTTP message has
 been transmitted through zero or more intermediaries without
 modification to the entity body.

2.3. Authoring Requirements

 An authoring client must be able to determine if the state of a
 resource at the beginning of an editing session remains unchanged
 when the client wishes to update the state of the resource.

 An authoring client must be able to determine if the server has made
 changes to an entity submitted during PUT that would require the
 client to reload the resource to have the correct current state.
 This determination must be reliable, in the sense that the client

Whitehead Expires August 31, 2006 [Page 6]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

 must be able to receive an unambiguous answer to the query, "has the
 server modified the submitted entity prior to its persistent
 storage?"

 An authoring server must be able to modify the entity submitted using
 PUT before persistently storing it. Servers frequently modify
 submitted data. Examples based on current applications include
 modifying XML to change XML namespace usage, change linear
 whitespace, and sometimes modify the character encoding. Versioning
 servers also may perform keyword expansion in the body of submitted
 source code, e.g., to inject the author, version identifier, date,
 etc. Calendar servers may annotate calendar event resources with
 server-specific properties.

 An authoring client must be able to direct the server to reject a
 request to persistently store the resource if it cannot guarantee
 octet-for-octet storage of the submitted entity. This requirement is
 more speculative than the others, since it does not describe a
 strongly expressed existing client need. Still, there are many media
 types that cannot withstand any server tampering, such as the native
 formats of many kinds of application software that store their
 documents in a proprietary binary format. Any server tampering with
 these document types would corrupt the document.

 WebDAV resources have two types of state, the resource body, a
 representation of which is returned by GET, and resource properties,
 a representation of which is returned by PROPFIND. An authoring
 client must be able to determine if changes have occurred to entries
 in both kinds of state. State identifiers must not mix state types.
 That is a state identifier for the resource body should be
 independent of state identifiers for properties. An open question is
 the necessary granularity of state identifiers for properties.

2.4. Implementation Driven Requirements

 Since GET is a very common operation, it must be possible for servers
 to efficiently compute any entity or state token returned by GET.
 Alternately, it must be possible for servers to not return expensive-
 to-compute identifiers unless specifically requested by the client.

 The response to any write operation must return state identifiers and
 entity identifiers associated with the permanent persisted state of
 the resource following the operation. This is the only reliable
 mechanism for communicating this information to the client.

Whitehead Expires August 31, 2006 [Page 7]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

3. Current Implementation Behaviors and their Implications

 To do:

 1. Document the Apache server behavior of returning a weak etag with
 the PUT response then promoting this to a strong etag. Note that
 this makes it impossible for clients to reliably determine the
 permanent etag associated with the resource.

 2. Document a server that performs significant content modification
 upon PUT (a CalDAV server?)

 3. Others?

4. Ambiguities in the HTTP and WebDAV Specifications

4.1. Confusion over the meaning of the Etag returned in a PUT response

 It is currently unclear as to which entity is identified by an Etag
 returned in the response to a PUT.

 The HTTP specification [RFC2616] states (Section 10.2.2):

 "A 201 response MAY contain an ETag response header field
 indicating the current value of the entity tag for the requested
 variant just created, see section 14.19."

 Hence, for situations where a new resource is created, the meaning of
 Etag is clear.

 The HTTP specification also states (Section 14.19):

 "The ETag response-header field provides the current value of the
 entity tag for the requested variant."

 Since the other success responses for a PUT request (200 and 204)
 provide no specification for the meaning of Etag, a strict reading of
 the specification is ambiguous, since there is no "requested variant"
 here. Presumably the 201 Etag semantics are intended for 200 and 204
 responses to PUT, though this is not explicitly stated in the HTTP
 specification.

 Another possible interpretation is that the server should return the
 Etag of the entity just submitted by the client in the PUT request.
 In the section below, we describe an ambiguity where the Etag
 returned may be expected to vary depending on the amount of
 processing the server performs on the submitted entity.

https://datatracker.ietf.org/doc/html/rfc2616

Whitehead Expires August 31, 2006 [Page 8]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

4.2. Confusion over Semantics of Strong Etags

 The HTTP specification states (Section 3.11):

 A "strong entity tag" MAY be shared by two entities of a resource
 only if they are equivalent by octet equality.

 When a client performs a PUT, there are two entities in play:

 A. the entity submitted by the client in the initial PUT request

 B. the entity returned by the server in subsequent GET requests

 A question that arises is whether a server can return a strong Etag
 if it modifies the submitted entity, A, before persistently storing
 it. Supporting a yes viewpoint, we note that the submitted entity,
 A, isn't an entity of the resource until the PUT operation succeeds,
 because only the success of the operation associates it with the
 resource. As a result, it is not reasonable to discuss equivalence
 of A and B as two entities of the same resource, since A is not yet
 associated with the resource.

 Supporting a no viewpoint, we note that the intent of the Etag is to
 act as an entity identifier. If we perform two GET operations in a
 row on a resource, and we receive the same strong Etag in each
 response, we expect two response entity bodies to be octet-for-octet
 the same. Hence, if we submit an entity, A, and receive a strong
 Etag in return along with entity B, there is an assumption that the
 submitted entity has not been modified, and A is octet-for-octet the
 same as B. We note that there is no language in the HTTP
 specification to support this viewpoint.

5. Dimensions of a Solution

 TBD.

 There are currently three suggestions.

5.1. Julian's suggestion

 Alternative 1: Make strong server requirement; i.e., mandate to only
 return ETag if content was written octet-by-octet. Drawback: this in
 not required in HTTP, thus potentially implemented differently in
 existing servers. No way for a client to tell the difference. Also,
 returning strong ETags although content rewriting happens may have
 its use cases; it only becomes a problem if the client tries to use
 the ETag as cache validator in a byte-range request (which the server

Whitehead Expires August 31, 2006 [Page 9]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

 could reject).

 Alternative 2: Add a new Response Header through which servers can
 indicate whether they need to refetch content or not. Note that
 header would not have a default, so clients can simply detect whether
 they speak to "new" server. This would also be applicable to other
 write methods, such as PROPPPATCH: for instance, would a PROPPATCH
 affect the representation of the resource (i.e., metadata is stored
 in body such as in JPEG, MP3, Office docs...), the server could
 return a new ETag and indicate that the entitiy changed.

 [[anchor15: jr -- For reasons of compatibility with existing
 implementations, the second alternative seems to be superior to me]]

5.2. Lisa's suggestion

 Thus, we RECOMMEND servers supporting ETag and PUT return the ETag
 header in the PUT response, and we RECOMMEND clients receiving the
 ETag in a PUT response use their local copy of the resource rather
 than query the server for a redundant copy.

 When a client does not receive an ETag header at all in a PUT
 response, the client MUST NOT consider its local copy of the resource
 to be up-to-date with the server's copy.

 The Get-ETag response-header field provides the value of the entity
 tag for the entity of the resource that would be provided on a
 subsequent GET request.

 Get-ETag = "Get-ETag" ":" entity-tag

 The Get-ETag header is appropriate for use when the server can only
 guarantee that it can return the entity with that tag in response to
 a GET, not an entity that is byte-for-byte equivalent to the entity
 the client provided.

5.3. Jim's suggestion

 Introduce the notion of a resource body state identifier that
 uniquely identifies the persistently recorded state of a resource.
 Introduce the notion of a resource property identifier that
 identifies the aggregate persistently recorded state of all dead
 properties. Then, introduce six new headers, and two new properties:

 Resource-State: a response header that indicates the current state
 identifier for the resource after successful performance of the
 requested operation. In the case of an error, it indicates the state
 of the resource prior to the failed operation. This header is only

Whitehead Expires August 31, 2006 [Page 10]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

 included in a response if the client specifically requests it using
 the Request-Resource-State header.

 Property-State: a response header that indicates the current property
 state identifier for the resource after successful performance of the
 requested operation. In the case of an error, it indicates the state
 of the resource prior to the failed operation. This header is only
 included in a response if the client specifically requests it using
 the Request-Property-State header.

 Request-Resource-State: a request header used to request a Resource
 State header in the response. May be used with any method.

 Request-Property-State: a request header used to request a Property
 State header in the response. May be used with any method.

 Content-Handling: a response header the MUST be returned by a
 successful PUT. Broadly indicates the kind of handling performed by
 the server when storing the submitted entity. Acceptable values are
 "none" (entity was stored octet-for-octet), "XML" (processing that
 modified the entity but did not change the semantics according to XML
 rules, only applicable to XML content types), "some" (the server
 performed some modification of the entity), "encoding" (the server
 changed the entity's content encoding only). Allow for extensions to
 this set of values.

 Acceptable-Content-Handling: a request header usable in PUT requests
 only. A list of tokens from the set defined with Content-Handling.
 If the response Content-Handling header value is not one of the
 tokens listed in this header, the request MUST fail.

 Add a new value to the DAV header, "fixed-PUT" to indicate support
 for these semantics.

 Two new properties, one to represent the resource state identifier,
 and the other to represent the aggregate property identifier.

6. References

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [1] <mailto:ietf-http-wg@w3.org>

https://datatracker.ietf.org/doc/html/rfc2616

Whitehead Expires August 31, 2006 [Page 11]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

Author's Address

 Jim Whitehead
 UC Santa Cruz, Dept. of Computer Science
 1156 High Street
 Santa Cruz, CA 95064

 Email: ejw@cse.ucsc.edu

Whitehead Expires August 31, 2006 [Page 12]

Internet-Draft State Identifiers in HTTP/WebDAV February 2006

Full Copyright Statement

 Copyright (C) The Internet Society (2006).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Whitehead Expires August 31, 2006 [Page 13]

