
INTERNET-DRAFT J. M. Schanck
Intended Status: Experimental Security Innovation & U. Waterloo
Expires: 2016-10-04 W. Whyte
 Security Innovation
 Z. Zhang
 Security Innovation
 2016-04-04

 Quantum-Safe Hybrid (QSH) Ciphersuite
 for Transport Layer Security (TLS) version 1.3

draft-whyte-qsh-tls13-02.txt

Abstract

 This document describes the Quantum-Safe Hybrid ciphersuite, a new
 cipher suite providing modular design for quantum-safe cryptography
 to be adopted in the handshake for the Transport Layer Security (TLS)
 protocol version 1.3. In particular, it specifies the use of the
 NTRUEncrypt encryption scheme in a TLS handshake.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2016-10-04.

 Update from last version: keeping alive till TLS WG review.

Schanck et al. Expires 2016-10-04 [Page 1]

https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls13-02.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

Table of Contents

1. Introduction . 3
2. Modular design for quantum-safe hybrid handshake 4
3. Data Structures and Computations 7
3.1. Data structures for Quantum-safe Crypto Schemes 7
3.2. Client Hello Extensions 9
3.3. HelloRetryRequest Extensions 11
3.4. Server Key Share Extension 12

4. Cipher Suites . 14
5. Specific information for Quantum Safe Scheme 14
5.1. NTRUEncrypt . 14
5.2. LWE . 14
5.3. HFE . 14
5.4. McEliece/McBits . 15

6. Security Considerations 15
6.1. Security, Authenticity and Forward Secrecy 15
6.2. Quantum Security and Quantum Forward Secrecy 15
6.3. Quantum Authenticity 15

7. Compatibility with TLS 1.2 and earlier version 15
8. IANA Considerations . 15
9. Acknowledgements . 16
10. References . 16
10.1. Normative References 16
10.2. Informative References 17

 Authors' Addresses . 18
 Copyright Notice . 18

Schanck et al. Expires 2016-10-04 [Page 2]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

1. Introduction

 Quantum computers pose a significant threat to modern cryptography.
 Two most widely adopted public key cryptosystems, namely, RSA [PKCS1]
 and Elliptic Curve Cryptography (ECC) [SECG], will be broken by
 general purpose quantum computers. RSA is adopted in TLS from
 Version 1.0 and to TLS Version 1.3 [RFC2246], [RFC4346], [RFC5246],
 [TLS1.3]. ECC is enabled in RFC 4492 [RFC4492] and adopted in TLS
 version 1.2 [RFC5246] and version 1.3 [TLS1.3]. On the other hand,
 there exist several quantum-safe cryptosystems, such as the
 NTRUEncrypt cryptosystem [EESS1], that deliver similar performance,
 yet are conjectured to be robust against quantum computers.

 This document describes a modular design that allows one or many
 quantum-safe cryptosystems to be adopted in the handshake protocol,
 applicable to TLS Version 1.3 [TLS1.3]. It uses a hybrid approach
 that combines a classical handshake mechanism with key encapsulation
 mechanisms instantiated with quantum-safe encryption schemes. The
 modular design provides quantum-safe features to TLS 1.3 without any
 introduction of extra cipher suites. Yet, it allows the flexibility
 to include new and advanced quantum-safe encryption schemes at
 present and in the future.

 Extensions to TLS 1.2 [RFC5246] and earlier versions can be found in
 [QSH12].

 The remainder of this document is organized as follows. Section 2
 provides an overview of the modular design of quantum-safe handshake
 for TLS 1.3. Section 3 specifies various data structures needed for
 a quantum safe handshake, their encoding in TLS messages, and the
 processing of those messages. Section 4 defines new TLS_QSH cipher
 suites. Section 5 provides specific information for quantum safe
 encryption schemes. Section 6 discusses security considerations.

Section 7 discusses compatibility with other versions of TLS.
Section 8 describes IANA considerations for the name spaces created

 by this document. Section 9 gives acknowledgements.

 This is followed by the lists of normative and informative references
 cited in this document, the authors' contact information, and
 statements on intellectual property rights and copyrights.

 Implementation of this specification requires familiarity with TLS
 [RFC2246], [RFC4346], [RFC5246], [TLS1.3], TLS extensions [RFC4366],
 and knowledge of the corresponding quantum-safe cryptosystem.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Schanck et al. Expires 2016-10-04 [Page 3]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 Well-known abbreviations and acronyms can be found at RFC Editor
 Abbreviations List [REAL].

2. Modular design for quantum-safe hybrid handshake

 This document introduces a modular approach to including new quantum-
 safe key exchange algorithms within TLS 1.3, while maintaining the
 assurance that comes from the use of already established cipher
 suites. It allows the TLS premaster secret to be agreed using both
 an established classical cipher suite and a quantum-safe key
 encapsulation mechanism.

 Client Server

 ClientHello
 ClientKeyShare -------->
 <-------- HelloRetryRequest

 ClientHello
 ClientKeyShare -------->
 ServerHello
 ServerKeyShare
 {EncryptedExtensions*}
 {Certificate*}
 {CertificateRequest*+}
 {CertificateVerify*}
 <-------- {Finished}
 {Certificate*+}
 {CertificateVerify*+}
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 * message is not sent under some conditions
 + message is not sent unless client authentication
 is desired

 Figure 1: Message flow in a full TLS 1.3 handshake

 Figure 1 shows all messages involved in the TLS key establishment
 protocol (aka full handshake). The addition of quantum-safe
 cryptography has direct impact only on the ClientHello, the
 HelloRetryRequest, and the ServerKeyShare messages. In the rest of
 this document, we describe each quantum-safe key exchange data
 structure in greater detail in terms of the content and processing of
 these messages.

 The authentication is provided by classical cryptography. The

Schanck et al. Expires 2016-10-04 [Page 4]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 introduction of quantum-safe encryption schemes delivers forward
 secrecy against quantum attackers. The additional cryptographic data
 exchanged between the client and the server is shown in Figure 2 and
 3.

 Figure 2 illustrates the data flow of a zero round trip quantum-safe
 handshake for TLS. This handshake is proceeded when 1) the classical
 key exchange is also zero round trip, and 2) the server supports the
 QSH schemes from QSHPKList.

 Client Server

 ClientHelloExtension
 + qshDataExtension
 (QSHPKList)
 + qshNegotiateExtension
 (QSHSchemeIDList) -------->
 EncryptedExtensions*
 + qshDataExtension
 (QSHCipherList)
 <-------- {Finished}
 {Finished} -------->

 ClassicSecret|QSHSecret <-------> ClassicSecret|QSHSecret

 * previously known as SeverKeyShareExtensions
 + additional data

 Figure 2: Additional cryptographic data
 for a zero round trip TLS handshake

 In the case that the server does not support the QSH schemes from
 QSHPKList, the server will reply with a HelloRetryRequest, which
 results into a full handshake.

 Client Server

 ClientHelloExtensions
 + qshDataExtension
 (QSHPKList)
 + qshNegotiateExtension
 (QSHSchemeIDList) -------->
 HelloRetryRequestExtensions
 + qshNegotiateExtension
 <-------- (AcceptQSHSchemeIDList)

 ClientHelloExtensions
 + qshDataExtension

Schanck et al. Expires 2016-10-04 [Page 5]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 (QSHPKList) -------->
 EncryptedExtensions*
 + qshDataExtension
 (QSHCipherList)
 <-------- {Finished}
 {Finished} -------->

 ClassicSecret|QSHSecret <-------> ClassicSecret|QSHSecret

 * previously known as SeverKeyShareExtensions
 + additional data

 Figure 3: Additional cryptographic data
 for a full TLS handshake

 As usual, the ClientHello message includes the list of classical
 cipher suites the client wishes to negotiate (e.g.,
 TLS_ECDH_ECDSA_WITH_NULL_SHA). In addition there will be two
 potential extension fields, indicating qshData and qshNegotiate
 extensions.

 The ClientHelloExtension field MUST have qshData extension field:
 o QSHPKList: a list of distinct public keys for QSH Scheme
 from the client, each public key for a distinct
 quantum safe encryption scheme supported by the
 client.

 The ClientHelloExtension field MAY have qshNegotiate extension
 field:
 o QSHSchemeIDList:
 a list of distinct QSHSchemeIDs from the client,
 each ID represents a quantum safe encryption
 scheme/parameter set supported by the client

 QSHSchemeIDList must not list the scheme IDs whose public key is
 already included in the QSHPKList.

 If the server supports QSH schemes/parameter sets for the public keys
 received from QSHPKList, the server will proceed the zero round trip
 handshake, provided that the zero round trip is also permitted by
 classical handshake. If not, the server will pick a (list of)
 QSHSchemeID(s) from the QSHSchemeIDList to form the
 AcceptQSHSchemeIDList, and request public keys for those schemes in a
 HelloRetryRequest message. If the server does not support any of the
 QSH schemes from either QSHPKList or QSHSchemeIDList, the server will
 abort the handshake.

 The extension field of the HelloRetryRequest message MUST have an

Schanck et al. Expires 2016-10-04 [Page 6]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 qshNegotiate extension field:
 o AcceptQSHSchemeIDList:
 a list of distinct QSHSchemeIDs from the server,
 each ID represents a quantum safe encryption
 scheme/parameter set supported/selected by the server

 The ServerKeyShare message contains an indication of the classical
 cipher suite selected, and the ServerKeyShare material appropriate to
 that cipher suite. Additionally, the ServerKeyShareExtension (a.k.a.
 EncryptedExtension) field message MUST contain a qshData extension
 field listing ciphertexts:
 o QSHCipherList:
 a list of ciphertests
 [Encrypt_QSHPK1(QSHS1)]|[Encrypt_QSHPK2(QSHS2)]|...
 where the QSH secret keying material is
 QSHSecret = QSHS1|QSHS2|..., and QSHPKi is from
 QSHPKList.

 The final premaster secret negotiated by the client and the server is
 the concatenation of the classical premaster secret, QSHSecret,
 QSHPK1|QSHPK2|... in that order. A 48 bytes fixed length master
 secret is derived from the premaster secret at the end of the
 handshake, using a pseudo random function specified by the classical
 cipher suite (see Section 8.1. RFC 5246 [RFC5246]).

3. Data Structures and Computations

 This section specifies the data structures and computations used by
 TLS_QSH cipher suite specified in Sections 2. The presentation
 language used here is the same as that used in TLS v1.3 [TLS1.3].
 Since this specification extends TLS, these descriptions should be
 merged with those in the TLS specification and any others that extend
 TLS. This means that enum types may not specify all possible values,
 and structures with multiple formats chosen with a select() clause
 may not indicate all possible cases.

3.1. Data structures for Quantum-safe Crypto Schemes

 enum {
 ntru_eess443 (0x0101),
 ntru_eess587 (0x0102),
 ntru_eess743 (0x0103),
 reserved (0x0102..0x01FF),
 lwe_XXX (0x0201),
 reserved (0x0202..0x02FF),
 hfe_XXX (0x0301),
 reserved (0x0302..0x03FF),
 mcbits_XXX (0x0401),

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Schanck et al. Expires 2016-10-04 [Page 7]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 reserved (0x0402..0x04FF),
 reserved (0x0500..0xFEFF),
 (0xFFFF)
 } QSHSchemeID;

 ntru_eess443, etc: Indicates parameter set to be used for the
 NTRUEncrypt encryption scheme. The name of the parameter sets
 defined here are those specified in [EESS1].

 lwe_XXX, etc: Indicates parameters for Learning With Error (LWE)
 encryption scheme. The name of the parameters defined here are
 not specified in this document.

 hfe_XXX, etc: Indicates parameters for Hidden Field Equotion (HFE)
 encryption scheme. The name of the parameters defined here are
 not specified in this document.

 mcbits_XXX, etc: Indicates parameters for McEliece encryption
 scheme instantiated with McBits parameter set. The name of the
 parameters defined here are not specified in this document.

 See Section 5 for specific information for quantum safe scheme.

 The QSHSchemes name space is maintained by IANA [IANA]. See Section
8 for information on how new schemes are added.

 The server implementation SHOULD support all of the above QSHSchemes,
 and client implementation SHALL support at least one of them.

 struct {
 QSHSchemeID id<1..2^16-1>
 } QSHIDList;

 The QSHSchemeIDList and AcceptQSHSchemeIDList are two instances of
 QSHIDList structure. This structure defines a list of QSHSchemeIDs,
 each representing a quantum safe encryption scheme.

 struct {
 QSHSchemeID id,
 opaque pubKey<1..2^16-1>
 } QSHPK;

 struct {
 QSHPK keys<1..2^24-1>
 } QSHPKList;

 The structure of public keys send from the client to the server,
 namely, QSHPK, has two fields: QSHSchemeID specifies the

Schanck et al. Expires 2016-10-04 [Page 8]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 corresponding quantum safe encryption scheme, and an opaque encodes
 the actual public key data following the specification of the
 corresponding quantum safe encryption scheme. Any entity that
 reserves a new quantum safe encryption scheme identifier MUST specify
 how the keys and ciphertexts for that scheme are encoded. See

Section 5 for definitions of the encodings of the schemes specified
 in this document.

 NOTE: the QSHPK is a opaque of up to (2^24-1) bytes. This may exceed
 the size limitation of extensions (2^16-1).

 The QSHPKList is a list of QSHPKs.

 struct {
 QSHSchemeID id,
 opaque encryptedKey<1..2^16-1>
 } QSHCipher;

 struct {
 QSHCipher encryptedKeys<1..2^24-1>
 } QSHCipherList;

 The structure of ciphertext send from the server to the client,
 namely QSHCipher, has two fields: QSHSchemeID specifies the
 corresponding quantum safe encryption scheme, and an opaque encodes
 the actual ciphertext following the specification of the
 corresponding quantum safe encryption scheme.

 The QSHCipherList is a list of ciphertexts.

3.2. Client Hello Extensions

 This section specifies a TLS extension that can be included with the
 ClientHello message as described in RFC 4366 [RFC4366].

 NOTE: To support larger QSH quantum-safe cryptosystems it may be
 necessary to raise the maximum size of an extension to 2^24-1 octets.

 When these extensions are sent:

 When a client wish to negotiate a handshake using TLS_QSH approach,
 the extensions MUST be sent along with the first ClientHello message.
 Follow-up ClientHello message MAY also use these extensions when a
 zero round trip handshake failed.

 Meaning of these extensions:

https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4366

Schanck et al. Expires 2016-10-04 [Page 9]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 qshNegotiate extension allows a client to send a QSHSchemeIDList that
 enumerates QSHSchemeIDs for supported quantum safe cryptosystems.
 qshData extension allows a client to send a QSHPKList of public keys
 for quantum-safe encryption schemes.

 Note: QSHSchemeID MUST be distinct in QSHSchemeIDList. If
 qshNegotiate extension and qshData extension are both send within a
 same ClientHello extension, QSHSchemeIDList must not enumerate
 QSHschemeIDs whose public keys are already in QSHPKList.

 Structure of the extensions:

 The general structure of TLS extensions is described in [RFC4366],
 and this specification adds a new type to ExtensionType.

 enum {
 qshNegotiate(0x18)
 qshData(0x19)
 } ExtensionType;

 qshNegotiate (Supported TLS_QSH Extension): Indicates the list of
 QSHSchemeIDs supported by the client. For this extension, the
 opaque extension_data field MAY contain QSHSchemeIDList and its
 field can be NULL.

 qshData (Supported TLS_QSH Extension): Indicates the list of
 QSHScheme public keys supported by the client. For this
 extension, the opaque extension_data field MUST contain QSHPKList
 and its field is not NULL.

 struct {
 select (ExtensionType) {
 case qshNegotiate:
 QSHSchemeIDList qshSchemeIDList,
 case qshData:
 QSHPKList qshPKList,
 }
 } ClientHelloExtension;

 Items in both qshPKList and qshSchemeIDList are ordered according to
 the client's preferences (favorite choice first).

 As an example, a client that only supports ntru_eess439 (0x0101) and
 ntru_eess593 (0x0102) and prefers to use ntru_eess439 would encode
 its qshSchemeIDList as follows:

 04 01 01 01 02

https://datatracker.ietf.org/doc/html/rfc4366

Schanck et al. Expires 2016-10-04 [Page 10]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 An example of a qshNegotiate extension field will therefore look as
 follows:

 00 18 | extension length | 00 04 01 01 01 02 | ...

 Note: the extension type value appearing in these examples is
 tentative.

 Actions of the sender:

 If the ClientHello message starts a fresh handshake, a client that
 proposes TLS_QSH approach in its ClientHello message appends both
 qshNegotiate and qshData extensions (along with any others),
 enumerating the supported quantum-safe crypto systems that the client
 wish to use to negotiate keys with the server.

 If the ClientHello message is in response to a HelloRetryRequest, the
 client appends qshData extension (along with any others), enumerating
 the QSHScheme public keys supported by the server.

 Actions of the receiver:

 A server that receives a ClientHello with a TLS_QSH approach MUST
 check the extension field to use the client's enumerated capabilities
 to guide its selection of appropriate quantum safe encryption
 algorithms. The TLS_QSH approach must be negotiated only if the
 server can successfully complete the handshake while using the listed
 quantum-safe cryptosystems from the client.

 The server will carry out a classic handshake with the client using a
 classical cipher suite indicated by the ClientHello message. If the
 server supports QSHSchemes of public keys included in the qshData
 extension, the server will include a QSHCipherList in the
 EncryptedExtension field of ServerKeyShare message; if not, the
 server will select a (list of) supported QSHScheme(s), indexed by
 QSHSchemeID(s), and form the AcceptQSHSchemeIDList with its selected
 schemes. This list will be send back to the client via the extension
 field of HelloRetryRequest.

 If a server does not understand the Extension, does not understand
 the list of quantum-safe encryption schemes, or is unable to complete
 the TLS_QSH handshake while restricting itself to the enumerated
 cryptosystems, it MUST NOT negotiate the use of a TLS_QSH approach.
 Depending on what other cipher suites are proposed by the client and
 supported by the server, this may result in a fatal handshake failure
 alert due to the lack of common cipher suites.

3.3. HelloRetryRequest Extensions

Schanck et al. Expires 2016-10-04 [Page 11]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 This section specifies a TLS extension that can be included with the
 HelloRetryRequest message as described in [TLS1.3].

 When this extension is sent:

 The server will send this message in response to a ClientHello
 message where the extension fields contains a extension type quantum-
 safe-hybrid, when it was able to find an acceptable set of QSHSchemes
 from qshNegotiate but not from qshData. If it cannot find such a
 match, it will respond with a handshake failure alert.

 Meaning of this extension:

 This extension allows a server to notify the client the ID(s) for the
 quantum-safe encryption scheme(s) it chooses from the
 QSHSchemeIDList.

 Structure of this extension:

 struct {
 select (ExtensionType) {
 case qshNegotiate:
 QSHSchemeIDList acceptQSHSchemeIDList,
 }
 } HelloRetryRequestExtension;

 Actions of the sender:

 The server selects a number of QSHSchemeIDs in response to a
 ClientHelloExtension message. The selection is based on client's
 preference. The QSHSchemeIDs selected MUST exist in the received
 QSHSchemeIDList. The server form the acceptQSHSchemeIDList with the
 list of selected QSHSchemeIDs.

 Actions of the receiver:

 A client that receives a HelloRetryRequest message containing an
 extension type qshNegotiate will extract the agreed QSHSchemeIDs and
 from the acceptQSHSchemeIDList. Those QSHSchemeIDs will be used when
 the client generates another ClientHello message.

3.4. Server Key Share Extension

 [[This may be later on changed into *EncryptedExtensions* let's see
 how TLS 1.3 will define it]]

 NOTE: To support larger QSH quantum-safe cryptosystems it may be
 necessary to raise the maximum size of an extension to 2^24-1 octets.

Schanck et al. Expires 2016-10-04 [Page 12]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 When this message is sent:

 The server will include this extension field in response to a
 ClientHello message with extension type qshData.

 Meaning of this message:

 It is used to send QSH key material (encrypted by one or many of the
 client's public keys) to the client.

 Structure of this message:

 The TLS ServerKeyShareExtension field is extended as follows.

 struct {
 select (ExtensionType) {
 case qshData:
 QSHCipherList encryptedQSHSecret,
 }
 } ServerKeyShare;

 Actions of the sender:

 The server extracts client's public keys QSHPK1, ..., QSHPKn from the
 qshData field in the received Client Hello extensions. For each of
 the public keys QSHPKi, generates a secret QSHSi. The length in
 bytes of QSHSi MUST be the lesser of (a) 48, the length of the
 classical master secret, and (b) the maximum plaintext input length
 for the corresponding encryption scheme (see Section 5).

 The server then encrypts the QSHSi with QSHPKi, and form the
 encryptedQSHSecret with those ciphertexts.

 The QSH keying material is:
 QSHSecret = QSHS1|QSHS2|...|QSHSk

 The server will finally form the premaster secret as a concatenation
 of the classical premaster secret (negotiated via classical exchange,
 i.e., Key Share messages), QHSSecret, and QSHPK (the public keys that
 encrypts the message). A 48 bytes fixed length master secret is
 derived from the premaster secret at the end of the handshake, using
 a pseudo random function specified by the classical cipher suite (see

Section 8.1. RFC 5246 [RFC5246]).

 Actions of the receiver:

 The client processes the ServerKeyShareExtension

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Schanck et al. Expires 2016-10-04 [Page 13]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 by decrypting each ciphertext in encryptedQSHSecret using the
 client's secret key and obtaining QSHSecret.

 The client will finally form the premaster secret as a concatenation
 of the classical premaster secret (negotiated via classical exchange,
 i.e., Key Share messages), QHSSecret, and QSHPK (the public keys that
 encrypts the message). A 48 bytes fixed length master secret is
 derived from the premaster secret at the end of the handshake, using
 a pseudo random function specified by the classical cipher suite (see

Section 8.1. RFC 5246 [RFC5246]).

4. Cipher Suites

 The TLS_QSH approach does not introduce any additional cipher suite
 identifiers.

5. Specific information for Quantum Safe Scheme

 Selection criteria for qauntum-safe cryptography to be used in this
 TLS_QSH approach can be found at [QSHPKC]. Also see [PQCRY] for
 initial recommendations of quantum safe cryptography from EU's
 PQCRYPTO project.

5.1. NTRUEncrypt

 NTRUEncrypt parameter sets are identified by the values ntru_eess443
 (0x0101), ntru_eess587 (0x0102), ntru_eess743 (0x0103) assigned in
 this document.

 For each of these parameter sets, the public key and ciphertext are
 Ring Elements as defined in [EESS1]. The encoded public key and
 ciphertext are the result of encoding the relevant Ring Element with
 RE2BSP as defined in [EESS1].

 For each parameter set the the maximum plaintext input length in
 bytes is as follows. This is used when determining the length of the
 client/server-generated secrets CliSi and SerSi as specified in
 sections 3.4 and 3.5.

 eess443 49
 eess587 76
 eess743 106

5.2. LWE
 Encoding not defined in this document.

5.3. HFE
 Encoding not defined in this document.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5246

Schanck et al. Expires 2016-10-04 [Page 14]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

5.4. McEliece/McBits
 Encoding not defined in this document.

6. Security Considerations

6.1. Security, Authenticity and Forward Secrecy

 Security, authenticity and forward secrecy against classical
 computers are inherent from classical handshake mechanism.

6.2. Quantum Security and Quantum Forward Secrecy

 The proposed handshake mechanism provides quantum security and
 quantum forward secrecy.

 Quantum resistant feature of QSHSchemes ensures a quantum attacker
 will not learn QSH keying material S. A quantum attacker may learn
 classic handshake information. Given an input X, the leftover hash
 lemma [LHL] ensures that one can extract Y bits that are almost
 uniformly distributed, where Y is asymptotic to the min-entropy of X.
 An adversary who has some partial knowledge about X, will have almost
 no knowledge about Y. This guarantees the attacker will not learn
 the final premaster secret so long as S has enough entropy and
 remains secret. This also guarantees the premaster secret is secure
 even if the client's and/or the server's long term keys are
 compromised.

6.3. Quantum Authenticity

 The proposed approach relies on the classical cipher suite for
 authenticity. Thus, an attacker with quantum computing capability
 will be able to break the authenticity.

7. Compatibility with TLS 1.2 and earlier version

 Compatibility with TLS 1.2 and earlier version can be found in
 [QSH12].

8. IANA Considerations

 This document describes a new name spaces for use with the TLS
 protocol:

 o QSHSchemeID

 Any additional assignments require IETF Consensus action [RFC2434].
 Process for determining whether a public key algorithm is in fact
 quantum-safe, and therefore entitled to a QSHSchemeId, is not

https://datatracker.ietf.org/doc/html/rfc2434

Schanck et al. Expires 2016-10-04 [Page 15]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 specified in this document and may be established by the TLS working
 group as it sees fit. For example, TLS WG may require that
 algorithms are vetted in some sense by CFRG or have been published in
 a standard by a recognized international standards body such as IEEE
 or ANSI X9.

9. Acknowledgements

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

 We wish to thank Douglas Stebila, [[[names]]] for helpful
 discussions.

10. References

10.1. Normative References

 [EESS1] Consortium for Efficient Embedded Security, "Efficient
 Embedded Security standards (EESS) #1", March 2015,
 <https://github.com/NTRUOpenSourceProject/ntru-

crypto/blob/master/doc/EESS1-2015v3.0.pdf/>.

 [FIPS180] NIST, "Secure Hash Standard", FIPS 180-2, 2002.

 [FIPS186] NIST, "Digital Signature Standard", FIPS 186-2, 2000.

 [H2020] Lange, T., "PQCRYPTO project in the EU", April, 2015.
 <http://pqcrypto.eu.org/slides/20150403.pdf>

 [HOF15] Hoffstein, J., Pipher, J., Schanck, J., Silverman, J.,
 Whyte, W., and Zhang, Z., "Choosing Parameters for
 NTRUEncrypt", 2015. <https://eprint.iacr.org/2015/708>

 [LIN11] Lindner, R., and Peikert, C., "Better Key Sizes (and
 Attacks) for LWE-Based Encryption", 2011.

 [LHL] Impagliazzo, R., Levin, L., and Luby, M., "Pseudo-random
 generation from one-way functions", 1989.

 [MCBIT] Bernstein, D., Chou, T., and Schwabe, P., "McBits: Fast
 Constant-Time Code- Based Cryptography", 2013.

 [MCELI] McEliece, R., "A Public-Key Cryptosystem Based On
 Algebraic Coding Theory", 1978.

 [PKCS1] RSA Laboratories, "PKCS#1: RSA Encryption Standard version
 1.5", PKCS 1, November 1993

https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/EESS1-2015v3.0.pdf/
https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/EESS1-2015v3.0.pdf/
http://pqcrypto.eu.org/slides/20150403.pdf
https://eprint.iacr.org/2015/708

Schanck et al. Expires 2016-10-04 [Page 16]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 [PQCRY] PQCRYPTO, "Initial recommendations of long-term secure
 post-quantum systems".
 <http://pqcrypto.eu.org/docs/initial-recommendations.pdf>

 [QSH12] Schanck, J., Whyte, W., and Zhang, Z., "Quantum-Safe
 Hybrid (QSH) Ciphersuite for Transport Layer Security
 (TLS) version 1.2", draft-whyte-qsh-tls12-00, July 2015.

 [QSHPKC] Schanck, J., Whyte, W., and Zhang, Z., "Criteria for
 selection of public-key cryptographic algorithms for
 quantum-safe hybrid cryptography", draft-whyte-select-pkc-

qsh-00.txt, Sep 2015.

 [REAL] "RFC Editor Abbreviations List", September 2013,
 <https://www.rfc-editor.org/rfc-style-

guide/abbrev.expansion.txt/>.

 [RFC2119] Bradner, S., "Key Words for Use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434, October
 1998.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC4366] Blake-Wilson, S., Nysrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [TLS1.3] E. Rescorla, "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-05, March 2015.

10.2. Informative References

 [RFC5990] Randall, J., Kaliski, B., Brainard, J. and Turner S., "Use

http://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls12-00
https://datatracker.ietf.org/doc/html/draft-whyte-select-pkc-qsh-00.txt
https://datatracker.ietf.org/doc/html/draft-whyte-select-pkc-qsh-00.txt
https://www.rfc-editor.org/rfc-style-guide/abbrev.expansion.txt/
https://www.rfc-editor.org/rfc-style-guide/abbrev.expansion.txt/
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-05

Schanck et al. Expires 2016-10-04 [Page 17]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2016-04-04

 of the RSA-KEM Key Transport Algorithm in the
 Cryptographic Message Syntax (CMS)", RFC 5990, September
 2010.

 [RFC5859] Krawczyk, H., Eronen, P., "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5859, May 2010.

Authors' Addresses

 John M. Schanck
 Security Innovation, US
 and
 University of Waterloo, Canada
 jschanck@securityinnovation.com

 William Whyte
 Security Innovation, US
 wwhyte@securityinnovation.com

 Zhenfei Zhang
 Security Innovation, US
 zzhang@securityinnovation.com

Copyright Notice

 IETF Trust Legal Provisions of 28-dec-2009, Section 6.b(i), paragraph
 2: Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 IETF Trust Legal Provisions of 28-dec-2009, Section 6.b(ii),
 paragraph 3: This document is subject to BCP 78 and the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

https://datatracker.ietf.org/doc/html/rfc5990
https://datatracker.ietf.org/doc/html/rfc5859
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Schanck et al. Expires 2016-10-04 [Page 18]

