
INTERNET-DRAFT W. Whyte
Intended Status: Experimental Onboard Security
Expires: 2018-XX-YY Z. Zhang
 Onboard Security
 S. Fluhrer
 Cisco Systems
 O. Garcia-Morchon
 Philips
 2017-10-03

 Quantum-Safe Hybrid (QSH) Key Exchange
 for Transport Layer Security (TLS) version 1.3

draft-whyte-qsh-tls13-06.txt

Abstract

 This document describes the Quantum-Safe Hybrid Key Exchange, a
 mechanism for providing modular design for quantum-safe cryptography
 to be adopted in the handshake for the Transport Layer Security (TLS)
 protocol version 1.3.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 2018-XX-YY.

 Update from last version: redesign of the approach to suite latest
 TLS1.3 draft 18.

Whyte et al. Expires 2017-XX-YY [Page 1]

https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls13-06.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

Table of Contents

1. Introduction . 3
2. Design Criteria . 4
3. Modular design for quantum-safe key exchange 5
3.1. Additional Quantum-Safe Key Exchanges 6
3.2. Hybrid Key Exchanges 8
3.2.1. Hybrid Key Exchange within ClientHello 8

 3.2.1.1. Hybrid Key Exchange within the supported_groups
 extension . 8
 3.2.1.1. Hybrid Key Exchange within the key_share
 extension . 9

3.2.2. Hybrid Key Exchange within ServerHello 10
3.2.3. Hybrid Key Exchange within HelloRetryRequest 10
3.2.4. Hybrid extension 10
3.2.5. Generating the shared secret 11

4. Specific information for Quantum-Safe Scheme 11
4.1. NTRUEncrypt . 11
4.2. LWE . 12
4.3. HFE . 12
4.4. McEliece/McBits . 12
4.5. Pre-Shared Keys . 12

5. Design Rationale . 13
6. Alternative Designs . 14
6.1. Smart encoding of hybrid groups 15
6.2. No usage of "supported_groups" 15

 6.3. No usage of "supported_groups", encoding supported
 hybrid groups in "key_share" 16

7. Security Considerations 16
7.1. Security, Authenticity and Forward Secrecy 16
7.2. Quantum Security and Quantum Forward Secrecy 16
7.3. Quantum Authenticity 17

8. Compatibility with TLS 1.2 and earlier version 17
9. IANA Considerations . 17
10. Acknowledgements . 17
11. References . 17
11.1. Normative References 17
11.2. Informative References 19

 Authors' Addresses . 19
 Copyright Notice . 19

Whyte et al. Expires 2017-XX-YY [Page 2]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

1. Introduction

 Quantum computers pose a significant threat to modern cryptography.
 The two most widely adopted public key cryptosystems, namely, RSA
 [PKCS1] and Elliptic Curve Cryptography (ECC) [SECG], will be
 trivially breakable by sufficiently large general purpose quantum
 computers. RSA is adopted in TLS from Version 1.0 to TLS Version 1.2
 [RFC2246], [RFC4346], [RFC5246]. ECC is enabled in RFC 4492
 [RFC4492] and adopted in TLS version 1.2 [RFC5246] and version 1.3
 [TLS1.3].

 There exist several quantum-safe cryptosystems, such as the
 NTRUEncrypt cryptosystem [EESS1], that deliver similar performance,
 yet are conjectured to be robust against quantum computers, but these
 are not adopted as widely as RSA or ECC and are not supported within
 TLS 1.2 or 1.3.

 This document describes a modular design that allows one or several
 quantum-safe cryptosystems to be adopted in the handshake protocol of
 TLS Version 1.3 [TLS1.3]. It uses a hybrid approach that allows the
 combination of a non-quantum-safe but widely accepted "classical" key
 exchange and a quantum-safe key exchange, or indeed the combination
 of any number greater than one of key exchange mechanisms with any
 property. The modular design provides quantum-safe features to TLS
 1.3 and allows the flexibility to create a migration path towards
 improved quantum-safe encryption schemes as they become available.

 The remainder of this document is organized as follows. Section 2
 describes the design criteria that have driven the design presented
 in this document. Section 3 specifies the modular design of quantum-
 safe handshake for TLS 1.3. Section 4 provides specific information
 for quantum-safe encryption schemes. Section 5 discusses the
 rationale of our design and some potential modifications. Section 6
 lists some alternative designs to solve this problem that were
 considered and rejected. Section 7 gives security considerations.

Section 8 discusses compatibility with other versions of TLS.
Section 9 describes IANA considerations for the name spaces created

 by this document. Section 10 gives acknowledgements.

 This is followed by the lists of normative and informative references
 cited in this document, the authors' contact information, and
 statements on intellectual property rights and copyrights.

 Implementation of this specification requires familiarity with TLS
 [RFC2246], [RFC4346], [RFC5246], [TLS1.3], TLS extensions [RFC4366],
 and knowledge of the corresponding quantum-safe cryptosystem.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4366

Whyte et al. Expires 2017-XX-YY [Page 3]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Well-known abbreviations and acronyms can be found at RFC Editor
 Abbreviations List [REAL].

2. Design Criteria

 The design of the proposed quantum-safe hybrid TLS 1.3 protocol is
 driven by the following criteria:

 1) Need for quantum-safe cryptography in TLS. Quantum computers
 might become feasible in the next 5-10 years. If current Internet
 communications are monitored and recorded today (D), the
 communications could be decrypted as soon as a quantum-computer is
 available (e.g., year Q) if key negotiation only relies on non
 quantum-safe primitives. This is a high threat for any information
 that must remain confidential for long period of time T > Q-D. The
 need is obvious if we assume that Q is 2040, D is 2020, and T is 30
 years. Such a value of T is typical in classified or healthcare
 data.

 2) Hybrid. Currently, there does not exist a quantum-safe key
 exchange that is trusted at the level that ECDH is trusted against
 conventional (non-quantum) adversaries. A hybrid approach allows
 introducing promising quantum-safe candidates next to well-
 established primitives.

 3) Aligned with TLS 1.3 features such as 0-RTT. The protocol
 operation should not affect TLS 1.3 features such as the 0-RTT
 feature. In particular, a 0-RTT handshake should be feasible in a
 hybrid quantum-safe TLS 1.3 design.

 4) Limit amount of exchanged data. The protocol design should be
 such that the amount of exchanged data, such as public-keys, is
 kept as limited as possible even if multiple public-keys are needed
 to be exchanged.

 5) Future proof. Any cryptographic algorithm has the potential to
 be broken in the future by currently unknown or impractical
 attacks: quantum computers are merely the most concrete example of
 this. The design does not categorize algorithms as "quantum-safe"
 or "non quantum-safe" and does not create assumptions about the
 properties of the algorithms, meaning that if algorithms with
 different properties become necessary in future, this framework can
 be used unchanged to facilitate migration to those algorithms.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Whyte et al. Expires 2017-XX-YY [Page 4]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 6) Identification of hybrid algorithms. The usage of a hybrid
 approach in which each hybrid combination of several classical and
 quantum-safe algorithms leads to a different group identifier can
 mean an exponential growth of identifiers and lack of
 interoperability. Using complex hybrid schemes can also make the
 TLS state machine complex. Thus, the design should seek an
 approach in which hybrid algorithms can be efficiently identified.

 7) Limited amount of changes to TLS 1.3. A key goal is to limit
 the number of changes in TLS 1.3 when enabling a quantum-safe
 handshake. This ensures easier and faster adoption.

 8) Localized changes. Another key requirement is that changes to
 the protocol are limited in scope, in particular, limiting changes
 in the exchanged messages and in the state machine, so that they
 can be easily implemented.

 9) Deterministic operation. This requirement means that the hybrid
 quantum-safe exchange, and thus, the computed key, will be based on
 algorithms that both client and server wish to support.

 10) Backwards compatibility and interoperability. This is a
 fundamental requirement to ensure that hybrid quantum-safe TLS 1.3
 and a non-quantum-safe TLS 1.3 implementations are interoperable.

 11) FIPS compliancy. TLS is widely used in Federal Information
 Systems and FIPS certification is an important feature. However,
 algorithms that are believed to be quantum-safe are not FIPS
 complaint yet. Still, the goal is that the overall hybrid quantum-
 safe TLS 1.3 design can be FIPS compliant.

3. Modular design for quantum-safe key exchange

 This document introduces a hybrid and modular approach to including
 new quantum-safe key exchange algorithms within TLS 1.3, while
 maintaining the assurance that comes from the use of already
 established cipher suites. It allows the TLS premaster secret to be
 agreed using both an established classical DH key exchange and a
 quantum-safe key exchange mechanism.

 The general design is to reuse the existing handshake design for DHE
 and ECDHE groups, treating the quantum-safe key exchanges as
 additional (EC)DH groups as much as possible. In addition, the
 design provides for the ability to negotiate several key exchanges at
 the same time (which could include both a classical (EC)DH group, and
 a quantum-safe key exchange) and then combine the outputs of the key
 exchanges through a single KDF; in this mode, the negotiated keys are
 secure as long as at least one of the negotiated key exchanges are

Whyte et al. Expires 2017-XX-YY [Page 5]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 secure.

 With this proposal, the TLS negotiation is essentially unchanged; the
 client issues an initial key exchange, which includes a list of
 supported groups and key shares for share material corresponding to 0
 or more of the indicated supported groups. The server either selects
 one of the groups listed with a key share (and responds with its own
 key share), or it selects one of the groups listed as supported, and
 issues a retry request listed the selected group.

 The extension here is that the groups listed are not confined to be
 only DH or ECDH groups; we also allow them to be either another key
 exchange, or an indication of a hybrid group, that is, a combination
 of multiple specified key exchanges. The design puts no constraints
 on what groups may be included in the combination, except that each
 group appears no more than once, so the combination may, for example,
 be a single ECDH group and a single quantum-safe key exchange, or a
 combination of more than one quantum-safe key exchange, or some other
 combination type. For any hybrid group (that is, a logical group
 that is formed by running multiple key exchange mechanisms in
 parallel), the client will assign the named_group id and its
 definition. Each individual key exchange mechanism has a defined key
 share format; this proposal also defines a format for key shares for
 the hybrid groups, designed so that even if two hybrid groups include
 the same key exchange mechanism, the key share material associated
 with that key exchange mechanism is only included in the handshake
 once.

3.1. Additional Quantum-Safe Key Exchanges

 First, we extend the NamedGroup enum (ref: [TLS1.3] section 4.2.4) to
 include values that do not correspond to either DHE or ECDHE groups,
 but to key exchange protocols that might not represent mathematical
 groups at all, but possibly other key exchange mechanisms. In
 addition, we also reserve 256 entries to allow us to encode hybrid
 groups, as explained below.

 An example of how this enum might be encoded might be:

 enum {
 /* Existing Ellipic Curve Groups (ECDHE) */
 secp256r1 (23), secp384r1 (24), secp521r1 (25),
 x25519 (29), x448 (30),

 /* Existing Finite Field Groups (DHE) */
 ffdhe2048 (256), ffdhe3072 (257), ffdhe4096 (258),
 ffdhe6144 (259), ffdhe8192 (260),

Whyte et al. Expires 2017-XX-YY [Page 6]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 /* Additional quantum-safe algorithm:
 NTRU key exchanges */
 ntru_eess443 (768), ntru_eess587 (769),
 ntru_eess743 (770),

 /* Additional quantum-safe algorithm:
 LWE key exchange */
 lwe_XXX (1024),

 /* Additional quantum-safe algorithm:
 Hidden Field Equation key exchange */
 hfe_XXX (1280),

 /* Additional quantum-safe algorithm:
 McEliece-based key exchange */
 mcbits_XXX (1536),

 /* Additional quantum-safe algorithm:
 other quantum-safe algorithm*/

 /* New Code points reserved for 'Hybrid Key Exchanges' */
 hybrid_marker (0xfd00..0xfdff)

 /* Existing Reserved Code Points */
 ffdhe_private_use (0x01fc..0x01ff),
 ecdhe_private_use (0xfe00..0xfeff),
 (0xffff)
 } NamedGroup;

 Note that the enum values given for the new groups are for
 illustration only; the actual values would be needed to be assigned
 by IANA.

 In the above enum, we see new NamedGroups marked as "additional
 quantum-safe" and "hybrid key exchange".

 The NamedGroups marked as "additional quantum-safe" operate just
 like the (EC)DHE groups; the client generates a KeyShareEntry (which
 consists of the NamedGroup along with a key_exchange value; the
 server responds with a KeyShareEntry (which, again, consists of a
 NamedGroup along with a key_exchange value), and then both sides
 generate a shared secret (which the TLS 1.3 draft calls the (EC)DHE
 shared secret). These KeyShareEntries could contain a Diffie-
 Hellman-like public value, or the client entry could contain a public
 key and the server entry could contain a secret value encrypted with
 that public key; the model accommodates both.

 For each such additional quantum-safe key exchange, the following

Whyte et al. Expires 2017-XX-YY [Page 7]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 will need to be specified:

 - The format of the client key_exchange data
 - The format of the server key_exchange data
 - The format of the generated shared secret

Section 4 in this document provides links for such specifications.

 The NamedGroups marked as "hybrid key exchange" in the above enum are
 described in the following subsection.

3.2. Hybrid Key Exchanges

 A "hybrid key exchange" is a key exchange that uses several "atomic"
 key exchange methods in parallel (and whose resulting shared secret
 depends on the shared secrets of each of the methods). The reasoning
 behind this hybrid key exchange is that, in a post-quantum world,
 there might be no single key exchange mechanism we are certain is
 safe, and so we rely on several (and so remain secure as long as one
 of the methods we use is secure). An example of such a hybrid key
 exchange would be "Curve25519, in parallel with NTRU".

 A hybrid key exchange can be formed by 2 to 10 distinct base key
 exchange mechanisms, and are negotiated as a unit; for example, if
 the client sends supported_groups and KeyShare that includes the
 hybrid key exchange "Curve25519+NTRU", then the server either accepts
 that in entirety, or rejects it; it cannot accept "Curve25519 only"
 (unless, of course, that key exchange was listed by itself elsewhere
 in the key share).

 The following sections list how hybrid key exchange are represented
 within the protocol.

3.2.1. Hybrid Key Exchange within ClientHello

 To indicate support for hybrid key exchange, the client includes an
 indication in its supported_groups extension. To enable a handshake
 using hybrid key exchange, the client provides appropriate key share
 material in its key_share extension. This section describes both
 extensions.

3.2.1.1. Hybrid Key Exchange within the supported_groups extension

 The client lists support for hybrid groups within the
 supported_groups extension. To do so, it includes the hybrid group
 id (hybrid_marker+i), with that hybrid marker being defined within
 the hybrid extension (see section 3.2.5).

Whyte et al. Expires 2017-XX-YY [Page 8]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 If the server sees such a hybrid group id within the received
 supported_groups, it looks up the definition of that group within the
 hybrid extension.

3.2.1.1. Hybrid Key Exchange within the key_share extension

 The client hello key share contains a vector of KeyShareEntry
 elements (which corresponds to the various key exchanges the client
 proposes).

 The base structure of a KeyShareEntry that represents a hybrid key
 exchange is similar, namely:

 struct {
 NamedGroup hybrid_group_id;
 KeyShareEntry key_exchange<1..2^16-1>
 } KeyShareEntry;

 hybrid_group_id is the hybrid group id, which is a value
 hybrid_marker+i (for i between 0 and 255)

 key_exchange is the list of key share entries for the groups that
 make up this hybrid group

 The set of key exchange mechanisms denoted by such a KeyShareEntry
 will consist of all the key exchange mechanisms listed within the
 key_exchange array.

 In addition, the hybrid group id listed must be defined within the
 hybrid extension given in the client hello message (see section

3.2.5), and the named groups listed in that extension must be the
 same groups in the same order as in the key share entry.

 Note that the variable length type key_exchange starts with the same
 2 byte length field as the variable length opaque type in a standard
 KeyShareEntry, hence an implementation that does not understand
 hybrid key shares will still parse these entries (in the sense of
 knowing that that is a key exchange mechanism it does not
 understand), and ignore them without error.

 In addition, the share for each individual group is listed in the
 same format as the KeyShareEntry for that group; it is anticipated
 that an implementation may reuse the same parsing logic for both
 individual groups and members of a hybrid group.

 Note that the same key exchange mechanism SHALL NOT be listed twice

Whyte et al. Expires 2017-XX-YY [Page 9]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 within a hybrid key share entry. Similarly, hybrid key exchange SHALL
 NOT be listed as a member of a hybrid key exchange.

 To allow the client to propose the list "[Curve25519 + NTRU] or [P256
 + NTRU]" without having to list the NTRU key share multiple times, we
 allow the following extension to the KeyShareEntry fields within the
 hybrid key exchange: if the key_exchange entry is listed as 0 length,
 then the actual key_exchange data for that named group appears
 elsewhere within the client hello key share (and the server will need
 to search for that key share with a nonzero length). Note that the
 server might need to search past the current position in the key
 share (for example, if the client proposes "[Curve25519 + NTRU] or
 Curve25519", with that priority order; as Curve25519 by itself has
 lower priority, it occurs after the hybrid key exchange.

3.2.2. Hybrid Key Exchange within ServerHello

 The server hello key share contains a single KeyShareEntry structure
 (which is the response to the key exchange that the server accepts);
 it uses the same format that is listed in section 3.2.1.

 The hybrid_group_id that the server lists within the KeyShareEntry is
 the value that the client originally designated.

3.2.3. Hybrid Key Exchange within HelloRetryRequest

 If a server issues a HelloRetryRequest, and it selects a hybrid
 group, then it includes the client-defined hybrid group id in the key
 share. The client is expected to remember the definition it gave to
 that hybrid group.

3.2.4. Hybrid extension

 When the client lists hybrid named groups within its supported_groups
 extension, it also includes the hybrid extension which defines which
 named groups that together form the hybrid group.

 This hybrid extension is an extension type of type [TBD], and may be
 included within the ClientHello message.

 struct {
 NamedGroup hybrid_group_id;
 NamedGroup components<2..10>
 } HybridMapping;

 hybrid_group_id This is the id of the hybrid group being defined;
 the value given must be in the range (hybrid_marker,
 hybrid_marker+255)

Whyte et al. Expires 2017-XX-YY [Page 10]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 components This is the list of the named groups that make up this
 hybrid group. These components MUST NOT be hybrid groups
 themselves.

 The "extension data" field of this extension contains a
 HybridExtension value:

 struct {
 HybridMapping map<0..255>;
 } HybridExtension;

 map This gives the definition for all the hybrid groups listed.
 Each entry in the map array gives the definition for one hybrid
 group. Every hybrid group mentioned within the client hello
 message must be listed.

3.2.5. Generating the shared secret

 The entire point of the key exchange is to generate a shared secret
 on both the client and the server that is not easily recovered by an
 adversary who monitors the protocol messages. In the standard TLS
 1.3 protocol, the DH or ECDH shared secret is generated, and is used
 to derive various secret values as listed in section 7.1 of [TLS1.3],
 with that initial shared secret being labeled as (EC)DHE.

 When we need to derive the shared secret for a hybrid key exchange,
 we derive each shared secret from each of the member key exchanges
 independently, and then concatenate those shared secrets in the order
 the key exchanges were listed in the protocol exchange; this
 concatenated shared secret is then used in the standard TLS 1.3
 secret derivation process as the input labeled (EC)DHE.

4. Specific information for Quantum-Safe Scheme

 Selection criteria for quantum-safe cryptography to be used in this
 TLS_QSH approach can be found at [QSHPKC]. Also see [PQCRY] for
 initial recommendations of quantum-safe cryptography from EU's
 PQCRYPTO project.

4.1. NTRUEncrypt

 NTRUEncrypt parameter sets are identified by the values ntru_eess443
 (0x0101), ntru_eess587 (0x0102), ntru_eess743 (0x0103) assigned in
 this document (pending approval by IANA).

 For each of these parameter sets, the public key and ciphertext are

Whyte et al. Expires 2017-XX-YY [Page 11]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 Ring Elements as defined in [EESS1]. The encoded public key and
 ciphertext are the result of encoding the relevant Ring Element with
 RE2BSP as defined in [EESS1].

 For each parameter set the the maximum plaintext input length in
 bytes is as follows. This is used when determining the length of the
 client/server-generated secrets CliSi and SerSi as specified in
 sections 3.4 and 3.5.

 eess443 49
 eess587 76
 eess743 106

4.2. LWE
 Encoding not defined in this document.

4.3. HFE
 Encoding not defined in this document.

4.4. McEliece/McBits
 Encoding not defined in this document.

4.5. Pre-Shared Keys

 The identities of the exchanged Pre-Shared Keys SHALL be encoded in a
 similar way to [TLS1.3].

 struct {
 identity<0..2^16-1>;
 } PskIdentity;

 struct {
 select (Handshake.msg_type)
 {
 case client_hello: PskIdentity identities<6..2^16-1>;
 case server_hello: uint16 selected_identity;
 };
 } PreSharedKeyExtension;

 This struct is to be exchanged in the key_exchange array in the
 KeyShareEntry.

 The client and server agree on common PSKs that they can combine with
 other generated secrets as described in Section 3.2.6 of this

Whyte et al. Expires 2017-XX-YY [Page 12]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 document.

 The use of PSKs in the quantum-hybrid handshake SHALL follow one of
 the following patterns

 1) (The PSK is not intended to provide quantum-resistance) The PSK
 SHALL be used in conjunction with another key exchange algorithm
 that is believed to be quantum-safe. In this case, the PSK SHALL
 conform to the security requirements in [TLS1.3].

 2) (The PSK is intended to provide quantum-resistance) The PSK
 SHALL have a key length of at least 256 bits and SHALL NOT have
 been computed by means of a classical key exchange.

5. Design Rationale

 The design of the protocol described in Section 3 follows criteria
 presented in Section 2.

 1) It allows introducing quantum-safe key exchange in TLS 1.3.

 2) It introduces a hybrid and modular quantum-safe exchange to
 allow multiple key exchange mechanisms in parallel (and arrange
 things such that we are secure if any of these key exchange
 mechanisms remain unbroken).

 3) It further supports the features of TLS 1.3. In particular, it
 still supports 0-RTT handshake.

 4) It does not add an excessive amount of payload data to the TLS
 negotiation by considering smart econdings. For instance, in the
 initial ClientHello keyshare; the obvious encoding of "[x25519 AND
 NTRU] or [secp256r1 AND NTRU]" would require the NTRU keyshare to
 be repeated within the record; if a number of such key shares were
 used, this could add up to a considerable amount of overhead. To
 avoid this, it was decided to allow the client to include the
 actual keyshare once (and have all other occurances use the length
 0 keyshare, as stated in 2.1.1. This does add complexity to the
 server parser code; however we believe that the savings in
 bandwidth is worth it.

 5) The proposed design is future proof since it reuses the current
 TLS 1.3 design without adding complexity. In fact, one of the
 things we were able to take the advantage of was the NamedGroup
 negotiation logic within TLS 1.3. It was originally designed so
 that the client could open negotiations with "here's my key shares
 for secp256r1 and x25519, and I also support x488 and ffdhe2048";
 we extend that so that it can also say "where's my key shares for

Whyte et al. Expires 2017-XX-YY [Page 13]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 [x25519 AND NTRU] and x25519 (alone), and I also support "[x25519
 and rLWE]"

 6) The described protocol allows for a simple but efficient
 Identification of hybrid algorithms. We note that it would have
 been plausible to allow the client to try to encode support for
 "any combination of [secp256r1 OR x25519] AND [NTRU OR rLWE] AND
 [SIDH OR McBits]". However, it was unclear how to do so without
 adding a significant amount of complexity to the server parser, and
 with a description that was understandable. Because of this, it
 was decided to stay with a simpler list.

 7 and 8) It minimizes complexity by introducing limited amount of
 changes in the protocol logic. We only require an additional
 extension header used to exchange the supported hybrid groups.

 9) It ensures that the hybrid algorithm selected will be based on
 algorithms that both the client and the server support.

 10) It ensures interoperability between implementations that
 implement this draft and those that do not; between any two such
 systems, both sides will either agree on a key exchange that is
 mutually acceptable, or correctly realize that no such mechanism
 exists.

 11) Being FIPS compliant is an important requirement. By allowing
 a hybrid group to consist of a FIPS approved key exchange (such as
 secp256r1) and a quantum-safe group, and generating the session
 keys based on the FIPS approved group (and other data), this
 overall approach can be FIPS compliant.

 Further remarks:

 We limit the size of a hybrid group to a maximum of 10 simple
 groups. We do this to allow an implementation that needs an upper
 bound to have one (and we consider it unlikely that anyone would
 actually need 11 distinct key exchanges).

 The current [TLS1.3] draft specifies the usage of the
 'HelloRetryRequest' message allowing the server to propose groups
 that had not been initially proposed by the client. This
 functionality has not been described in this Internet Draft yet,
 but could be realized by allowing the server to add its own server
 hybrid extension, and list the hybrid group it wants in it.

6. Alternative Designs

 Several designs for a hybrid TLS handshake exist and have been

Whyte et al. Expires 2017-XX-YY [Page 14]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 considered during the preparation of this draft. The design
 presented above in Section 3 is the preferred option for a hybrid TLS
 handshake. This section describes alternative designs, including
 their pros and also the reasons why they were not considered as the
 preferred solution.

6.1. Smart encoding of hybrid groups

 TLS 1.3 defines the usage of the supported_groups extension header to
 exchange the groups supported by client and server. A hybrid group
 includes multiple groups. Thus, it is required to specify which of
 the groups belong to a hybrid group while still fitting the current
 TLS 1.3 specification so that existing implementations process the
 message properly. This can be done by using an encoding in which a
 hybrid group is encoded over a word array in which all of the words
 start with the hybrid marker 0xfd concatenated with a byte that
 includes the useful information about the hybrid group. Since all
 words start with 0xfd, then an implementation non-aware of hybrid
 groups will discard those unknown groups. In the word array, the
 second byte of the first word contains the number of words used to
 encode the information of the hybrid group. The second byte of the
 second word contains the identifier of the hybrid group. Afterwards
 each pair of words is used to encode a group contained in the hybrid
 group. With this smart encoding, the groups of a hybrid group can be
 encoded in 2*(1+N) words, where N is the number of groups contained
 in the hybrid group.

 The advantage of this design is that no additional extension headers
 are required. The drawback of the design is that the description of
 the encoding is relatively complex, and this is the main reason why
 it was not further considered.

6.2. No usage of "supported_groups"

 TLS 1.3 defines two main extensions, "key_share" and
 "supported_group". The main design proposal in Section 3 transmits
 the supported hybrid groups by means of an additional extensions
 header. The alternative design presented in Section 6.1 describes an
 smart encoding for these hybrid groups so that additional extension
 headers are not required. The alternative presented in this section
 just uses what is available.

 In particular, a simple approach would enforce that hybrid clients
 can only use the "key_share" extension, but not the "supported_group"
 extension. In this case, the only situation that can be encountered
 that might create some issue is when a client supporting hybrid
 groups contacts a server that is not aware of them and the server
 replies with the "supported_groups" extension. However, in this

Whyte et al. Expires 2017-XX-YY [Page 15]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 case, the client can just ignore it and all the classical groups in
 it. This proposal has the benefit that no changes are required (no
 additional encoding or no additional extension headers), but it has
 the limitation that client and server can only communicate via the
 "key_share" extension that can be relatively bulky, in particular, if
 we have hybrid groups. This is the main reason for not considering
 this proposal.

6.3. No usage of "supported_groups", encoding supported hybrid groups
 in "key_share"

 This last proposal builds on the previous one (Section 6.2) in such a
 way that hybrid clients and servers encode supported hybrid groups.

 The only situation that this configuration can create a problem is
 when a hybrid client contacts with a classic server and the hybrid
 client transmits the "key_share" encoding its hybrid groups by not
 including the corresponding public keys. The server will not
 understand this since this is a forbidden configuration and thus it
 will terminate the connection. This unexpected behavior in TLS 1.3.
 is the main reason for not considering this proposal further, even if
 this outcome is very likely to be the outcome desired by the client
 since a hybrid client is not interested in establishing a non-hybrid
 connection.

7. Security Considerations

7.1. Security, Authenticity and Forward Secrecy

 Security, authenticity and forward secrecy against classical
 computers are inherent from classical handshake mechanism.

7.2. Quantum Security and Quantum Forward Secrecy

 The proposed handshake mechanism provides quantum security and
 quantum forward secrecy.

 Quantum resistant feature of QSHSchemes ensures a quantum attacker
 will not learn QSH keying material S. A quantum attacker may learn
 classic handshake information. Given an input X, the leftover hash
 lemma [LHL] ensures that one can extract Y bits that are almost
 uniformly distributed, where Y is asymptotic to the min-entropy of X.
 An adversary who has some partial knowledge about X, will have almost
 no knowledge about Y. This guarantees the attacker will not learn
 the final premaster secret so long as S has enough entropy and
 remains secret. This also guarantees the premaster secret is secure
 even if the client's and/or the server's long term keys are
 compromised.

Whyte et al. Expires 2017-XX-YY [Page 16]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

7.3. Quantum Authenticity

 The proposed approach relies on the classical cipher suite for
 authenticity. Thus, an attacker with quantum computing capability
 will be able to break the authenticity.

8. Compatibility with TLS 1.2 and earlier version

 Compatibility with TLS 1.2 and earlier version can be found in
 [QSH12].

9. IANA Considerations

 This document adds new entries to the NamedGroup name space for use
 with the TLS protocol.

10. Acknowledgements

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

 We wish to thank Douglas Stebila, John Schanck for helpful
 discussions.

11. References

11.1. Normative References

 [EESS1] Consortium for Efficient Embedded Security, "Efficient
 Embedded Security standards (EESS) #1", March 2015,
 <https://github.com/NTRUOpenSourceProject/ntru-

crypto/blob/master/doc/EESS1-2015v3.0.pdf/>.

 [FIPS180] NIST, "Secure Hash Standard", FIPS 180-2, 2002.

 [FIPS186] NIST, "Digital Signature Standard", FIPS 186-2, 2000.

 [H2020] Lange, T., "PQCRYPTO project in the EU", April, 2015.
 <http://pqcrypto.eu.org/slides/20150403.pdf>

 [HOF15] Hoffstein, J., Pipher, J., Schanck, J., Silverman, J.,
 Whyte, W., and Zhang, Z., "Choosing Parameters for
 NTRUEncrypt", 2015. <https://eprint.iacr.org/2015/708>

 [LIN11] Lindner, R., and Peikert, C., "Better Key Sizes (and
 Attacks) for LWE-Based Encryption", 2011.

 [LHL] Impagliazzo, R., Levin, L., and Luby, M., "Pseudo-random

https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/EESS1-2015v3.0.pdf/
https://github.com/NTRUOpenSourceProject/ntru-crypto/blob/master/doc/EESS1-2015v3.0.pdf/
http://pqcrypto.eu.org/slides/20150403.pdf
https://eprint.iacr.org/2015/708

Whyte et al. Expires 2017-XX-YY [Page 17]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 generation from one-way functions", 1989.

 [MCBIT] Bernstein, D., Chou, T., and Schwabe, P., "McBits: Fast
 Constant-Time Code- Based Cryptography", 2013.

 [MCELI] McEliece, R., "A Public-Key Cryptosystem Based On
 Algebraic Coding Theory", 1978.

 [PKCS1] RSA Laboratories, "PKCS#1: RSA Encryption Standard version
 1.5", PKCS 1, November 1993

 [PQCRY] PQCRYPTO, "Initial recommendations of long-term secure
 post-quantum systems".
 <http://pqcrypto.eu.org/docs/initial-recommendations.pdf>

 [QSH12] Schanck, J., Whyte, W., and Zhang, Z., "Quantum-Safe
 Hybrid (QSH) Ciphersuite for Transport Layer Security
 (TLS) version 1.2", draft-whyte-qsh-tls12-00, July 2015.

 [QSHPKC] Schanck, J., Whyte, W., and Zhang, Z., "Criteria for
 selection of public-key cryptographic algorithms for
 quantum-safe hybrid cryptography", draft-whyte-select-pkc-

qsh-00.txt, Sep 2015.

 [REAL] "RFC Editor Abbreviations List", September 2013,
 <https://www.rfc-editor.org/rfc-style-

guide/abbrev.expansion.txt/>.

 [RFC2119] Bradner, S., "Key Words for Use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC2246] Dierks, T. and C. Allen, "The TLS Protocol Version 1.0",
RFC 2246, January 1999.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", RFC 2434, October
 1998.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

 [RFC4366] Blake-Wilson, S., Nysrom, M., Hopwood, D., Mikkelsen, J.,
 and T. Wright, "Transport Layer Security (TLS)
 Extensions", RFC 4366, April 2006.

 [RFC4492] Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., and B.
 Moeller, "Elliptic Curve Cryptography (ECC) Cipher Suites
 for Transport Layer Security (TLS)", RFC 4492, May 2006.

http://pqcrypto.eu.org/docs/initial-recommendations.pdf
https://datatracker.ietf.org/doc/html/draft-whyte-qsh-tls12-00
https://datatracker.ietf.org/doc/html/draft-whyte-select-pkc-qsh-00.txt
https://datatracker.ietf.org/doc/html/draft-whyte-select-pkc-qsh-00.txt
https://www.rfc-editor.org/rfc-style-guide/abbrev.expansion.txt/
https://www.rfc-editor.org/rfc-style-guide/abbrev.expansion.txt/
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4366
https://datatracker.ietf.org/doc/html/rfc4492

Whyte et al. Expires 2017-XX-YY [Page 18]

INTERNET DRAFT Quantum-safe handshake for TLS 1.3 2017-10-03

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [TLS1.3] E. Rescorla, "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-05, March 2015.

11.2. Informative References

 [RFC5990] Randall, J., Kaliski, B., Brainard, J. and Turner S., "Use
 of the RSA-KEM Key Transport Algorithm in the
 Cryptographic Message Syntax (CMS)", RFC 5990, September
 2010.

 [RFC5859] Krawczyk, H., Eronen, P., "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5859, May 2010.

Authors' Addresses

 Scott Fluhrer
 Cisco Systems
 sfluhrer@cisco.com

 William Whyte
 Onboard Security, US
 wwhyte@onboardsecurity.com

 Zhenfei Zhang
 Onboard Security, US
 zzhang@onboardsecurity.com

 Oscar Garcia-Morchon
 Philips
 oscar.garcia-morchon@philips.com

Copyright Notice

 IETF Trust Legal Provisions of 28-dec-2009, Section 6.b(i), paragraph
 2: Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 IETF Trust Legal Provisions of 28-dec-2009, Section 6.b(ii),
 paragraph 3: This document is subject to BCP 78 and the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-05
https://datatracker.ietf.org/doc/html/rfc5990
https://datatracker.ietf.org/doc/html/rfc5859
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Whyte et al. Expires 2017-XX-YY [Page 19]

