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Abstract

   This document describes the Quantum-Safe Hybrid Key Exchange, a
   mechanism for providing modular design for quantum-safe cryptography
   to be adopted in the handshake for the Transport Layer Security (TLS)
   protocol version 1.3.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF), its areas, and its working groups.  Note that
   other groups may also distribute working documents as Internet-
   Drafts.

   The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html.

   The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 2018-XX-YY.

   Update from last version: redesign of the approach to suite latest
   TLS1.3 draft 18.
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1.  Introduction

   Quantum computers pose a significant threat to modern cryptography.
   The two most widely adopted public key cryptosystems, namely, RSA
   [PKCS1] and Elliptic Curve Cryptography (ECC) [SECG], will be
   trivially breakable by sufficiently large general purpose quantum
   computers.  RSA is adopted in TLS from Version 1.0 to TLS Version 1.2
   [RFC2246], [RFC4346], [RFC5246].  ECC is enabled in RFC 4492
   [RFC4492] and adopted in TLS version 1.2 [RFC5246] and version 1.3
   [TLS1.3].

   There exist several quantum-safe cryptosystems, such as the
   NTRUEncrypt cryptosystem [EESS1], that deliver similar performance,
   yet are conjectured to be robust against quantum computers, but these
   are not adopted as widely as RSA or ECC and are not supported within
   TLS 1.2 or 1.3.

   This document describes a modular design that allows one or several
   quantum-safe cryptosystems to be adopted in the handshake protocol of
   TLS Version 1.3 [TLS1.3].  It uses a hybrid approach that allows the
   combination of a non-quantum-safe but widely accepted "classical" key
   exchange and a quantum-safe key exchange, or indeed the combination
   of any number greater than one of key exchange mechanisms with any
   property.   The modular design provides quantum-safe features to TLS
   1.3 and allows the flexibility to create a migration path towards
   improved quantum-safe encryption schemes as they become available.

   The remainder of this document is organized as follows.  Section 2
   describes the design criteria that have driven the design presented
   in this document.  Section 3 specifies the modular design of quantum-
   safe handshake for TLS 1.3.  Section 4 provides specific information
   for quantum-safe encryption schemes.  Section 5 discusses the
   rationale of our design and some potential modifications.  Section 6
   lists some alternative designs to solve this problem that were
   considered and rejected.  Section 7 gives security considerations.

Section 8 discusses compatibility with other versions of TLS.
Section 9 describes IANA considerations for the name spaces created

   by this document.  Section 10 gives acknowledgements.

   This is followed by the lists of normative and informative references
   cited in this document, the authors' contact information, and
   statements on intellectual property rights and copyrights.

   Implementation of this specification requires familiarity with TLS
   [RFC2246], [RFC4346], [RFC5246], [TLS1.3], TLS extensions [RFC4366],
   and knowledge of the corresponding quantum-safe cryptosystem.

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc4492
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4366
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   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in RFC 2119 [RFC2119].

   Well-known abbreviations and acronyms can be found at RFC Editor
   Abbreviations List [REAL].

2.  Design Criteria

   The design of the proposed quantum-safe hybrid TLS 1.3 protocol is
   driven by the following criteria:

     1) Need for quantum-safe cryptography in TLS. Quantum computers
     might become feasible in the next 5-10 years.  If current Internet
     communications are monitored and recorded today (D), the
     communications could be decrypted as soon as a quantum-computer is
     available (e.g., year Q) if key negotiation only relies on non
     quantum-safe primitives.  This is a high threat for any information
     that must remain confidential for long period of time T > Q-D.  The
     need is obvious if we assume that Q is 2040, D is 2020, and T is 30
     years.  Such a value of T is typical in classified or healthcare
     data.

     2) Hybrid.  Currently, there does not exist a quantum-safe key
     exchange that is trusted at the level that ECDH is trusted against
     conventional (non-quantum) adversaries.  A hybrid approach allows
     introducing promising quantum-safe candidates next to well-
     established primitives.

     3) Aligned with TLS 1.3 features such as 0-RTT.  The protocol
     operation should not affect TLS 1.3 features such as the 0-RTT
     feature.  In particular, a 0-RTT handshake should be feasible in a
     hybrid quantum-safe TLS 1.3 design.

     4) Limit amount of exchanged data.  The protocol design should be
     such that the amount of exchanged data, such as public-keys, is
     kept as limited as possible even if multiple public-keys are needed
     to be exchanged.

     5) Future proof.  Any cryptographic algorithm has the potential to
     be broken in the future by currently unknown or impractical
     attacks: quantum computers are merely the most concrete example of
     this.  The design does not categorize algorithms as "quantum-safe"
     or "non quantum-safe" and does not create assumptions about the
     properties of the algorithms, meaning that if algorithms with
     different properties become necessary in future, this framework can
     be used unchanged to facilitate migration to those algorithms.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
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     6) Identification of hybrid algorithms.  The usage of a hybrid
     approach in which each hybrid combination of several classical and
     quantum-safe algorithms leads to a different group identifier can
     mean an exponential growth of identifiers and lack of
     interoperability.  Using complex hybrid schemes can also make the
     TLS state machine complex.  Thus, the design should seek an
     approach in which hybrid algorithms can be efficiently identified.

     7) Limited amount of changes to TLS 1.3.  A key goal is to limit
     the number of changes in TLS 1.3 when enabling a quantum-safe
     handshake.  This ensures easier and faster adoption.

     8) Localized changes.  Another key requirement is that changes to
     the protocol are limited in scope, in particular, limiting changes
     in the exchanged messages and in the state machine, so that they
     can be easily implemented.

     9) Deterministic operation.  This requirement means that the hybrid
     quantum-safe exchange, and thus, the computed key, will be based on
     algorithms that both client and server wish to support.

     10) Backwards compatibility and interoperability.  This is a
     fundamental requirement to ensure that hybrid quantum-safe TLS 1.3
     and a non-quantum-safe TLS 1.3 implementations are interoperable.

     11) FIPS compliancy.  TLS is widely used in Federal Information
     Systems and FIPS certification is an important feature.  However,
     algorithms that are believed to be quantum-safe are not FIPS
     complaint yet. Still, the goal is that the overall hybrid quantum-
     safe TLS 1.3 design can be FIPS compliant.

3.  Modular design for quantum-safe key exchange

   This document introduces a hybrid and modular approach to including
   new quantum-safe key exchange algorithms within TLS 1.3, while
   maintaining the assurance that comes from the use of already
   established cipher suites.  It allows the TLS premaster secret to be
   agreed using both an established classical DH key exchange and a
   quantum-safe key exchange mechanism.

   The general design is to reuse the existing handshake design for DHE
   and ECDHE groups, treating the quantum-safe key exchanges as
   additional (EC)DH groups as much as possible.  In addition, the
   design provides for the ability to negotiate several key exchanges at
   the same time (which could include both a classical (EC)DH group, and
   a quantum-safe key exchange) and then combine the outputs of the key
   exchanges through a single KDF; in this mode, the negotiated keys are
   secure as long as at least one of the negotiated key exchanges are
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   secure.

   With this proposal, the TLS negotiation is essentially unchanged; the
   client issues an initial key exchange, which includes a list of
   supported groups and key shares for share material corresponding to 0
   or more of the indicated supported groups.  The server either selects
   one of the groups listed with a key share (and responds with its own
   key share), or it selects one of the groups listed as supported, and
   issues a retry request listed the selected group.

   The extension here is that the groups listed are not confined to be
   only DH or ECDH groups; we also allow them to be either another key
   exchange, or an indication of a hybrid group, that is, a combination
   of multiple specified key exchanges.  The design puts no constraints
   on what groups may be included in the combination, except that each
   group appears no more than once, so the combination may, for example,
   be a single ECDH group and a single quantum-safe key exchange, or a
   combination of more than one quantum-safe key exchange, or some other
   combination type.  For any hybrid group (that is, a logical group
   that is formed by running multiple key exchange mechanisms in
   parallel), the client will assign the named_group id and its
   definition.  Each individual key exchange mechanism has a defined key
   share format; this proposal also defines a format for key shares for
   the hybrid groups, designed so that even if two hybrid groups include
   the same key exchange mechanism, the key share material associated
   with that key exchange mechanism is only included in the handshake
   once.

3.1.  Additional Quantum-Safe Key Exchanges

   First, we extend the NamedGroup enum (ref: [TLS1.3] section 4.2.4) to
   include values that do not correspond to either DHE or ECDHE groups,
   but to key exchange protocols that might not represent mathematical
   groups at all, but possibly other key exchange mechanisms.  In
   addition, we also reserve 256 entries to allow us to encode hybrid
   groups, as explained below.

   An example of how this enum might be encoded might be:

      enum {
          /* Existing Ellipic Curve Groups (ECDHE) */
          secp256r1 (23), secp384r1 (24), secp521r1 (25),
          x25519 (29), x448 (30),

          /* Existing Finite Field Groups (DHE) */
          ffdhe2048 (256), ffdhe3072 (257), ffdhe4096 (258),
          ffdhe6144 (259), ffdhe8192 (260),
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          /* Additional quantum-safe algorithm:
             NTRU key exchanges */
          ntru_eess443 (768), ntru_eess587 (769),
          ntru_eess743 (770),

          /* Additional quantum-safe algorithm:
             LWE key exchange */
          lwe_XXX      (1024),

          /* Additional quantum-safe algorithm:
             Hidden Field Equation key exchange */
          hfe_XXX      (1280),

          /* Additional quantum-safe algorithm:
             McEliece-based key exchange */
          mcbits_XXX   (1536),

          /* Additional quantum-safe algorithm:
             other quantum-safe algorithm*/

          /* New Code points reserved for 'Hybrid Key Exchanges' */
          hybrid_marker (0xfd00..0xfdff)

          /* Existing Reserved Code Points */
          ffdhe_private_use (0x01fc..0x01ff),
          ecdhe_private_use (0xfe00..0xfeff),
          (0xffff)
      } NamedGroup;

   Note that the enum values given for the new groups are for
   illustration only; the actual values would be needed to be assigned
   by IANA.

   In the above enum, we see new NamedGroups marked as "additional
   quantum-safe"  and "hybrid key exchange".

   The NamedGroups marked as "additional quantum-safe"  operate just
   like the (EC)DHE groups; the client generates a KeyShareEntry (which
   consists of the NamedGroup along with a key_exchange value; the
   server responds with a KeyShareEntry (which, again, consists of a
   NamedGroup along with a key_exchange value), and then both sides
   generate a shared secret (which the TLS 1.3 draft calls the (EC)DHE
   shared secret).  These KeyShareEntries could contain a Diffie-
   Hellman-like public value, or the client entry could contain a public
   key and the server entry could contain a secret value encrypted with
   that public key; the model accommodates both.

   For each such additional quantum-safe key exchange, the following
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   will need to be specified:

   - The format of the client key_exchange data
   - The format of the server key_exchange data
   - The format of the generated shared secret

Section 4 in this document provides links for such specifications.

   The NamedGroups marked as "hybrid key exchange" in the above enum are
   described in the following subsection.

3.2.  Hybrid Key Exchanges

   A "hybrid key exchange" is a key exchange that uses several "atomic"
   key exchange methods in parallel (and whose resulting shared secret
   depends on the shared secrets of each of the methods).  The reasoning
   behind this hybrid key exchange is that, in a post-quantum world,
   there might be no single key exchange mechanism we are certain is
   safe, and so we rely on several (and so remain secure as long as one
   of the methods we use is secure).  An example of such a hybrid key
   exchange would be "Curve25519, in parallel with NTRU".

   A hybrid key exchange can be formed by 2 to 10 distinct base key
   exchange mechanisms, and are negotiated as a unit; for example, if
   the client sends supported_groups and KeyShare that includes the
   hybrid key exchange "Curve25519+NTRU", then the server either accepts
   that in entirety, or rejects it; it cannot accept "Curve25519 only"
   (unless, of course, that key exchange was listed by itself elsewhere
   in the key share).

   The following sections list how hybrid key exchange are represented
   within the protocol.

3.2.1.  Hybrid Key Exchange within ClientHello

   To indicate support for hybrid key exchange, the client includes an
   indication in its supported_groups extension.  To enable a handshake
   using hybrid key exchange, the client provides appropriate key share
   material in its key_share extension.  This section describes both
   extensions.

3.2.1.1.  Hybrid Key Exchange within the supported_groups extension

   The client lists support for hybrid groups within the
   supported_groups extension.  To do so, it includes the hybrid group
   id (hybrid_marker+i), with that hybrid marker being defined within
   the hybrid extension (see section 3.2.5).
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   If the server sees such a hybrid group id within the received
   supported_groups, it looks up the definition of that group within the
   hybrid extension.

3.2.1.1.  Hybrid Key Exchange within the key_share extension

   The client hello key share contains a vector of KeyShareEntry
   elements (which corresponds to the various key exchanges the client
   proposes).

   The base structure of a KeyShareEntry that represents a hybrid key
   exchange is similar, namely:

      struct {
          NamedGroup hybrid_group_id;
          KeyShareEntry key_exchange<1..2^16-1>
      } KeyShareEntry;

      hybrid_group_id is the hybrid group id, which is a value
      hybrid_marker+i (for i between 0 and 255)

      key_exchange is the list of key share entries for the groups that
      make up this hybrid group

   The set of key exchange mechanisms denoted by such a KeyShareEntry
   will consist of all the key exchange mechanisms listed within the
   key_exchange array.

   In addition, the hybrid group id listed must be defined within the
   hybrid extension given in the client hello message (see section

3.2.5), and the named groups listed in that extension must be the
   same groups in the same order as in the key share entry.

   Note that the variable length type key_exchange starts with the same
   2 byte length field as the variable length opaque type in a standard
   KeyShareEntry, hence an implementation that does not understand
   hybrid key shares will still parse these entries (in the sense of
   knowing that that is a key exchange mechanism it does not
   understand), and ignore them without error.

   In addition, the share for each individual group is listed in the
   same format as the KeyShareEntry for that group; it is anticipated
   that an implementation may reuse the same parsing logic for both
   individual groups and members of a hybrid group.

   Note that the same key exchange mechanism SHALL NOT be listed twice
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   within a hybrid key share entry. Similarly, hybrid key exchange SHALL
   NOT be listed as a member of a hybrid key exchange.

   To allow the client to propose the list "[Curve25519 + NTRU] or [P256
   + NTRU]" without having to list the NTRU key share multiple times, we
   allow the following extension to the KeyShareEntry fields within the
   hybrid key exchange: if the key_exchange entry is listed as 0 length,
   then the actual key_exchange data for that named group appears
   elsewhere within the client hello key share (and the server will need
   to search for that key share with a nonzero length). Note that the
   server might need to search past the current position in the key
   share (for example, if the client proposes "[Curve25519 + NTRU] or
   Curve25519", with that priority order; as Curve25519 by itself has
   lower priority, it occurs after the hybrid key exchange.

3.2.2.  Hybrid Key Exchange within ServerHello

   The server hello key share contains a single KeyShareEntry structure
   (which is the response to the key exchange that the server accepts);
   it uses the same format that is listed in section 3.2.1.

   The hybrid_group_id that the server lists within the KeyShareEntry is
   the value that the client originally designated.

3.2.3.  Hybrid Key Exchange within HelloRetryRequest

   If a server issues a HelloRetryRequest, and it selects a hybrid
   group, then it includes the client-defined hybrid group id in the key
   share. The client is expected to remember the definition it gave to
   that hybrid group.

3.2.4.  Hybrid extension

   When the client lists hybrid named groups within its supported_groups
   extension, it also includes the hybrid extension which defines which
   named groups that together form the hybrid group.

   This hybrid extension is an extension type of type [TBD], and may be
   included within the ClientHello message.

      struct {
          NamedGroup hybrid_group_id;
          NamedGroup components<2..10>
      } HybridMapping;

      hybrid_group_id  This is the id of the hybrid group being defined;
      the value given must be in the range (hybrid_marker,
      hybrid_marker+255)
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      components  This is the list of the named groups that make up this
      hybrid group.  These components MUST NOT be hybrid groups
      themselves.

   The "extension data" field of this extension contains a
   HybridExtension value:

      struct {
          HybridMapping map<0..255>;
      } HybridExtension;

      map  This gives the definition for all the hybrid groups listed.
      Each entry in the map array gives the definition for one hybrid
      group.   Every hybrid group mentioned within the client hello
      message must be listed.

3.2.5.  Generating the shared secret

   The entire point of the key exchange is to generate a shared secret
   on both the client and the server that is not easily recovered by an
   adversary who monitors the protocol messages.  In the standard TLS
   1.3 protocol, the DH or ECDH shared secret is generated, and is used
   to derive various secret values as listed in section 7.1 of [TLS1.3],
   with that initial shared secret being labeled as (EC)DHE.

   When we need to derive the shared secret for a hybrid key exchange,
   we derive each shared secret from each of the member key exchanges
   independently, and then concatenate those shared secrets in the order
   the key exchanges were listed in the protocol exchange; this
   concatenated shared secret is then used in the standard TLS 1.3
   secret derivation process as the input labeled (EC)DHE.

4.  Specific information for Quantum-Safe Scheme

   Selection criteria for quantum-safe cryptography to be used in this
   TLS_QSH approach can be found at [QSHPKC].  Also see [PQCRY] for
   initial recommendations of quantum-safe cryptography from EU's
   PQCRYPTO project.

4.1.  NTRUEncrypt

   NTRUEncrypt parameter sets are identified by the values ntru_eess443
   (0x0101), ntru_eess587 (0x0102), ntru_eess743 (0x0103) assigned in
   this document (pending approval by IANA).

   For each of these parameter sets, the public key and ciphertext are
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   Ring Elements as defined in [EESS1].  The encoded public key and
   ciphertext are the result of encoding the relevant Ring Element with
   RE2BSP as defined in [EESS1].

   For each parameter set the the maximum plaintext input length in
   bytes is as follows. This is used when determining the length of the
   client/server-generated secrets CliSi and SerSi as specified in
   sections 3.4 and 3.5.

        eess443  49
        eess587  76
        eess743  106

4.2.  LWE
   Encoding not defined in this document.

4.3.  HFE
   Encoding not defined in this document.

4.4.  McEliece/McBits
   Encoding not defined in this document.

4.5.  Pre-Shared Keys

   The identities of the exchanged Pre-Shared Keys SHALL be encoded in a
   similar way to [TLS1.3].

      struct {
         identity<0..2^16-1>;
      } PskIdentity;

      struct {
         select (Handshake.msg_type)
         {
            case client_hello: PskIdentity identities<6..2^16-1>;
            case server_hello: uint16 selected_identity;
         };
     } PreSharedKeyExtension;

   This struct is to be exchanged in the key_exchange array in the
   KeyShareEntry.

   The client and server agree on common PSKs that they can combine with
   other generated secrets as described in Section 3.2.6 of this
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   document.

   The use of PSKs in the quantum-hybrid handshake SHALL follow one of
   the following patterns

     1) (The PSK is not intended to provide quantum-resistance) The PSK
     SHALL be used in conjunction with another key exchange algorithm
     that is believed to be quantum-safe.  In this case, the PSK SHALL
     conform to the security requirements in [TLS1.3].

     2) (The PSK is intended to provide quantum-resistance) The PSK
     SHALL have a key length of at least 256 bits and SHALL NOT have
     been computed by means of a classical key exchange.

5.  Design Rationale

   The design of the protocol described in Section 3 follows criteria
   presented in Section 2.

     1) It allows introducing quantum-safe key exchange in TLS 1.3.

     2) It introduces a hybrid and modular quantum-safe exchange to
     allow multiple key exchange mechanisms in parallel (and arrange
     things such that we are secure if any of these key exchange
     mechanisms remain unbroken).

     3) It further supports the features of TLS 1.3. In particular, it
     still supports 0-RTT handshake.

     4) It does not add an excessive amount of payload data to the TLS
     negotiation by considering smart econdings. For instance, in the
     initial ClientHello keyshare; the obvious encoding of "[x25519 AND
     NTRU] or [secp256r1 AND NTRU]" would require the NTRU keyshare to
     be repeated within the record; if a number of such key shares were
     used, this could add up to a considerable amount of overhead.  To
     avoid this, it was decided to allow the client to include the
     actual keyshare once (and have all other occurances use the length
     0 keyshare, as stated in 2.1.1.  This does add complexity to the
     server parser code; however we believe that the savings in
     bandwidth is worth it.

     5) The proposed design is future proof since it reuses the current
     TLS 1.3 design without adding complexity. In fact, one of the
     things we were able to take the advantage of was the NamedGroup
     negotiation logic within TLS 1.3.  It was originally designed so
     that the client could open negotiations with "here's my key shares
     for secp256r1 and x25519, and I also support x488 and ffdhe2048";
     we extend that so that it can also say "where's my key shares for
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     [x25519 AND NTRU] and x25519 (alone), and I also support "[x25519
     and rLWE]"

     6) The described protocol allows for a simple but efficient
     Identification of hybrid algorithms. We note that it would have
     been plausible to allow the client to try to encode support for
     "any combination of [secp256r1 OR x25519] AND [NTRU OR rLWE] AND
     [SIDH OR McBits]".  However, it was unclear how to do so without
     adding a significant amount of complexity to the server parser, and
     with a description that was understandable.  Because of this, it
     was decided to stay with a simpler list.

     7 and 8) It minimizes complexity by introducing limited amount of
     changes in the protocol logic. We only require an additional
     extension header used to exchange the supported hybrid groups.

     9) It ensures that the hybrid algorithm selected will be based on
     algorithms that both the client and the server support.

     10) It ensures interoperability between implementations that
     implement this draft and those that do not; between any two such
     systems, both sides will either agree on a key exchange that is
     mutually acceptable, or correctly realize that no such mechanism
     exists.

     11) Being FIPS compliant is an important requirement.  By allowing
     a hybrid group to consist of a FIPS approved key exchange (such as
     secp256r1) and a quantum-safe group, and generating the session
     keys based on the FIPS approved group (and other data), this
     overall approach can be FIPS compliant.

   Further remarks:

     We limit the size of a hybrid group to a maximum of 10 simple
     groups.  We do this to allow an implementation that needs an upper
     bound to have one (and we consider it unlikely that anyone would
     actually need 11 distinct key exchanges).

     The current [TLS1.3] draft specifies the usage of the
     'HelloRetryRequest' message allowing the server to propose groups
     that had not been initially proposed by the client. This
     functionality has not been described in this Internet Draft yet,
     but could be realized by allowing the server to add its own server
     hybrid extension, and list the hybrid group it wants in it.

6. Alternative Designs

   Several designs for a hybrid TLS handshake exist and have been
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   considered during the preparation of this draft.  The design
   presented above in Section 3 is the preferred option for a hybrid TLS
   handshake.  This section describes alternative designs, including
   their pros and also the reasons why they were not considered as the
   preferred solution.

6.1.  Smart encoding of hybrid groups

   TLS 1.3 defines the usage of the supported_groups extension header to
   exchange the groups supported by client and server.  A hybrid group
   includes multiple groups.  Thus, it is required to specify which of
   the groups belong to a hybrid group while still fitting the current
   TLS 1.3 specification so that existing implementations process the
   message properly.  This can be done by using an encoding in which a
   hybrid group is encoded over a word array in which all of the words
   start with the hybrid marker 0xfd concatenated with a byte that
   includes the useful information about the hybrid group.  Since all
   words start with 0xfd, then an implementation non-aware of hybrid
   groups will discard those unknown groups.  In the word array, the
   second byte of the first word contains the number of words used to
   encode the information of the hybrid group.  The second byte of the
   second word contains the identifier of the hybrid group.  Afterwards
   each pair of words is used to encode a group contained in the hybrid
   group.  With this smart encoding, the groups of a hybrid group can be
   encoded in 2*(1+N) words, where N is the number of groups contained
   in the hybrid group.

   The advantage of this design is that no additional extension headers
   are required.  The drawback of the design is that the description of
   the encoding is relatively complex, and this is the main reason why
   it was not further considered.

6.2.  No usage of "supported_groups"

   TLS 1.3 defines two main extensions, "key_share" and
   "supported_group".  The main design proposal in Section 3 transmits
   the supported hybrid groups by means of an additional extensions
   header.  The alternative design presented in Section 6.1 describes an
   smart encoding for these hybrid groups so that additional extension
   headers are not required.  The alternative presented in this section
   just uses what is available.

   In particular, a simple approach would enforce that hybrid clients
   can only use the "key_share" extension, but not the "supported_group"
   extension.  In this case, the only situation that can be encountered
   that might create some issue is when a client supporting hybrid
   groups contacts a server that is not aware of them and the server
   replies with the "supported_groups" extension.  However, in this
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   case, the client can just ignore it and all the classical groups in
   it.  This proposal has the benefit that no changes are required (no
   additional encoding or no additional extension headers), but it has
   the limitation that client and server can only communicate via the
   "key_share" extension that can be relatively bulky, in particular, if
   we have hybrid groups.  This is the main reason for not considering
   this proposal.

6.3.  No usage of "supported_groups", encoding supported hybrid groups
   in "key_share"

   This last proposal builds on the previous one (Section 6.2) in such a
   way that hybrid clients and servers encode supported hybrid groups.

   The only situation that this configuration can create a problem is
   when a hybrid client contacts with a classic server and the hybrid
   client transmits the "key_share" encoding its hybrid groups by not
   including the corresponding public keys.  The server will not
   understand this since this is a forbidden configuration and thus it
   will terminate the connection.  This unexpected behavior in TLS 1.3.
   is the main reason for not considering this proposal further, even if
   this outcome is very likely to be the  outcome desired by the client
   since a hybrid client is not interested in establishing a non-hybrid
   connection.

7.  Security Considerations

7.1.  Security, Authenticity and Forward Secrecy

   Security, authenticity and forward secrecy against classical
   computers are inherent from classical handshake mechanism.

7.2.  Quantum Security and Quantum Forward Secrecy

   The proposed handshake mechanism provides quantum security and
   quantum forward secrecy.

   Quantum resistant feature of QSHSchemes ensures a quantum attacker
   will not learn QSH keying material S.  A quantum attacker may learn
   classic handshake information.  Given an input X, the leftover hash
   lemma [LHL] ensures that one can extract Y bits that are almost
   uniformly distributed, where Y is asymptotic to the min-entropy of X.
   An adversary who has some partial knowledge about X, will have almost
   no knowledge about Y.  This guarantees the attacker will not learn
   the final premaster secret so long as S has enough entropy and
   remains secret.  This also guarantees the premaster secret is secure
   even if the client's and/or the server's long term keys are
   compromised.
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7.3.  Quantum Authenticity

   The proposed approach relies on the classical cipher suite for
   authenticity.  Thus, an attacker with quantum computing capability
   will be able to break the authenticity.

8.  Compatibility with TLS 1.2 and earlier version

   Compatibility with TLS 1.2 and earlier version can be found in
   [QSH12].

9.  IANA Considerations

   This document adds new entries to the NamedGroup name space for use
   with the TLS protocol.
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