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Abstract

This document describes a set of mitigations that stop the known
variations of the Kaminsky cache poisoning attacks against the DNS
system, for which only resolver side deployment is necessary.
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1. Introduction TOC

[Ww: These are the counter measures for the Kaminsky attack scenarios
that I envision for the Unbound resolver (http://unbound.net). These
are counter measures that require resolver side deployment only.
Depending on working group input this document could remain an Unbound
specific information document or can be made more generic, and move
towards a BCP.]

This document describes the mitigations that a resolver can deploy on
its own in the meantime, while a more comprehensive (read: DNSSEC)
solution is being rolled out. For counter measures that require changes
to authoritative and recursive servers everywhere, DNSSEC provides the
most protection, followed by Nonce-based approaches (e.g. EDNS PING),
followed by transport protocol games. Because Unbound implements DNSSEC
validation already, and DNSSEC provides the most protection (e.g.
against new unknown variations and also against full man-in-the-middle
attacks), this is a good long term choice.

The solutions covered in this document hope to cover all of the
variations in the recent Kaminsky-style attacks. However, it seems
likely that other variations besides the ones described in this
document are going to be discovered. For that reason a number of
generic protections are included, chief amongst those is the use of
extra entropy.



Since this document focuses on Unbound it is worth noting that although
current versions implement these mitigations, they are not all turned
on by default. Unbound should support the mitigations considered 'best'
by the community. This means without weird, ill-considered, mitigations
of its own. Hence this document.

It is assumed the reader is aware of, and implementing, the forgery-
resilience [RFC5452] (Hubert, A. and R. van Mook, “Measures for Making
DNS More Resilient against Forged Answers,” January 2009.)
recommendations.

In Section 2 the criteria are listed. In Section 3 the various measures
that can be used to mitigate threats are described. Section 4
enumerates Kaminsky-style attack variations, and shows what measures
provide protection against each one of them. Section 5 discusses
consequences caused by the mitigations.

2. Criteria TOC

The first and foremost criterium is that these are resolver side
solutions, thus only the resolver needs to be redeployed, or the
software updated, for this to work. The reason behind this is that a
short term deployment is possible. The idea is to provide some
(partial) protection on the short term. On the long term it is possible
to redeploy both authority and recursors, and the solution space is
greatly increased (e.g. options range from EDNS PING, using TCP or
SCTP, to DNSSEC deployment).

Many solutions in this document could also be used in stub resolvers.
Stub resolvers are not mentioned specifically further on, the main
focus is on the caching recursive server.

The solutions have to follow the DNS protocol.

The solutions have to be non disruptive, and non anti-social.
Specifically, they must not put the costs of the solution with 3rd
parties. For example, large scale fallback to TCP both uses a limited
resource (TCP connections to authority servers), and disrupts
deployment behind many middle boxes.

Solutions without an 'attack mode' are preferred. An 'attack mode' is a
different state of behaviour that the resolver enters into after
something anomalous is detected. It may be for only a subset of
operations or only a limited time. One reason to avoid such modal
design is that paranoia dictates that maximal protection should always
be used. A second reason is that if a protection measure cannot be used
always, it is likely to be disruptive (see above). Such an 'attack
mode' complicates implementation, testing and especially security
analysis.

T0C



3. Mitigations

Below, the resolver side mitigations are described.

3.1. Add Entropy TOC

The mitigations in this section increase the transaction entropy above
the 16 bits in the ID number. This is pretty close to the forgery-
resilience [RFC5452] (Hubert, A. and R. van Mook, “Measures for Making
DNS More Resilient against Forged Answers,” January 2009.) text,
differences are in the rtt banding text and 0x20 consideration.

*port randomisation

As many as possible, using only 1000 or 2000 ports (as some
commercial DNS products do) is not enough. A range of 59000 port
numbers (15.8 bits) can be usefully achieved. This causes
operational problems (NAT boxes using predictable port numbers),
portability problems (bugs, features not available), and volume
problems (using port number uses limited resource).

*0x20.

Breaks queries to some authorities, but more than 99.9% works. It
is like a proposal that needs authority server deployment where
the authority servers are already deployed to a large extent.
[I-D.vixie-dnsext-dns@x20] (Vixie, P. and D. Dagon, “Use of Bit
0x20 in DNS Labels to Improve Transaction Identity,”

March 2008.).

*rtt banding

RTT banding refers to the method of picking a random nameserver
for the query out of the set of nameservers that are within a RTT
band (say at most 200 msec slower) from the fastest nameserver.

New attack opportunities can be created by sending a new fake
guestion to be resolved by the resolver. Therefore the actual
size of the roundtrip time window is not as important as the
additional entropy gained by selecting randomly from a set of
servers.

*IPv4 - IPV6

When both IPv4 and IPv6 are available, the protocol can be chosen
randomly together with rtt banding to provide more entropy.



*source address randomisation

If the resolver has multiple public IP addresses these can be
used to randomise with.

If all the above entropy settings are in use, it is estimated that
Unbound can provide about 44 bits of entropy (16 ID, 15.8 port bits,
about 8 0x20 bits, about 2 rtt banding + protocol bits and about 2
source address bits). Without user configuration or queries amenable to
0x20, 34 bits of entropy are likely, or even 18 if a NAT box kills the
port randomisation. Entropy thus provides only limited protection.

3.2. Use Care with the Cache TOC
*rfc2181 adherence

This means that RRsets are ranked in trustworthiness depending on
whether they come from the answer section, or from another part
of the message. The authoritative answers are preferred.
[REC2181] (Elz, R. and R. Bush, “Clarifications to the DNS
Specification,” July 1997.)

In addition, do not give data obtained from authority or
additional sections in answer sections to clients.

*CNAME chain.

Only use first entry in answer section. Perform new lookups for
remainder.

*DNAME chain.

Only use the first entry DNAME and its synthesized CNAME from the
answer section. Perform new lookups for remainder.

*no DNAME from cache

Do not pick a DNAME RR out of the cache for a query for which
that DNAME RR was not returned. Thus, a DNAME is only used for
qgquery names for which answers have been received from the
authority server.

When the DNAME is signed with DNSSEC, it is allowed to synthesize
new CNAMEs from it to answer new queries with it. This is because
the zone owner whose zone is redirected is signing away his own
zone.



3.3. Obtain Authoritative Data TOC
*Authority query for NS after referral

The idea is to obtain authoritative data for the NS RRset instead
of using data tacked along on another message. Care must be taken
to avoid DoSing parent nameservers, and not break resolution in
common cases where the NS RRsets in parent and child differ.

On a referral, the data from the referral may be used to continue
answering the current query, but it is not stored in the cache.
If the question equals the referred zone name and has qtype NS,
then the NS RRset from the referral does get stored in the cache.

If the question is not that already, a new lookup is performed
for the referred zone name with qtype NS. The results from that
lookup are cached normally. The lookup has to start at a parent
of the referred zone, so that a new referral is obtained.

The upshot is that RFC2181 adherence pins the NS RRset data in
the cache because it is seen in the answer section, and tacked on
data from other messages is ignored until the TTL expires. It
should be noted that most infrastructure TTLs for NS records are
very large.

It does not break existing disjoint RRsets, or servers that do
not answer for qtype NS at all, or servers that are offline,
because the referral is cached when making the qtype NS query.
This is why the qtype NS query has to be made in such a way that
it elicits a fresh referral from the parent server. This gives a
once per TTL opportunity for spoofing the referral.

The NS RRset answered from the child side of the zone cut
overrides the NS RRset picked up from the referral. This causes
the same data to be used as today, where the authority section NS
set sent along by the child server overrides the NS set seen from
the referral.

Additional queries are sent for this solution. This increases
resolver and authority server load and bandwith usage.

*Authority queries for nameserver addresses, A and AAAA.

Same idea, like NS query above. You ask for A or AAAA records
directly at the authoritative server. It is not necessary to



elicit the referral again, the query can be directed at the best
server.

Additional queries are sent for this solution. This increases
resolver and authority server load and bandwith usage.

A bonus when using the above methods to obtain authoritative data is
that when using DNSSEC, the data can be validated, and thus spoofed
infrastructure data can be detected and handled appropriately. This
protects DNSSEC, where the referral contains unsigned NS, A and AAAA
records from spoofed infrastructure data. Of course, DNSSEC is designed
to protect end-user data anyway, whether or not the referral data was
poisoned. It simply adds the opportunity to add another layer of
defense.

3.4.

Detection TOC

*trouble counter

This is a simple detection method. It counts all packets that
were not asked for. The only thing noted about the packet is that
it is a query reply (QR bit) and was not asked for.

This may show false positives due to UDP packet duplicates,
delayed responses (delayed for longer than the implementation
cares to keep track of what it asks for). The idea is that false
positives are probably a low amount. Conversely, some unasked for
packets may not be noticed because the implementation may not be
listening to particular ports, or whatever implementation
choices.

When a particular threshold is met, the cache is wiped clean.

The threshold is set so that denial of service does not become
all that much easier, and that false positives do not (often)
result in cache wipes. A threshold in the range of 10 million is
proposed. This many packets itself is already a sizable denial of
service attack, and also, the amount of data sent gets close to
the cache size of the resolver to keep amplification towards the
authority servers low.

Since this mitigation is meant to protect against hitherto
unknown variations, it does not help to examine the packets any
further than the QR bit (and the fact that they were not used for
regular processing).

The result of this is that the probability that there is a



poisoned item present in the cache is capped at some maximum. The
exact value depends on the entropy per message and the threshold.

4. Variants to Protect against TOC

In the descriptions below a short title is given to quickly summarize
the exploit. The query 'q:' is what the attacker sends as fake question
to the resolver to answer. The answer, authority 'auth:' and additional
'add:' sections list the content that the spoofer provides. The
mitigation strategy, and sometimes discussion, is provided in the
'protected:' line.

The real target is example.com or www.example.com or nsl.example.com,
which is the real nameserver for example.com here. The domain
evil.example.net is under control of the attacker and 192.0.2.66(evil)
is an IP address under control of the attacker. The label 'bad123' is
used in place of a label that the attacker varies every attempt to
obtain new spoofing windows.



Glue with new DNS server

g: bad123.example.com.

answer: badil123.example.com. A whatever

auth: example.com. NS evil.example.com.

add: evil.example.com. A 192.0.2.66(evil)

protected: 2181 adherence plus NS record pinned by NS query.
Also name error or no data answers could be used, instead of
this answer section.

Glue for DNS server

g: bad123.example.com.

answer: badil123.example.com. A whatever

auth: example.com. NS nsl.example.com. (normal entry)

add: nsl.example.com. A 192.0.2.66(evil)

protected: 2181 adherence plus NS record pinned by NS query,
plus A record pinned by glue query.

Also name error or no data answers could be used, instead of
this answer section.

Glue for Web server

q: bad123.example.com.

answer: badl23.example.com. A whatever

auth: example.com. NS www.example.com.

add: www.example.com. A 192.0.2.66(evil)

protected: 2181 adherence plus NS record pinned by NS query.

Glue smaller

g: bad123.example.com.

answer: badl123.example.com. A 192.0.2.66(evil)

auth: example.com. NS badl23.example.com.

protected: 2181 adherence plus NS record pinned by NS query.

NS change

gq: bad123.example.com.

answer: badil123.example.com. A whatever

auth: example.com. NS evil.example.net.

protected: 2181 adherence plus NS record pinned by NS query.

NS server migration

gq: badl23.example.com.

answer: badi123.example.com. A whatever

auth: example.com. NS nsl.example.com. (normal entry)

auth: example.com. NS ns2.example.com.evil.example.net.
(evil, looks like typo in server migration)

protected: 2181 adherence plus NS record pinned by NS query.

CNAME
q: bad123.example.com.



answer: badl23.example.com. CNAME www.example.com.
answer: www.example.com. A 192.0.2.66(evil)
protected: CNAME chain cutoff.

DNAME one message

g: www.bad123.example.com.

answer: badi123.example.com. DNAME example.com.

answer: www.bad123.example.com. CNAME www.example.com.
answer: www.example.com. A 192.0.2.66(evil)

protected: DNAME chain cutoff.

DNAME whole zone

q: bad123.example.com.

answer: example.com. DNAME evil.example.net.

answer: bad123.example.com. CNAME bad123.evil.example.net.
answer: badl123.evil.example.net. A whatever

protected: no DNAME from cache.

New Delegation - rigged

g: bad123.www.example.com.

answer: (empty)

auth: www.example.com. NS www.example.com.

add: www.example.com. A 192.0.2.66(evil)

protected: the NS queries that ask referral confirmation
together with glue queries.

New Delegation - looks normal

gq: bad123.www.example.com.

answer: (empty)

auth: www.example.com. NS nsl.evil.example.net.

auth: www.example.com. NS ns2.evil.example.net.
protected: the NS queries that ask referral confirmation
together with glue queries.

New Delegation - for glue

gq: bad123.example.com.

answer: (empty)

auth: bad123.example.com. NS nsl.example.com.
additional: nsl.example.com. A 192.0.2.66(evil)
protected: rfc2181 adherence.

Another hitherto unknown variation

These are a lot of variations and it is very likely that other
people can come up with better, different ideas.

protected: by entropy measures, by the count-and-wipe measure.
Long term solutions (PING, TCP, DNSSEC) also aim to protect
against these much more thoroughly.



5. Security Considerations TOC

All of the mitigations aim to provide more security. But, several of
these mitigations have adverse effects on performance and bandwith.
The CNAME, DNAME, NS and nameserver address mitigations all require
that additional lookups be performed. The CNAME and DNAME target
lookups cause the answer to the client to be delayed. The NS set and
nameserver address lookups cause a higher load on both authority and
resolver servers.

The detection mechanism is susceptible to denial of service attacks. A
small, calculated, amount of additional DoS leverage is provided. This
changes some spoof attacks into a denial of service.

The NS set and nameserver address lookups cause the NS, A and AAAA
RRsets to be pinned in the cache until the TTL expires. This provides
cache overwriting protection, but at the cost of not picking up updates
to these RRsets in the course of normal resolution. Changes to these
RRsets are then no longer seen on the next query, but only after the
TTL times out. This adversely affects the coherency of the DNS server
infrastructure, as it becomes more likely that resolvers operate using
out of date nameserver data.

6. IANA Considerations TOC
None.
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