
Network Working Group J. Arwe
Internet-Draft S. Speicher
Intended status: Standards Track IBM
Expires: August 11, 2014 E. Wilde
 UC Berkeley
 February 7, 2014

The Accept-Post HTTP Header
draft-wilde-accept-post-02

Abstract

 This specification defines a new HTTP response header field Accept-
 Post, which indicates server support for specific media types for
 entity bodies in HTTP POST requests.

Note to Readers

 This draft should be discussed on the apps-discuss mailing list [1].

 Online access to all versions and files is available on github [2].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 11, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Arwe, et al. Expires August 11, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Accept-Post February 2014

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3
3. The Accept-Post Response Header Field 3
4. IANA Considerations . 4
4.1. The Accept-Post Response Header 4

5. Examples . 4
5.1. Atom Publishing Protocol 4
5.2. Linked Data Platform 5
5.3. Additional Information in Error Responses 5

6. Implementation Status . 5
6.1. Eclipse Lyo . 6
6.2. RWW.I/O . 7
6.3. Tivoli Workload Automation 7
6.4. Jazz for Service Management 8

7. Security Considerations 9
8. Open Issues . 9
9. Change Log . 9
9.1. From -01 to -02 . 9
9.2. From -00 to -01 . 10

10. References . 10
10.1. Normative References 10
10.2. Informative References 10

Appendix A. Acknowledgements 11
 Authors' Addresses . 12

Arwe, et al. Expires August 11, 2014 [Page 2]

Internet-Draft Accept-Post February 2014

1. Introduction

 This specification defines a new HTTP response header field Accept-
 Post, which indicates server support for specific media types for
 entity bodies in HTTP POST requests. This header field is comparable
 to the Accept-Patch response header field specified together with the
 HTTP PATCH method [RFC5789] (notice, however, that while Accept-Patch
 is defined to only list specific media types, Accept-Post reuses the
 "media range" concept of HTTP's Accept header and thus allows media
 type wildcards as well).

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. The Accept-Post Response Header Field

 This specification introduces a new response header field Accept-Post
 used to specify the document formats accepted by the server in HTTP
 POST requests. Accept-Post SHOULD appear in the OPTIONS response for
 any resource that supports the use of the POST method. The presence
 of the Accept-Post header in response to any method is an implicit
 indication that POST is allowed on the resource identified by the
 Request-URI. The presence of a specific document format in this
 header indicates that this specific format is allowed on the resource
 identified by the Request-URI.

 The syntax for Accept-Post headers, using the ABNF syntax defined in
Section 5.3.2 of the revised version of HTTP/1.1

 [I-D.ietf-httpbis-p2-semantics], is given by the following
 definition:
 Accept-Post = #(media-range [accept-params])

 (Please note that this ABNF differs from the one given in Section
14.1 of RFC 2616 [RFC2616], which includes the header field name.)

 The Accept-Post header specifies a media range as defined by HTTP
 [RFC2616]. The media range specifies a type of representation that
 can be POSTed to the Request-URI.

 The app:accept element is similar to the HTTP Accept request header
 field [RFC2616]. Media type parameters are allowed within Accept-
 Post, but Accept-Post has no notion of preference - "accept-params"
 or "q" arguments, as specified in Section 14.1 of [RFC2616], are not

https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616#section-14.1
https://datatracker.ietf.org/doc/html/rfc2616#section-14.1
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616#section-14.1

Arwe, et al. Expires August 11, 2014 [Page 3]

Internet-Draft Accept-Post February 2014

 significant.

4. IANA Considerations

4.1. The Accept-Post Response Header

 The Accept-Post response header should be added to the permanent
 registry of message header fields (see [RFC3864]). Based on the
 first example of AtomPub Section 5.1, when sending a GET request to
 the URI of a collection, the following response could be sent, if the
 server decided to support Accept-Post headers:
 HTTP/1.1 201 OK
 Date: Fri, 23 Feb 2007 21:17:11 GMT
 Content-Length: nnn
 Content-Type: application/atom+xml;type=feed
 Accept-Post: image/gif, image/jpeg, image/png

 In this response to the GET request of a collection URI, the server
 indicates that this particular collection accepts new entries in the
 form of GIF, JPEG, or PNG images. No parameters are used, which
 means that there is no server-specified preference among those media
 types.

5. Examples

 Accept-Post extends the way in which interaction information can be
 exposed in HTTP itself. The following sections contain some examples
 how this can be used in concrete HTTP-based services.

5.1. Atom Publishing Protocol

 The Atom Publishing Protocol (AtomPub) [RFC5023] defines a model of
 interacting with collections and members, based on representations
 using the Atom [RFC4287] syntax. AtomPub allows clients to create
 new collection members by using HTTP POST, with the request being
 sent to the collection URI. AtomPub servers can limit the media
 types they accept in these POST requests, and the accepted media
 types are listed in an "AtomPub service document".

 The Accept-Post header field does allow an AtomPub server to
 advertise its support for specific media types in interactions with
 the collection resource, without the need for a client to locate the
 service document and interact with it. This increases the visibility
 of the "POST to Create" model of AtomPub, and makes it easier for
 clients to find out about the capabilities of a specific collection.

https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/rfc5023
https://datatracker.ietf.org/doc/html/rfc4287

Arwe, et al. Expires August 11, 2014 [Page 4]

Internet-Draft Accept-Post February 2014

 While the AtomPub protocol cannot be changed retroactively, this
 additional way of exposing interaction guidance could make it easier
 for clients to interact with AtomPub services that do support the
 Accept-Post header field. For those that do not support Accept-Post,
 clients would still have to rely on using the information contained
 in the service document (including the sometimes tricky issue of how
 to locate the service document for a given collection).

5.2. Linked Data Platform

 The Linked Data Platform (LDP) [W3C.WD-ldp-20130730] describes a set
 of best practices and simple approach for a read-write Linked Data
 architecture, based on HTTP access to Web resources that describe
 their state using the RDF data model. LDP defines LDP Containers
 (LDPC) and LDP Resources (LDPR). Adding new LDPRs to an LDPC is done
 by sending an HTTP POST request to the LDPC. An LDPC can constrain
 the media types it is accepting for these POST requests, and should
 expose its support for accepted media types via Accept-Post.

 In fact, the Accept-Post header was initially developed within the
 W3C's LDP Working Group (LDPWG), see Appendix A for acknowledgements.
 It was then decided that the header itself might be useful in other
 contexts as well, and thus should be specified in a standalone
 document.

5.3. Additional Information in Error Responses

 If a client POSTs an unsupported POST document, it is possible for
 the server to use Accept-Post to indicate the supported media types.
 These can be specified using a 415 (Unsupported Media Type) response
 when the client sends a POST document format that the server does not
 support for the resource identified by the Request-URI. Such a
 response then MAY include an Accept-Post response header notify the
 client what POST document media types are supported.

 This example applies to all resources supporting a limited set of
 media types for POST requests, such as the ones listed in the
 previous to sections. In both AtomPub and LDP, it would be possible
 for a server to include an Accept-Post header in a 415 response to a
 failed POST request, and indicate the media types that are accepted
 for POST requests.

6. Implementation Status

 Note to RFC Editor: Please remove this section before publication.

 This section records the status of known implementations of the

Arwe, et al. Expires August 11, 2014 [Page 5]

Internet-Draft Accept-Post February 2014

 protocol defined by this specification at the time of posting of this
 Internet-Draft, and is based on a proposal described in RFC 6982
 [RFC6982]. The description of implementations in this section is
 intended to assist the IETF in its decision processes in progressing
 drafts to RFCs. Please note that the listing of any individual
 implementation here does not imply endorsement by the IETF.
 Furthermore, no effort has been spent to verify the information
 presented here that was supplied by IETF contributors. This is not
 intended as, and must not be construed to be, a catalog of available
 implementations or their features. Readers are advised to note that
 other implementations may exist.

 According to RFC 6982, "this will allow reviewers and working groups
 to assign due consideration to documents that have the benefit of
 running code, which may serve as evidence of valuable experimentation
 and feedback that have made the implemented protocols more mature.
 It is up to the individual working groups to use this information as
 they see fit".

6.1. Eclipse Lyo

 Organization: IBM developed and contributed to the Eclipse Lyo
 project [3].

 Name: Eclipse Lyo "LDP reference implementation" [4]

 Description: A very simple reference implementation for W3C Linked
 Data Platform (LDP) using some base Java technologies such as
 JAX-RS 2.0 and Apache Jena. The goals of this reference
 implementation is to experiment with validating the concepts in
 the specification and understanding what a SDK might look like to
 build LDP-compliant servers. Additional goal is to validate the
 approach for usage in OSLC4J SDK for building OSLC [5] clients and
 servers.

 Maturity: Early prototype/alpha.

 Coverage: All parts of the specification were covered for server
 requirements.

 Licensing: Freely distributable (Eclipse Public License (EPL) [6]
 and Eclipse Distribution License (EDL) [7]).

 Implementation Experience: Experience is only from the server
 perspective of generating the HTTP response header. It was
 trivial using JAX-RS 2.0 mechanism using a ContainerResponseFilter
 on all responses. More details about this approach are described
 in this blog post [8].

https://datatracker.ietf.org/doc/html/rfc6982
https://datatracker.ietf.org/doc/html/rfc6982
https://datatracker.ietf.org/doc/html/rfc6982

Arwe, et al. Expires August 11, 2014 [Page 6]

Internet-Draft Accept-Post February 2014

 Contact: Steve Speicher <sspeiche@gmail.com>

6.2. RWW.I/O

 Organization: No particular organization. The work done is part
 of project RWW.I/O [9].

 Name: RWW.I/O - personal linked data storage.

 Description: A minimal support for LDP is now included in RWW.I/O,
 which is a personal linked data storage space, following the
 structure of a Unix file system. Currently, only LDPCs are
 supported, since the LDPRs are always files or directories that
 are being managed through RESTful operations. RWW.I/O encourages
 the use of .meta files to semantically describe non-LD resources
 (e.g. images, html, js, css, etc.), and the use of .acl files for
 access control rules using the WAC vocabulary. Both .meta and
 .acl should be used per file (i.e. photo.jpg will have a
 .meta.photo.jpg and a .acl.photo.jpg).

 Maturity: Beta until more features from LDP spec are included (if
 necessary).

 Coverage: LDPCs on the server side, pagination and Accept-Post
 header. You can test LDPC support like this: curl -H "Accept:
 text/turtle" https://deiu.rww.io/public/?p=1 ; You can test
 Accept-Post header like this: curl -v -X OPTIONS -H "Accept: text/
 turtle" https://deiu.rww.io/public/

 Licensing: MIT license. Source code is available on GitHub [10].

 Implementation Experience: Implementing current LDP features in
 RWW.I/O was trivial. I've also decided to add the Accept-Post
 header to HEAD replies, as it helps to reduce the number of
 requests for a client trying to discover more information about
 the server.

 Contact: Andrei Sambra <andrei.sambra@gmail.com>

6.3. Tivoli Workload Automation

 Organization: IBM [11]

 Name: Tivoli Workload Automation [12]

 Description: An existing scheduling product that already
 implements the OSLC Automation specification [13] (both client and
 server roles), including creation factories for Automation

https://deiu.rww.io/public/?p=1
https://deiu.rww.io/public/

Arwe, et al. Expires August 11, 2014 [Page 7]

Internet-Draft Accept-Post February 2014

 Requests that accept HTTP POST requests. Since OSLC Automation
 offers no programmatic way for clients to know which media types
 are supported by the server, clients are limited in practice to
 those required by OSLC Automation (RDF/XML), or to making
 optimistic requests using other RDF media types.

 Maturity: Early prototype/alpha

 Coverage: All parts of the specification were covered for server
 and client requirements.

 Licensing: proprietary

 Implementation Experience: Experience from the server perspective
 of generating the HTTP response header is that it was trivial
 using JAX-RS annotations to add another response header. Client
 parsing of the header presented no new problems, since the syntax
 is almost identical to the server-side processing of an Accept
 header.

 Contact: John Arwe <johnarwe@us.ibm.com>

6.4. Jazz for Service Management

 Organization: IBM [11]

 Name: Jazz for Service Management Registry Services

 Description: An existing component bundled with multiple existing
 Cloud and Smarter Infrastructure (formerly branded as Tivoli)
 products. It already supports multiple resource collections that
 use HTTP POST requests to create new member resources, e.g.
 "registration records". Given that clients have no existing means
 by which they can know which media types the server supports, and
 given that Registry Services has been adding new media types over
 the past few months as part of its continuous delivery process,
 Accept-Post is a natural fit to enable looser client coupling.

 Maturity: Early prototype/alpha

 Coverage: All parts of the specification were covered for server
 requirements.

 Licensing: proprietary

 Implementation Experience: Experience is only from the server
 perspective of generating the HTTP response header. It was easy
 to add a new header using JAX-RS annotations.

Arwe, et al. Expires August 11, 2014 [Page 8]

Internet-Draft Accept-Post February 2014

 Contact: John Arwe <johnarwe@us.ibm.com>

7. Security Considerations

 The Accept-Post header may expose information that a server would
 prefer to not publish. In such a case, a server can simply stop
 exposing the header, in which case HTTP interactions would be back to
 the level of standard HTTP (i.e., with no indication what kind of
 media types a resource accepts in POST requests).

8. Open Issues

 Note to RFC Editor: Please remove this section before publication.

 o All references to HTTP currently reference RFC 2616, except for
 the ABNF reference of the header field value, which references the
 latest HTTPbis draft. The final version should make sure that all
 references are to the same version of HTTP, either RFC 2616, or
 the updated HTTPbis version currently being finalized.

 o Accept-Post currently uses the "media range" concept of HTTP's
 Accept header field. An alternative would be only support fully
 specified media types, which is what the Accept-Patch header field
 is doing. This latter solution is more constrained, and fails to
 address some uses cases, such as AtomPub's way of exposing
 collection support for POST requests.

 o While "accept-post" is currently defined in the "HTTP Link Hints"
 draft [I-D.nottingham-link-hint], it would be good to align the
 way in which they work. Currently, the "accept-post" of link
 hints allows a list of specific media types, whereas the Accept-
 Post header field may contain "media ranges".

9. Change Log

 Note to RFC Editor: Please remove this section before publication.

9.1. From -01 to -02

 o Added header field example.

 o Updated author address.

 o Adding more entries to the "Implementation Status" section.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Arwe, et al. Expires August 11, 2014 [Page 9]

Internet-Draft Accept-Post February 2014

9.2. From -00 to -01

 o Changed ABNF for header field from RFC 2616 to HTTPbis convention
 (only specify the header field value grammar).

 o Added implementations (all from the LDP community for now).

 o Added open issue for aligning accept-post as defined by the "HTTP
 Link Hints" draft.

10. References

10.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 September 2004.

10.2. Informative References

 [I-D.ietf-httpbis-p2-semantics]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Semantics and Content",

draft-ietf-httpbis-p2-semantics-23 (work in progress),
 July 2013.

 [I-D.nottingham-link-hint]
 Nottingham, M., "HTTP Link Hints",

draft-nottingham-link-hint-00 (work in progress),
 June 2013.

 [RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, December 2005.

 [RFC5023] Gregorio, J. and B. de hOra, "The Atom Publishing
 Protocol", RFC 5023, October 2007.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p2-semantics-23
https://datatracker.ietf.org/doc/html/draft-nottingham-link-hint-00
https://datatracker.ietf.org/doc/html/rfc4287
https://datatracker.ietf.org/doc/html/rfc5023
https://datatracker.ietf.org/doc/html/rfc5789

Arwe, et al. Expires August 11, 2014 [Page 10]

Internet-Draft Accept-Post February 2014

 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", RFC 6982,
 July 2013.

 [W3C.WD-ldp-20130730]
 Speicher, S., Arwe, J., and A. Malhotra, "Linked Data
 Platform 1.0", World Wide Web Consortium LastCall WD-ldp-
 20130730, July 2013,
 <http://www.w3.org/TR/2013/WD-ldp-20130730>.

URIs

 [1] <https://www.ietf.org/mailman/listinfo/apps-discuss>

 [2] <https://github.com/dret/I-D/tree/master/accept-post>

 [3] <http://eclipse.org/lyo>

 [4] <http://wiki.eclipse.org/Lyo/BuildLDPSample>

 [5] <http://open-services.net>

 [6] <http://www.eclipse.org/legal/epl-v10.html>

 [7] <http://www.eclipse.org/org/documents/edl-v10.php>

 [8] <http://stevespeicher.blogspot.com/2013/08/
supporting-accept-post-in-jax-rs.html>

 [9] <https://rww.io/>

 [10] <https://github.com/deiu/rww.io>

 [11] <http://www.ibm.com/>

 [12] <https://www.ibm.com/developerworks/community/forums/html/
topic?id=f403c299-c1c6-4da8-8b12-f3b72de54a1a>

 [13] <http://open-services.net/wiki/automation/
OSLC-Automation-Specification-Version-2.0/>

Appendix A. Acknowledgements

 Thanks for comments and suggestions provided by Julian Reschke.

 This work has been done in the context of the W3C Linked Data
 Platform Working Group (LDPWG) [W3C.WD-ldp-20130730]; thanks for

https://datatracker.ietf.org/doc/html/rfc6982
http://www.w3.org/TR/2013/WD-ldp-20130730
https://www.ietf.org/mailman/listinfo/apps-discuss
https://github.com/dret/I-D/tree/master/accept-post
http://eclipse.org/lyo
http://wiki.eclipse.org/Lyo/BuildLDPSample
http://open-services.net
http://www.eclipse.org/legal/epl-v10.html
http://www.eclipse.org/org/documents/edl-v10.php
http://stevespeicher.blogspot.com/2013/08/supporting-accept-post-in-jax-rs.html
http://stevespeicher.blogspot.com/2013/08/supporting-accept-post-in-jax-rs.html
https://rww.io/
https://github.com/deiu/rww.io
http://www.ibm.com/
https://www.ibm.com/developerworks/community/forums/html/topic?id=f403c299-c1c6-4da8-8b12-f3b72de54a1a
https://www.ibm.com/developerworks/community/forums/html/topic?id=f403c299-c1c6-4da8-8b12-f3b72de54a1a
http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.0/
http://open-services.net/wiki/automation/OSLC-Automation-Specification-Version-2.0/

Arwe, et al. Expires August 11, 2014 [Page 11]

Internet-Draft Accept-Post February 2014

 comments and suggestions provided by the working group as a whole.

Authors' Addresses

 John Arwe
 IBM

 Email: johnarwe@us.ibm.com

 Steve Speicher
 IBM

 Email: sspeiche@us.ibm.com

 Erik Wilde
 UC Berkeley

 Email: dret@berkeley.edu
 URI: http://dret.net/netdret/

http://dret.net/netdret/

Arwe, et al. Expires August 11, 2014 [Page 12]

