
Network Working Group S. Wilkinson
Internet-Draft YFS
Intended status: Informational B. Kaduk
Expires: July 12, 2014 MIT
 January 8, 2014

rxgk: GSSAPI based security class for RX
draft-wilkinson-afs3-rxgk-10

Abstract

 rxgk is a security class for the RX RPC protocol. It uses the GSSAPI
 framework to provide an authentication service that provides
 authentication, confidentiality and integrity protection for the rxgk
 security class. This document provides a general description of rxgk
 and how to integrate it into generic RX applications. Application
 specific behaviour will be described, as necessary, in future
 documents.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 12, 2014.

Copyright Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Wilkinson & Kaduk Expires July 12, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

Table of Contents

1. Introduction . 3
1.1. Requirements Language 3

2. Time Representation . 4
3. Encryption Framework . 4
3.1. Key Usage Values . 4

4. Security Levels . 4
5. Token Format . 5
6. Key Negotiation . 6
6.1. RPC Interface . 6
6.2. GSS Negotiation Loop 9
6.3. Returned Information 11

7. Combining Tokens . 13
7.1. Overview . 13
7.2. Key Combination Algorithm 14
7.3. RPC Definition . 14
7.4. Server Operation . 14
7.5. Client Operation . 15

8. The rxgk Security Class 15
8.1. Overview . 16
8.2. Rekeying . 16
8.3. Key Derivation . 17
8.4. The Challenge . 17
8.5. The Response . 17
8.5.1. The Authenticator 18

8.6. Checking the Response 18
8.7. Packet Handling . 19
8.7.1. Authentication Only 19
8.7.2. Integrity Protection 19
8.7.3. Encryption . 21

9. RXGK protocol error codes 21
10. AFS-3 Registry Considerations 23
11. IANA Considerations . 23
12. Security Considerations 24
12.1. Abort Packets . 24
12.2. Token Expiry . 24
12.3. Nonce Lengths . 24

13. References . 25
13.1. Informational References 25
13.2. Normative References 25

Appendix A. Acknowledgements 26
Appendix B. Changes . 26
B.1. Since 00 . 26
B.2. Since 01 . 27
B.3. Since 02 . 27
B.4. Since 03 . 28
B.5. Since 04 . 28

Wilkinson & Kaduk Expires July 12, 2014 [Page 2]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

B.6. Since 05 . 28
B.7. Since 06 . 28
B.8. Since 07 . 28
B.9. Since 08 . 29
B.10. Since 09 . 29

 Authors' Addresses . 29

1. Introduction

 rxgk is a GSSAPI [RFC2743] based security class for the rx [RX]
 protocol. It provides authentication, confidentiality and integrity
 protection for rx RPC calls, using a security context established
 using any GSSAPI mechanism with confidentiality, mutual
 authentication, and PRF [RFC4401] support. The External Data
 Representation Standardard, XDR [RFC4506], is used to represent data
 structures on the wire and in the code fragments contained within
 this document.

 rxgk is intended to replace the existing rxkad security class, which
 is limited to very weak cryptography (approximately single-DES
 [RFC6649]), owing to its roots in the era of Kerberos 4, and is
 deficient in many other ways. rxgk will bring in stronger
 cryptography with key derivation for different operations, as well as
 allowing for flexible initial authentication via the GSS-API
 [RFC2743].

 Architecturally, rxgk is split into two parts. The rxgk rx security
 class provides strong encryption using previously negotiated ciphers
 and keys. It builds on the Kerberos crypto framework [RFC3961] for
 its encryption requirements, but is authentication mechanism
 independent -- the class itself does not require the use of either
 Kerberos, or GSSAPI. The security class simply uses a previously
 negotiated encryption type, and master key. The master key is never
 directly used, but instead a per-connection key is derived for each
 new secure connection that is established.

 The second portion of rxgk is a service which permits the negotiation
 of an encryption algorithm, and the establishment of a master key.
 This is done via a separate RPC exchange with a server, prior to the
 setup of any rxgk connections. The exchange establishes an rxgk
 token, and a master key shared between client and server. This
 exchange is protected within a GSSAPI security context.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4401
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc6649
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wilkinson & Kaduk Expires July 12, 2014 [Page 3]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

2. Time Representation

 rxgk expresses absolute time as a 64-bit integer. This contains the
 time relative to midnight, or 0 hour, January 1, 1970 UTC,
 represented in increments of 100 nanoseconds, excluding any leap
 seconds. Negative times, whilst permitted by the representation,
 MUST NOT be used within rxgk.

 typedef hyper rxgkTime;

3. Encryption Framework

 Bulk data encryption within rxgk is performed using the encryption
 framework defined by RFC3961 [RFC3961]. Any algorithm which is
 defined using this framework and supported by both client and server
 may be used.

3.1. Key Usage Values

 In order to avoid using the same key for multiple tasks, key
 derivation is employed. To avoid any conflicts with other users of
 these keys, key usage numbers are allocated within the application
 space documented in section 4 of RFC4120 [RFC4120].

 const RXGK_CLIENT_ENC_PACKET = 1026;
 const RXGK_CLIENT_MIC_PACKET = 1027;
 const RXGK_SERVER_ENC_PACKET = 1028;
 const RXGK_SERVER_MIC_PACKET = 1029;
 const RXGK_CLIENT_ENC_RESPONSE = 1030;
 const RXGK_SERVER_ENC_TOKEN = 1036;

 The application of these key usage numbers is specified in Section 8.

4. Security Levels

 rxgk supports the negotiation of a range of different security
 levels. These, along with the protocol constants that represent them
 during key negotiation, are:

 Authentication only (0) Provides only connection authentication,
 without either integrity or confidentiality protection. This
 mode of operation can provide higher throughput, but is
 vulnerable to man in the middle attacks and gives no protection
 against eavesdropping. This corresponds to the traditional
 rxkad 'clear' security level.

 Integrity (1) Provides integrity protection only. Data is protected
 from modification by an attacker, but not against

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4120#section-4
https://datatracker.ietf.org/doc/html/rfc4120

Wilkinson & Kaduk Expires July 12, 2014 [Page 4]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 eavesdropping. This corresponds to the traditional rxkad
 'auth' security level, authenticating the data payload as well
 as the Rx connection.

 Encryption (2) Provides both integrity and confidentiality
 protection. This corresponds to the traditional rxkad 'crypt'
 security level.

 enum RXGK_Level {
 RXGK_LEVEL_CLEAR = 0,
 RXGK_LEVEL_AUTH = 1,
 RXGK_LEVEL_CRYPT = 2
 };

5. Token Format

 An rxgk token is an opaque identifier which is specific to a
 particular application's implementation of rxgk. The token is
 completely opaque to the client, which just receives it from one
 server and passes it to another. The token MUST permit the receiving
 server to identify the corresponding user and session key for the
 incoming connection -- whether that be by decrypting the information
 within the token, or making the token a large random identifier which
 keys a lookup table on the server, or some other mechanism. It is
 assumed that such mechanisms will conceptually "encrypt" a token by
 somehow associating the "encrypted" token with the associated
 unencrypted data, and will "decrypt" an encrypted token by using that
 association to find the unencrypted data. As such, this document
 will use "encrypt" and "decrypt" to refer to these operations on
 tokens. If the token is an encrypted blob, it should be encrypted
 using the key usage RXGK_SERVER_ENC_TOKEN.

 At a minimum, the decrypted token would need to include the master
 session key K0 (and enctype). A decrypted token would also be
 expected to contain a representation of the user's identity, the
 token expiration time, and various connection parameters, such as the
 negotiated lifetimes (see Section 6), but operation without those
 parameters is conceivable.

 The token MUST NOT expose the session key on the wire. The token
 MUST be sufficiently random that an attacker cannot predict suitable
 token values by observing other connections. An attacker MUST NOT be
 able to forge tokens which convey a particular session key or
 identity.

Wilkinson & Kaduk Expires July 12, 2014 [Page 5]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

6. Key Negotiation

 rxgk uses an independent RX RPC service for key negotiation. The
 location of this service is application dependent. Within a given
 application protocol, a client MUST be able to locate the key
 negotiation service, and that service MUST be able to create tokens
 which can be read by the application server. The simplest deployment
 has the negotiation service running on every application server, on
 the same transport endpoints, but using a separate, dedicated, rx
 service ID.

 The rxgk key negotiation service uses the service ID 34567.

 GSS security context negotiation requires that the initiator specify
 a principal name for the acceptor; in the absence of application-
 specific knowledge, when using rxgk over a port number registered
 with IANA, the registered service name SHOULD be used to construct
 the target principal name as <service name>@<hostname> using the name
 type GSS_C_NT_HOSTBASED_SERVICE.

6.1. RPC Interface

 The key negotiation protocol is defined by the RPC-L below. The
 maximum length of data allowable in an RXGK_Data object,
 RXGK_MAXDATA, is application-specific, but MUST NOT be less than
 1048576.

Wilkinson & Kaduk Expires July 12, 2014 [Page 6]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 /* limits for variable-length arrays */
 const RXGK_MAXENCTYPES = 255;
 const RXGK_MAXLEVELS = 255;
 const RXGK_MAXMIC = 1024;
 const RXGK_MAXNONCE = 1024;
 /* const RXGK_MAXDATA = 1048576; */

 typedef int RXGK_Enctypes<RXGK_MAXENCTYPES>;
 typedef opaque RXGK_Data<RXGK_MAXDATA>;

 struct RXGK_StartParams {
 RXGK_Enctypes enctypes;
 RXGK_Level levels<RXGK_MAXLEVELS>;
 unsigned int lifetime;
 unsigned int bytelife;
 opaque client_nonce<RXGK_MAXNONCE>;
 };

 struct RXGK_ClientInfo {
 int errorcode;
 int enctype;
 RXGK_Level level;
 unsigned int lifetime;
 unsigned int bytelife;
 rxgkTime expiration;
 opaque mic<RXGK_MAXMIC>;
 RXGK_Data token;
 opaque server_nonce<RXGK_MAXNONCE>;
 };

 package RXGK_

 GSSNegotiate(IN RXGK_StartParams *client_start,
 IN RXGK_Data *input_token_buffer,
 IN RXGK_Data *opaque_in,
 OUT RXGK_Data *output_token_buffer,
 OUT RXGK_Data *opaque_out,
 OUT unsigned int *gss_major_status,
 OUT unsigned int *gss_minor_status,
 OUT RXGK_Data *rxgk_info) = 1;

 The client populates RXGK_StartParams with its preferred options.
 The enctypes and levels parameters are lists of values supported by
 the client, and MUST be ordered from best to worst, with the client's
 favoured option occurring first within the list. The parameters are:

Wilkinson & Kaduk Expires July 12, 2014 [Page 7]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 enctypes: List of encryption types from the Kerberos Encryption Type
 Number registry created in RFC3961 and maintained by IANA.
 This list indicates the encryption types that the client is
 prepared to support.

 levels: List of supported rxgk transport encryption levels. See
Section 4 for allowed values.

 lifetime: The maximum number of seconds that a connection key should
 be used before rekeying. A value of 0 indicates that the
 connection should not be rekeyed based on its lifetime. This
 lifetime is advisory -- a connection that is past its lifetime
 should be permitted to continue, but endpoints SHOULD attempt
 to rekey the connection (as per Section 8.2) at their earliest
 convenience. The use of the lifetime to determine when to
 rekey a connection is described in Section 8.2.

 bytelife: The maximum amount of data to be transferred over the
 connection before it should be rekeyed, expressed as log base 2
 of the number of bytes. A value of 0 indicates that there is
 no limit on the number of bytes that may be transmitted. The
 byte lifetime is advisory -- a connection that is over its byte
 lifetime should be permitted to continue, but endpoints SHOULD
 attempt to rekey the connection (as per Section 8.2) at their
 earliest convenience. The use of the bytelife to determine
 when to rekey a connection is described in Section 8.2 along
 with the lifetime.

 client_nonce: A client-generated string of random bytes, to be used
 as input to the key generation. This nonce SHOULD be at least
 20 octets in length, but SHOULD NOT be longer than the longest
 key generation seed length in the [RFC3961] profile of the
 proposed enctypes.

 The GSSNegotiate RPC is used within the GSS negotiation loop
 (described below), which begins with the client calling
 GSS_Init_sec_context() to obtain an output token to send to the
 server. The GSS service name is application dependent; for
 constructing a service name see Section 6.

 The client then calls GSSNegotiate, as defined above. This takes the
 following parameters:

 client_start The client params structure detailed above. This will
 remain constant across the negotiation.

 input_token_buffer The token produced by a call to
 GSS_Init_sec_context().

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires July 12, 2014 [Page 8]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 opaque_in An opaque token, which was returned by the server
 following a previous call to GSSNegotiate in this negotiation.
 If this is the first call, opaque_in should be zero-length.

 output_token_buffer The token output by the server's call to
 GSS_Accept_sec_context(). It is RECOMMENDED that error tokens
 be sent, if produced.

 opaque_out An opaque token, which the server may use to preserve
 state information between multiple RPCs in the same context
 negotiation. The client should use this value as opaque_in in
 its next call to GSSNegotiate in this context negotiation.

 gss_major_status An indication of the major status code output by
 the server's call to GSS_Accept_sec_context(). The abstract
 GSS-API does not specify the encoding for status values, so the
 return value cannot necessarily just be transmitted as-is. The
 status code values for GSS_S_COMPLETE (0) and
 GSS_S_CONTINUE_NEEDED (1) from the C bindings in [RFC2744] are
 used and the encoding of all other status codes is unspecified
 As such, any distinction between other non-zero values is
 purely informational.

 gss_minor_status The minor status code returned by
 GSS_Accept_sec_context(). Implementors should note that minor
 status codes are not portable between GSSAPI implementations
 and therefore this field can only be of informative value.

 rxgk_info If gss_major_status == GSS_S_COMPLETE, this contains the
 output of GSS_Wrap() performed over an XDR encoded
 RXGK_ClientInfo structure from the server, containing the
 server's response to the client. See below.

6.2. GSS Negotiation Loop

 To effect key negotiation, the client and server undertake a standard
 GSS negotiation loop, using the GSSNegotiate() RPC as the
 communication channel for exchanging context tokens. The client acts
 as the GSS initiator, calling GSS_Init_sec_context(), and the server
 is the GSS acceptor, calling GSS_Accept_sec_context() [RFC2743],
 [RFC2744]. A description of the structure of the GSS negotiation
 loop, consolidating the requirements from RFC 2743 into a single
 location, is found in [GSSLOOP]. The loop continues until both
 parties have completed the security context negotiation
 (GSS_Init_sec_context() and GSS_Accept_sec_context() return
 GSS_S_COMPLETE) or an error occurs with the negotiation.

https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc2743

Wilkinson & Kaduk Expires July 12, 2014 [Page 9]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 All calls to GSSNegotiate() in the loop MUST occur on the same RX
 connection. GSS security context tokens are transferred from
 initiator to acceptor in the input_token_buffer argument of the RPC,
 and security context tokens are transferred from the acceptor to the
 initiator in the output_token_buffer argument of the RPC. The
 opaque_in and opaque_out arguments of the RPC allow the acceptor to
 retain state on the security context being constructed across
 multiple calls to GSSNegotiate(); the contents of these opaques are
 application-specific.

 Due to the stateless nature of Rx RPC servers, there is no need for
 the initiator to report errors in context establishment to the
 acceptor. The acceptor has three ways in which errors can be
 reported back to the initiator: the RPC return value, the
 gss_major_status/gss_minor_status output arguments, and the
 'errorcode' field of the RXGK_ClientInfo. The errorcode field should
 be used to report an error (using a com_err error code) if either of
 the following are true:

 1. The acceptor's security context negotiation is complete but a
 non-GSS error occurred while constructing the RXGK_ClientInfo.

 2. The acceptor's security context negotiation is complete but the
 security context does not provide the necessary functionality for
 rxgk (see below).

 If the errorcode field of the RXGK_ClientInfo is nonzero, the other
 fields in the RXGK_ClientInfo MUST be set to zero or zero-length, as
 appropriate. If an error is returned from GSS_Accept_sec_context()
 or any other GSS library call, during security context establishment
 or the preparation of the rxgk_info output parameter, this failure is
 reported in the gss_major_status and gss_minor_status output
 arguments of the RPC. If a non-GSS error occurs during the context
 negotiation loop, this error is reported as a com_err error code in
 the RPC return value. When the initiator receives indication of an
 error from the acceptor, the initiator terminates its half of the
 context negotiation loop. In general, such an error should be
 reported back to the user and no automated failover should occur
 other than a limited number of retries.

 Because the values of the GSS error codes are not specified in the
 abstract GSS API, we use the values for GSS_S_COMPLETE and
 GSS_S_CONTINUE_NEEDED from the C bindings in [RFC2744]; other values
 serve to indicate that an error occurred, but are otherwise purely
 informational in nature.

 rxgk requires mutual authentication, message confidentiality, and
 message integrity protection. Both initiator and acceptor MUST check

https://datatracker.ietf.org/doc/html/rfc2744

Wilkinson & Kaduk Expires July 12, 2014 [Page 10]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 the mutual_state, conf_avail, and integ_avail flags for the completed
 security context. Accordingly, the initiator MUST set the
 corresponding request flags, mutual_req_flag, conf_req_flag, and
 integ_req_flag. If the acceptor detects that one or more of these
 flags are missing, it MUST report the error in the errorcode field of
 the returned RXGK_ClientInfo (and not populate the other fields of
 that structure). If the initiator detects that one or more of these
 flags are missing, it MUST fail the key negotiation attempt.

 Failure of the negotiation loop or failure to establish a
 sufficiently protected security context will in general affect the
 client's future behavior, potentially even the security class used
 for future connections, so care should be taken to report errors in a
 secure fashion when possible. A failure of the negotiation loop may
 occur for transient reasons and should not necessarily be interpreted
 to mean that rxgk is not usable on this connection (see Section 12),
 whereas an error returned in the errorcode field of the
 RXGK_ClientInfo object is subject to GSS protection and is more
 likely to be usable for determining future actions.

6.3. Returned Information

 Upon successful completion of the loop (negotiation of a GSS security
 context), rxgk_info contains a GSS wrap token (as generated by
 GSS_Wrap() using the acceptor's established security context) taken
 over the XDR encoding of an RXGK_ClientInfo structure. If
 confidentiality protection is available (the conf_ret_flag was set),
 then conf_flag MUST be set to true in the call to GSS_Wrap(). If
 confidentiality proection is not available, then the RXGK_ClientInfo
 MUST NOT contain a valid token. It is only appropriate to use
 GSS_Wrap() without confidentiality protection for the returned
 RXGK_ClientInfo when using the errorcode field of the RXGK_ClientInfo
 structure to report an error in the negotiation process. The
 unavailability of confidentiality protection itself is one error that
 might be indicated in such a fashion. The client should decrypt the
 received rxgk_info structure using GSS_Unwrap(). If the value of
 conf_state returned from gss_unwrap() is zero, then the negotiation
 has failed to obtain a valid token. In this case the value of the
 errorcode element may still be inspected for additional information.

 RXGK_ClientInfo contains the following server populated fields:

 errorcode A policy (rather than connection establishment) error
 code. If non-zero, an error has occurred, the resulting key
 negotiation has failed, and the rest of the values in this
 structure are undefined. These policy error codes are from
 com_err tables [COMERR] and may represent such conditions as
 insufficient authorization or that the client has too many

Wilkinson & Kaduk Expires July 12, 2014 [Page 11]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 active connections to the service. Error codes may be RXGK
 errors (see Section 10) or from an application-specific table.

 enctype The encryption type selected by the server. This SHALL be
 one of the types listed by the client in its StartParams
 structure.

 level The rxgk security level selected by the server, see Section 4
 for allowed values.

 lifetime The connection lifetime, in seconds, as determined by the
 server. The server MAY honor the client's request, but the
 server MUST choose a value at least as restrictive as the value
 requested by the client. A value of zero indicates that the
 connection should not be rekeyed based on its lifetime.

 bytelife The maximum amount of data (as log base 2 of the number of
 bytes) that may be transfered using this key. The server MAY
 honor the client's request, but the server MUST choose a value
 at least as restrictive as the value requested by the client.
 A value of 0 indicates that the connection should not be
 rekeyed based on the number of bytes transmitted over the
 connection.

 expiration The time, expressed as an rxgkTime, at which this token
 expires. The expiration time MAY be set administratively by
 the server, and SHOULD reflect the expiration time of the
 underlying GSSAPI credential. The token SHOULD NOT expire
 later than the underlying GSSAPI credential.

 mic The result of calling gss_get_mic() [RFC2744] over the XDR
 encoded representation of the StartParams request received by
 the server.

 token An rxgk token. This is an opaque blob, as detailed in
Section 5.

 server_nonce The random nonce used by the server to create the K0
 contained within the rxgk token. The length of this nonce
 SHOULD be the key generation seed length of the selected
 enctype.

 Upon receiving the server's response, the client MUST verify that the
 mic contained within it matches the MIC of the XDR representation of
 the StartParams structure it sent to the server (this prevents a man
 in the middle from performing a downgrade attack). The client SHOULD
 also verify that the server's selected connection properties match
 those proposed by the client.

https://datatracker.ietf.org/doc/html/rfc2744

Wilkinson & Kaduk Expires July 12, 2014 [Page 12]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 The client may then compute K0, by taking the nonce it sent to the
 server (client_nonce) and the one it has just received
 (server_nonce), combining them together, and passing them to
 GSS_Pseudo_random() [RFC4401] with the GSS_C_PRF_KEY_FULL option:

 GSS_Pseudo_random(gssapi_context,
 GSS_C_PRF_KEY_FULL,
 client_nonce || server_nonce,
 K_len,
 *K0);

 || is the concatenation operation.

 K_len is the required output length as specified in the RFC3961
 profile of the negotiated enctype.

 The ouput of GSS_Pseudo_random must then be passed through the
 random-to-key operation specified in the RFC3961 profile for the
 negotiated enctype in order to obtain the actual key K0.

 The GSS_Pseudo_random() operation is deterministic, ensuring that the
 client and server generate the same K0. The gssapi_context parameter
 is the same context used in the client's GSS_Init_sec_context() call
 and the server's GSS_Accept_sec_context() call.

7. Combining Tokens

7.1. Overview

 A client may elect to combine multiple rxgk tokens in its possession
 into a single token. This allows an rx connection to be secured
 using a combination of multiple, individually established identities,
 which provides additional security for a number of application
 protocols.

 Token combination is performed using the CombineTokens RPC call. The
 client has two keys -- K0 and K1, and two tokens, T0 and T1. The
 client calls the CombineTokens RPC with T0 and T1 and negotiates the
 enctype and security level of the new token, received as Tn. Tn
 contains the new key Kn, as computed by the server. Using the
 negotiated enctype returned by the server, the client then locally
 combines the two keys using a defined combination algorithm to
 produce Kn.

https://datatracker.ietf.org/doc/html/rfc4401
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires July 12, 2014 [Page 13]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

7.2. Key Combination Algorithm

 Assume that the tokens being combined are T0 and T1, with master keys
 K0 and K1. The new master key for the combined token, Kn is computed
 using the KRB-FX-CF2 operation, described in section 5.1 of
 [RFC6113]. The PRF+ operations will correspond to their respective
 key enctypes, and the random-to-key operation will correspond to the
 negotiated new enctype. The constants pepper1 and pepper2 required
 by this operation are defined as the ASCII strings "AFS" and "rxgk"
 respectively.

7.3. RPC Definition

 The token combination RPC is defined as:

 struct RXGK_CombineOptions {
 RXGK_Enctypes enctypes;
 RXGK_Level levels<RXGK_MAXLEVELS>;
 };

 struct RXGK_TokenInfo {
 int enctype;
 RXGK_Level level;
 unsigned int lifetime;
 unsigned int bytelife;
 rxgkTime expiration;
 };

 CombineTokens(IN RXGK_Data *token0, IN RXGK_Data *token1,
 IN RXGK_CombineOptions *options,
 OUT RXGK_Data *new_token,
 OUT RXGK_TokenInfo *info) = 2;

7.4. Server Operation

 The server receives token0 and token1 from the RPC call, as well as
 the options suggested by the client. Upon receipt, the server
 decrypts these tokens using its private key. Providing this
 decryption is successful, it now has copies of the master key from
 both tokens (K0 and K1). The server then chooses an enctype and
 security level from the lists supplied by the client in the options
 argument. The server SHOULD select the first entry from each list
 which is acceptable in the server's configuration, so as to respect
 any preferences indicated by the client. The server then performs
 the key combination algorithm detailed above to obtain the new key,
 Kn. The server then constructs a new token as follows. The
 expiration field is set to the minimum of the expiration values of
 the original tokens. The lifetime, bytelife, and any application-

https://datatracker.ietf.org/doc/html/rfc6113#section-5.1
https://datatracker.ietf.org/doc/html/rfc6113#section-5.1

Wilkinson & Kaduk Expires July 12, 2014 [Page 14]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 specific data fields are each combined so that the result is the most
 restrictive of the two values in each of the original tokens. The
 identity information associated with the tokens are combined in an
 application-specific manner to yield the identity information in the
 combined token (the identity combining operation may be non-
 commutative). This new token contains the derived key, Kn. The new
 token is encrypted with the server's private key, as normal, and
 returned to the client. The enctype and level chosen by the server
 are returned in the info parameter, along with the computed lifetime,
 bytelife, and expiration.

 If the server is unable to perform the CombineTokens operation with
 the given arguments, a nonzero value is returned and the client's
 request fails.

 To reduce the potential for denial of service attacks, servers SHOULD
 only offer the CombineTokens operation to clients connecting over a
 secured rxgk connection. CombineTokens SHOULD NOT be offered over an
 RXGK_LEVEL_CLEAR connection.

7.5. Client Operation

 As detailed within the overview, the client calls the CombineTokens
 RPC using two tokens, T0 and T1, within its possession, as well as an
 RXGK_CombineOptions structure containing a list of acceptable
 enctypes and a list of acceptable security levels for the new token.
 The client SHOULD supply these lists sorted by preference, with the
 most preferred option appearing first in the list. The client then
 receives a new token, Tn, from this call, as well as an
 RXGK_TokenInfo structure containing information relating to Tn. The
 client needs the level element of the info parameter to determine
 what security level to use the new token at, and the enctype
 parameter to know which enctype's random-to-key function and key
 generation seed length to use in generating Kn. With the negotiated
 enctype, the client can then perform the key combination algorithm
 described in Section 8.3. The client can only make use of Tn to
 establish an rxgk protected connection if it can derive Kn, which it
 can only do if it already knows K0 and K1.

 Clients MUST use an rxgk secured connection for the CombineTokens
 operation.

8. The rxgk Security Class

Wilkinson & Kaduk Expires July 12, 2014 [Page 15]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

8.1. Overview

 When a new connection using rxgk is created by the client, the client
 stores the current timestamp as an rxgkTime (start_time for the rest
 of this discussion), and then uses this, along with other connection
 information, to derive a transport key from the current master key
 (see Section 8.3).

 This key is then used to protect the first message the client sends
 to the server. The server follows the standard RX security
 establishment protocol, and responds to the client with a challenge
 [RX]. rxgk challenges simply contain a random nonce selected by the
 server.

 Upon receiving this challenge, the client uses the transport key to
 encrypt an authenticator, which contains the server's nonce, and some
 other connection information. The client sends this authenticator,
 together with start_time and the current user's rxgk token, back to
 the server.

 The server decrypts the rxgk token to determine the master key in
 use, uses this to derive the transport key, which it in turn uses to
 decrypt the authenticator, and thus validate the connection.

8.2. Rekeying

 As part of connection negotiation, the server and client agree upon
 advisory lifetimes (both time, and data, based) for connection keys.
 Each connection has a key number, which starts at 0. When a
 connection exceeds one of its lifetimes, either side may elect to
 increment the key number. When the other endpoint sees a key number
 increment, it should the connection counters it uses to enforce these
 connection key lifetimes. Endpoints should accept packets encrypted
 with either the current, previous, or next key number, to allow for
 resends around the rekeying process.

 The key version number is contained within the 16 bit spare field of
 the RX header (used by previous security layers as a checksum field),
 and expressed as an unsigned value in network byte order. If
 rekeying would cause this value to wrap, then the key version number
 MAY be stored locally as a 32-bit integer on both endpoints with only
 the low 16 bits transmitted on the wire. If an endpoint cannot store
 a per-connection 32-bit key version number when the 16-bit key
 version number would wrap, that endpoint MUST terminate the
 connection.

Wilkinson & Kaduk Expires July 12, 2014 [Page 16]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

8.3. Key Derivation

 In order to avoid the sharing of keys between multiple connections,
 each connection has its own transport key, TK, which is derived from
 the master key, K0. Derivation is performed using the PRF+ function
 defined in [RFC4402], combined with the random-to-key function of
 K0's encryption type, as defined in RFC3961. The PRF input data is
 the concatenation of the rx epoch, connection ID, start_time and key
 number, all in network byte order. This gives:

 TK = random-to-key(PRF+(K0, L,
 epoch || cid || start_time || key_number))

 L is the key generation seed length as specified in the RFC3961
 profile.

 epoch, cid and key_number are passed as 32 bit quantities; start_time
 is a 64 bit value.

 Note that start_time is selected by the client when it creates the
 connection, and shared with the server as part of its response. Thus
 both sides of the negotiation are guaranteed to use the same value
 for start_time.

8.4. The Challenge

 The rxgk challenge is an XDR encoded structure with the following
 signature:

 struct RXGK_Challenge {
 opaque nonce[20];
 };

 nonce: 20 octets of random data.

8.5. The Response

 The rxgk response is an XDR encoded structure, with the following
 signature:

 const RXGK_MAXAUTHENTICATOR = 1416; /* better fit in a packet! */
 struct RXGK_Response {
 rxgkTime start_time;
 RXGK_Data token;
 opaque authenticator<RXGK_MAXAUTHENTICATOR>
 };

https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires July 12, 2014 [Page 17]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 start_time: The time since the Unix epoch (1970-01-01 00:00:00Z),
 expressed as an rxgkTime (see Section 2).

 authenticator: The XDR encoded representation of an
 RXGK_Authenticator, encrypted with the transport key, and key
 usage RXGK_CLIENT_ENC_RESPONSE.

8.5.1. The Authenticator

 struct RXGK_Authenticator {
 opaque nonce[20];
 opaque appdata<>;
 RXGK_Level level;
 unsigned int epoch;
 unsigned int cid;
 unsigned int call_numbers<>;
 };

 nonce: A copy of the nonce from the challenge.

 appdata: An application specific opaque blob.

 level: The desired security level for this particular connnection.
 This MUST NOT be less secure than the security level negotiated
 for the associated token.

 epoch: The rx connection epoch.

 cid: The rx connection ID.

 call_numbers: The set of current rx call numbers for all available
 channels; unused channels should report a call number of zero.
 The length of this vector indicates the maximum number of calls
 per connection supported by the client.

8.6. Checking the Response

 To check the validity of an rxgk response, the authenticator should
 be decrypted, the nonce from the decrypted authenticator compared
 with the nonce sent in the RXGK_Challenge, and the connection ID and
 epoch compared with that of the current connection. The call number
 vector (call_numbers) should be supplied to the rx implementation.
 The security level should be confirmed to be at least as secure as
 the security level of the token. Failure of any of these steps MUST
 result in the failure of the security context.

Wilkinson & Kaduk Expires July 12, 2014 [Page 18]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

8.7. Packet Handling

 The way in which the rxgk security class handles packets depends upon
 the requested security level. As noted in Section 4, 3 levels are
 currently defined -- authentication only, integrity protection and
 encryption.

 Connection parameters used when preparing a packet for transmission
 MUST be verified when processing a received packet. Packet handling
 when receiving packets is the inverse of the packet preparation
 procedures, with explicit data length fields used to remove padding
 added for encryption.

8.7.1. Authentication Only

 When running at the clear security level, RXGK_LEVEL_CLEAR, no
 manipulation of the payload is performed by the security class.

8.7.2. Integrity Protection

 Packet payloads transmitted at the auth security level,
 RXGK_LEVEL_AUTH, consist of an opaque blob of MIC data followed by
 the unencrypted original payload data.

 The MIC data is generated by calling the RFC3961 get_mic operation
 using a key and a data input. The RXGK_CLIENT_MIC_PACKET key usage
 number MUST be used for packets transmitted from the client to the
 server. The RXGK_SERVER_MIC_PACKET key usage number MUST be used for
 packets transmitted from the server to the client. The following
 data structure is the get_mic operation data input:

https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires July 12, 2014 [Page 19]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | epoch |
 +-+
 | cid |
 +-+
 | call number |
 +-+
 | sequence |
 +-+
 | security index |
 +-+
 | data length |
 +-+
 | |
 ~ original packet payload ~
 | |
 +-+

 All fields MUST be in network byte order. The data length field
 specifies the length of the original packet payload in octets,
 excluding padding required for encryption routines.

 The packet is transmitted with the following payload:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 ~ MIC ~
 | |
 | +-+
 | | |
 +-+-+-+-+-+-+-+-+ |
 | |
 ~ original packet payload ~
 | |
 +-+

 Note: The length of the MIC depends on which RFC3961 encryption type
 is used. In particular, the original packet payload may not be word-
 aligned.

 Note: The data prepended to the original packet payload during the
 MIC generation is not transmitted.

https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires July 12, 2014 [Page 20]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

8.7.3. Encryption

 Using the encryption security level, RXGK_LEVEL_CRYPT, provides both
 integrity and confidentiality protection.

 The existing payload is prefixed with a psuedo header, to produce the
 following plaintext data for encryption before transmission. All
 fields MUST be represented in network byte order for encryption.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | epoch |
 +-+
 | cid |
 +-+
 | call number |
 +-+
 | sequence |
 +-+
 | security index |
 +-+
 | data length |
 +-+
 | |
 ~ original packet payload ~
 | |
 +-+

 The data length is the length of the following data in octets, and is
 necessary so the receiving end can remove any padding added by the
 encryption routines.

 This plaintext is encrypted using an RFC3961 style encrypt()
 function, with the connection's transport key, using key usage
 RXGK_CLIENT_ENC_PACKET for messages from client to server, and
 RXGK_SERVER_ENC_PACKET for messages from server to client. The
 encrypted block is transmitted to the peer as the payload of the
 packet.

9. RXGK protocol error codes

 This document specifies several error codes for use by RXGK
 implementations (see Section 10 for the com_err table). In general,
 when an endpoint receives any such error code, it should abort the
 current operation. The various codes allow some information about
 why the operation failed to be conveyed to the peer so that future

https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires July 12, 2014 [Page 21]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 requests will be more likely to succeed. The circumstances in which
 each error code should be used are as follows:

 RXGK_INCONSISTENCY Used for errors internal to the security class,
 such as when invariant assertions are violated. For example,
 when an incoming packet to a server contains flags that do not
 match the server's idea of the connection state, or attempting
 to allocate a new connection where a connection already exists.

 RXGK_PACKETSHORT The size of the packet is too small. Used when a
 server is constructing a challenge packet but the required data
 would be larger than the server's allowed packet size. Used
 when a reply packet received by the server is smaller than the
 expected size of a response packet. Also used for the
 analogous situations on the other side of the challenge/
 response exchange.

 RXGK_BADCHALLENGE A challenge or response packet (of the expected
 size) failed to decode properly or contained nonsense or
 useless data.

 RXGK_BADETYPE Used when the supplied encryption type(s) are invalid
 or impermissible, such as for the GSSNegotiate and
 CombineTokens RPCs or when the client-supplied enctype list
 does not contain any entries that are acceptable to the server.

 RXGK_BADLEVEL Used when the supplied security level(s) are invalid
 or impermissible, such as for the GSSNegotiate and
 CombineTokens RPCs or when the client-supplied list of security
 levels does not contain any entries that are acceptable to the
 server.

 RXGK_BADKEYNO The client or client's token indicates the use of a
 key version number that is not present on the server. May also
 be used when a key is presented that is not a valid key.

 RXGK_EXPIRED The client presented an expired credential or token.

 RXGK_NOTAUTH The caller is not authorized for the requested
 operation or the presented credentials are invalid. In
 particular, may also be used when credentials are presented
 that have a start time in the future. Note that many
 application error tables already include codes for "permission
 denied", which take precedence over this general error code.

 RXGK_BAD_TOKEN The client failed to present a token or the presented
 token is invalid. For cases including but not limited to:

Wilkinson & Kaduk Expires July 12, 2014 [Page 22]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 wrong size, fails to decode, zero or negative lifetime, starts
 too far in the future, and too long a lifetime.

 RXGK_SEALED_INCON Encrypted or checksummed data does not verify or
 correctly decode. The checksum is invalid, the sealed copy of
 the sequence and/or call number does not match the current
 state, or similar situations.

 RXGK_DATA_LEN The packet is too large, contains a zero-length iovec
 entry, or otherwise presents an unacceptable or invalid data
 length.

 RXGK_BAD_QOP The negotiated level of protection is insufficient for
 the operation being performed.

10. AFS-3 Registry Considerations

 This document requests that the AFS-3 registrar include a com_err
 error table for the RXGK module, as follows:

 error_table RXGK
 ec RXGK_INCONSISTENCY, "Security module structure inconsistent"
 ec RXGK_PACKETSHORT, "Packet too short for security challenge"
 ec RXGK_BADCHALLENGE, "Invalid security challenge"
 ec RXGK_BADETYPE, "Invalid or impermissible encryption type"
 ec RXGK_BADLEVEL, "Invalid or impermissible security level"
 ec RXGK_BADKEYNO, "Key version number not found"
 ec RXGK_EXPIRED, "Token has expired"
 ec RXGK_NOTAUTH, "Caller not authorized"
 ec RXGK_BAD_TOKEN, "Security object was passed a bad token"
 ec RXGK_SEALED_INCON, "Sealed data inconsistent"
 ec RXGK_DATA_LEN, "User data too long"
 ec RXGK_BAD_QOP, "Inadequate quality of protection available"
 end

 The error table base should be 1233242880, with codes within the
 table assigned relative numbers starting from 0 in the order
 appearing above.

 This document adopts the rxgk security negotiation service number
 34567 into the RXGK_ package, and requests that that package and the
 corresponding RPC numbers be entered into the registry.

11. IANA Considerations

 This memo includes no request to IANA.

Wilkinson & Kaduk Expires July 12, 2014 [Page 23]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

12. Security Considerations

12.1. Abort Packets

 RX Abort packets are not protected by the RX security layer.
 Therefore, caution should be exercised when relying on their results.
 In particular, clients MUST NOT use an error from GSSNegotiate or
 CombineTokens to determine whether to downgrade to another security
 class.

12.2. Token Expiry

 This document permits tokens to be issued with expiration times after
 the expiration time of the underlying GSSAPI credential, though
 implementations SHOULD NOT do so. Allowing the expiration time of a
 credential to be artificially increased can break the invariants
 assumed by a security system, with potentially disastrous
 consequences. For example, with the krb5 GSSAPI mechanism, access
 revocation may be implemented by refusing to issue new tickets (or
 renew existing tickets) for a principal; all access is assumed to be
 revoked once the maximum ticket lifetime has passed. If an rxgk
 token is created with a longer lifetime than the kerberos ticket,
 this assumption is invalid, and the user whose access has supposedly
 been revoked may gain access to sensitive materials. An application
 should only allow token expiration times to be extended after a
 security review of the assumptions made about credential expiration
 for the GSSAPI mechanism(s) in use with that application. Such a
 review is needed to confirm that allowing token expiration times to
 be extended will not introduce vulnerabilities into the security
 eocsystem in which the application operates.

12.3. Nonce Lengths

 The key negotiation protocol includes both client-and server-
 generated nonces as input. Both nonces are important, but serve
 slightly different purposes. A random nonce is also used in the
 challenge-response authentication protocol, which serves yet a
 different purpose.

 The client_nonce ensures that the StartParams structure is unique,
 and should be long enough that the client will not generate
 collisions within the lifetime of a given set of GSS credentials.
 The client_nonce also contributes to the uniqueness of the generated
 key when GSS initiator credentials are used to establish multiple GSS
 security contexts.

 The server_nonce serves primarily to add entropy to the generated
 key. The maximum amount of entropy possible in the generated key is

Wilkinson & Kaduk Expires July 12, 2014 [Page 24]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 the key generation seed length, so using a longer nonce gives no
 benefit (unless the nonce is nonrandom).

 The authentication nonce is used to prevent replays of the
 authenticator. It is specified as a fixed length to allow the length
 of the challenge packet to be used to indicate a new version of the
 challenge/response protocol, but is chosen to be long enough that the
 server will not accidentally reuse a nonce in a reasonable timeframe.

13. References

13.1. Informational References

 [RX] Zeldovich, N., "RX protocol specification", October 2002.

 [COMERR] Raeburn, K., "A Common Error Description Library for
 UNIX", January 1989.

 This paper is available as com_err.texinfo within
 com_err.tar.Z.

 [GSSLOOP] Kaduk, B., "Structure of the GSS Negotiation Loop", draft-
kaduk-kitten-gss-loop-01 (work in progress), November

 2013.

13.2. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC2744] Wray, J., "Generic Security Service API Version 2 :
 C-bindings", RFC 2744, January 2000.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
 Extension for the Generic Security Service Application
 Program Interface (GSS-API)", RFC 4401, February 2006.

https://datatracker.ietf.org/doc/html/draft-kaduk-kitten-gss-loop-01
https://datatracker.ietf.org/doc/html/draft-kaduk-kitten-gss-loop-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2744
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4401

Wilkinson & Kaduk Expires July 12, 2014 [Page 25]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 [RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
 Kerberos V Generic Security Service Application Program
 Interface (GSS-API) Mechanism", RFC 4402, February 2006.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC6113] Hartman, S. and L. Zhu, "A Generalized Framework for
 Kerberos Pre-Authentication", RFC 6113, April 2011.

 [RFC6649] Hornquist Astrand, L. and T. Yu, "Deprecate DES, RC4-HMAC-
 EXP, and Other Weak Cryptographic Algorithms in Kerberos",

BCP 179, RFC 6649, July 2012.

Appendix A. Acknowledgements

 rxgk was originally developed over a number of AFS Hackathons. The
 editor of this document has assembled the protocol description from a
 number of notes taken at these meetings, and from a partial
 implementation in the Arla AFS client.

 Thanks to Derrick Brashear, Jeffrey Hutzelman, Love Hornquist Astrand
 and Chaskiel Grundman for their original design work, and comments on
 this document, and apologies for any omissions or misconceptions in
 my archaeological work.

 Marcus Watts and Jeffrey Altman provided invaluable feedback on an
 earlier version of this document at the 2009 Edinburgh AFS Hackathon.

 The text describing the rxgkTime type is based on language from
 Andrew Deason.

Appendix B. Changes

B.1. Since 00

 Add a reference to RFC4402, which describes the PRF+ algorithm we are
 using.

 Change references to RXGK_Token to RXGK_Data for clarity, and add a
 definition of that type.

 Rename the 'ticket' member of RXGK_ClientInfo to 'token', for
 consistency, and make it a simple opaque.

 Add a length field to the packet header, so that we can remove
 padding.

https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc6113
https://datatracker.ietf.org/doc/html/bcp179
https://datatracker.ietf.org/doc/html/rfc6649
https://datatracker.ietf.org/doc/html/rfc4402

Wilkinson & Kaduk Expires July 12, 2014 [Page 26]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 Remove versioning in the challenge and the response.

 Clarify that both bytelife and lifetime are advisory.

 Remove the RXGK_CLIENT_COMBINE_ORIG and RXGK_SERVER_COMBINE_NEW key
 derivations, as these are no longer used.

 Update the reference to draft-ietf-krb-wg-preauth-framework.

 Require that CombineTokens be offered over an rxgk authenticated
 connection.

 Pull our time definition out into its own section and define a type
 for it.

 Define an enum for the security level, and use that throughout.

B.2. Since 01

 Spell check.

 Remove a couple of stray references to afs_ types.

 Update start_time text to clarify that it uses rxgkTime.

 Make expiration also be an rxgkTime.

 Add a definition for RXGK_LEVEL_BIND.

 Add reference to RX.

 Add reference to XDR.

 Rename the gss_status output parameter from the GSSNegotiate RPC to
 gss_major_status, and update the supporting text.

 Add a new gss_minor_status output paramter to the GSSNegotiate RPC,
 but make clear that it is there for informational use only.

B.3. Since 02

 Edit for grammar and punctuation.

 Remove RXGK_LEVEL_BIND.

 Make CombineTokens negotiate level and enctype.

 Allow key version rollover at 16 bits when rekeying.

https://datatracker.ietf.org/doc/html/draft-ietf-krb-wg-preauth-framework

Wilkinson & Kaduk Expires July 12, 2014 [Page 27]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 Add Security Considerations for increasing token expiry.

 Clarify behavior at RXGK_LEVEL_AUTH.

 Add RXGK com_err table and descriptions.

 Clean up call number vector and maxcalls support.

 Improve the description of the GSS negotiation loop.

 Give suggestions for acceptor principal names.

B.4. Since 03

 Give guidance on the length of key negotiation nonces.

 Supply bounds for (most) variable-length arrays.

 Note that in-band errorcodes are for security sensitive errors.

 Use abstract GSSAPI routine names, not the C binding names.

 Discuss packet handling for received packets.

B.5. Since 04

 Correct omissions from description of GSS negotiation loop.

 Adjust limits on variable-length array lengths.

 Remove errorcode field from RXGK_TokenInfo.

B.6. Since 05

 Add markup to split out the GSS negotiation control flow.

B.7. Since 06

 Improvements to the GSS negotiation description.

 Add the RXGK_BAD_QOP error code.

B.8. Since 07

 Refer to an external description of the GSS loop structure.

 Describe rxkad and why it is bad.

Wilkinson & Kaduk Expires July 12, 2014 [Page 28]

Internet-Draft rxgk: GSSAPI based security class for RX January 2014

 Describe the minimal and expected token contents.

B.9. Since 08

 Update GSSLOOP reference (it is no longer targetting standards-track)
 and deal with the fallout accordingly.

 Be internally consistent about encoding GSS major status codes.

B.10. Since 09

 General grammar/style edits.

 Request the AFS-3 registry add RPC numbers and the RXGK_ package.

Authors' Addresses

 Simon Wilkinson
 Your File System Inc

 Email: simon@sxw.org.uk

 Benjamin Kaduk
 MIT Kerberos Consortium

 Email: kaduk@mit.edu

Wilkinson & Kaduk Expires July 12, 2014 [Page 29]

