
Network Working Group Wilkinson
Internet-Draft YFS
Intended status: Informational January 10, 2012
Expires: July 13, 2012

Integrating rxgk with AFS
draft-wilkinson-afs3-rxgk-afs-01

Abstract

 This document describes how the new GSSAPI based rxgk security class
 for RX is integrated with the AFS application protocol. It describes
 a number of extensions to the basic rxgk protocol, clarifies a number
 of implementation issues, and provides values for the application
 specific elements of rxgk.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on July 13, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Wilkinson Expires July 13, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Integrating rxgk with AFS January 2012

Table of Contents

1. Introduction . 3
1.1. The AFS-3 distributed file system 3
1.2. rxgk and AFS . 3
1.3. Requirements Language 3

2. Security Index . 4
3. Key negotiation . 4
3.1. The AFSCombineTokens operation 4

4. Tokens . 5
4.1. Container . 5
4.2. Token Encryption . 6
4.3. Token Contents . 6

5. Authenticator data . 7
6. Client tokens . 7
6.1. Keyed clients . 7
6.2. Unkeyed clients . 8

7. Server to server communication 8
7.1. Ticket printing . 8

8. Declaring rxgk support for a fileserver 8
9. Per server keys . 9
10. Securing the callback channel 10
11. IANA Considerations . 11
12. Security Considerations 11
12.1. Downgrade attacks . 11
12.2. Per server keys . 11
12.3. Combined key materials 12

13. References . 12
13.1. Informational References 12
13.2. Normative References 12

Appendix A. Acknowledgements 13
Appendix B. Changes . 13
B.1. Since 00 . 13

 Author's Address . 13

Wilkinson Expires July 13, 2012 [Page 2]

Internet-Draft Integrating rxgk with AFS January 2012

1. Introduction

 rxgk [I-D.wilkinson-afs3-rxgk] is a new GSSAPI [RFC2743] based
 security layer for the RX [RX] remote procedure call system. The
 rxgk specification details how it may be used with a generic RX
 application, this document provides additional detail specific to
 integrating rxgk with the AFS-3 distributed file system.

1.1. The AFS-3 distributed file system

 AFS-3 is a global distributed network file system. The system is
 split into a number of cells, with a cell being the administrative
 boundary. Typically an organisation will have one, or more cells,
 but a cell will not span organisations. Each cell contains a number
 of fileservers which contain collections of files ("volumes") which
 they make available to clients using the AFS-3 protocol. Clients
 access these files using a service known as the cache manager.

 In order to determine which server a particular file is located upon,
 the cache manager looks up the location in the volume location
 database (vldb) by contacting the vlserver. Each cell has one or
 more vlservers, which are syncronised by an out-of-band mechanism.

1.2. rxgk and AFS

 AFS-3 differs from the standard rxgk implementation in that it does
 not require GSSAPI negotiation with each server. Instead, a client
 negotiates with the vlserver, and receives a token which can then be
 used with any server in the cell. This requires that all servers
 have an identical cell wide pre-shared key for token encryption.

 For more complex cell topologies, servers which do not share the
 cell-wide key are supported by means of an extended CombineTokens
 call. This call takes a server identifier, and will return a token
 encrypted with a key for a specific server. This extended call,
 AFSCombineTokens, also provides support for indicating whether a
 specific server is rxgk capable, allowing cells to securely migrate
 to rxgk from other security mechanisms.

 We also define mechanisms for securing the callback channel which is
 created between fileserver and client.

1.3. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wilkinson Expires July 13, 2012 [Page 3]

Internet-Draft Integrating rxgk with AFS January 2012

2. Security Index

 When used within the AFS protocol, rxgk has a securityIndex value of
 4

3. Key negotiation

 An AFS cell wishing to support rxgk MUST run an rxgk key negotiation
 service, as specified in [I-D.wilkinson-afs3-rxgk], on each of its
 vlservers. The service MUST listen on the same port as the vlserver.

 The GSS identity afs-rxgk@_afs.<cellname> is the acceptor identity
 for this service. Where multiple vlservers exist for a single cell,
 all of these servers must have access to the key material for this
 identity, which MUST be identical across the cell. Clients MAY use
 the presence of this identity as an indicator of rxgk support for a
 particular cell. Clients which wish to support cells using other rx
 security objects MAY downgrade if this identity is not available.

 Tokens returned from the GSSNegotiate call MUST only be used with
 database servers. Tokens for fileservers MUST be obtained by calling
 AFSCombineTokens before each server is contacted.

3.1. The AFSCombineTokens operation

 AFS extends the existing CombineTokens operation to provide a more
 general token manipulation service. This operation takes a user
 token, an optional cache manager token, and a destination identifier,
 and returns a token specific to the specified destination.

 AFSCombineTokens(IN RXGK_Data *token0<>,
 IN RXGK_Data *token1<>,
 IN afsUUID destination,
 OUT RXGK_Data *new_token<>) = 3;

 token0: An rxgk token obtained using the GSSNegotiate rpc

 token1: Either, an rxgk token obtained using the GSSNegotiate rpc,
 or empty (0 length)

 destination: The UUID of the server this token is intended for.
 Fileserver UUIDs may be obtained from the VLDB in the same call
 as returns their addresses.

Wilkinson Expires July 13, 2012 [Page 4]

Internet-Draft Integrating rxgk with AFS January 2012

 new_token: A new rxgk token, or empty

 The AFSCombineTokens call MUST only be performed over an rxgk
 protected channel, with a security level of 1 (integrity) or more.
 Servers MUST reject all attempts to perform this operation over
 channels that are not protected in this way.

 Clients which are caching the results of RPCs on behalf of multiple
 users (such as a traditional AFS Cache Manager), SHOULD provide both
 the user's token (as token0) and a token generated from an identity
 that is private to the cache manager (as token1). This prevents a
 user from poisoning the cache for other users. Recommendations on
 keying cache managers are contained below

 Clients which are working on behalf of a single user can provide an
 empty token1, but MUST use AFSCombineTokens to obtain a destination
 specific token for each fileserver they contact.

 Clients using a printed token (see below) MUST provide that token as
 token0. token1 MUST be empty. Printed tokens cannot be combined with
 any other token, and servers MUST reject attempts to do so

 If the returned token is 0 length, then the destination does not
 support rxgk, and the client MAY fall back to using a different
 authentication mechanism for that server. This is the only situation
 in which an rxgk capable client operating within an rxgk enabled cell
 may downgrade its choice of security layer.

 Keys and tokens are combined in the same way as the CombineTokens
 call, documented in [I-D.wilkinson-afs3-rxgk].

4. Tokens

4.1. Container

 rxgk tokens for AFS take the form of some key management data,
 followed by an encrypted data blob. The key management data (a
 version number, followed by an [RFC3961] encryption type) allows the
 recipient to identify which pre-shared key has been used to encrypt
 the token itself.

 struct RXGK_TokenContainer {
 afs_int32 kvno;
 afs_int32 enctype;
 opaque encrypted_token<>;
 }

https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson Expires July 13, 2012 [Page 5]

Internet-Draft Integrating rxgk with AFS January 2012

4.2. Token Encryption

 Token contents are encrypted using a pre-shared key. rxgk supports
 the use of both a single cell-wide key and the use of per-server
 keys. The cell-wide key must be installed on all servers which are
 capable of accepting cell-wide tokens. Cell-wide keys should be for
 a selected RFC3961 encryption mechanism which is supported by all
 servers within the cell. Per-server keys should be for an encryption
 mechanism which is supported by both the destination server, and the
 negotiation service. The management of per-server keys is discussed
 in more detail below.

 Key rollover is permitted by means of a key version number. When the
 key is changed, a different key version number MUST be selected.
 Servers SHOULD accept tokens using the old key until the lifetime of
 all existing tokens has elapsed.

 Encryption is performed over the XDR encoded RXGK_Token structure,
 using the RFC3961 encrypt operation, with a key usage value of 1036
 (RXGK_SERVER_ENC_TICKET)

4.3. Token Contents

 The token itself contains the information expressed by the following
 XDR:

 struct RXGK_Token {
 afs_int32 enctype;
 opaque K0<>;
 afs_int32 level;
 afs_int64 starttime;
 afs_int32 lifetime;
 afs_int32 bytelife;
 rxgkTime expirationtime;
 struct PrAuthName identities<>;
 }

 enctype: The RFC3961 encryption type of the session key contained
 within this ticket

 K0: The session key (see the rxgk specification for details of how
 this key is negotiated between client and negotiation service).

 level: The security level that MUST be used for this connection

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson Expires July 13, 2012 [Page 6]

Internet-Draft Integrating rxgk with AFS January 2012

 starttime: The time, expressed as a 100ns value, since the Unix
 epoch. Servers MUST reject attempts to start connections with
 tokens that are not yet valid.

 lifetime: The maximum number of seconds that a key derived from K0
 may be used for. This is an advisory limit. If 0, keys have
 no time based limit

 bytelife: The maximum amount of data (expressed as log 2 byes) that
 may be transferred using a key derived from K0. This is an
 advisory limit. If 0, there is no data based limit on key
 usage

 expirationtime: The time (expressed as an rxgkTime) beyond which
 this token may no longer be used. Servers MUST reject attempts
 to use connections secured with this token after this time has
 passed. A time of 0 indicates that this token never expires.

 identities: A list of identities represented by this token. struct
 PrAuthName is the identity structure defined in
 [I-D.brashear-afs3-pts-extended-names]

5. Authenticator data

 The appdata opaque within the RXGK_Authenticator contains the XDR
 encoded UUID of the client. The UUID is encoded using the afsUUID
 type.

6. Client tokens

 In order to protect users of a multi-user cache manager from each
 other, it must be impossible for an individual user to determine the
 key used to protect operations which affect the cache. This requires
 that the cache manager have key material of its own which can be
 combined with that of the user. This functionality is provided by
 the AFSCombineTokens call specified earlier in this document.
 However, this call requires that a cache manager have access to a
 token for this purpose.

6.1. Keyed clients

 Where a host already has key material for a GSSAPI mechanism
 supported by rxgk, that material may be used to key the client. The
 client simply calls the rxgk negotiation service using the relevant
 material, and obtains a token. The client should frequently renew
 this token, to avoid combined tokens having unnecessarily close

Wilkinson Expires July 13, 2012 [Page 7]

Internet-Draft Integrating rxgk with AFS January 2012

 expiration times.

 It is recommended that identities created specifically for use by a
 cache manager have the name afs3-callback@<hostname> where <hostname>
 is the fully qualified domain name of the cache manager.

6.2. Unkeyed clients

 When a client has no key material, it is possible that an anonymous
 GSSAPI connection may succeed. Clients MAY attempt to negotiate such
 a connection by calling GSS_Init_Sec_Context() with the anon_req_flag
 [RFC2743] and the default credentials set.

7. Server to server communication

 A number of portions of the AFS protocol require that servers
 communicate amongst themselves. To secure this with rxgk we require
 both a mechanism of generating tokens for these servers to use, and a
 definition of which identities are permitted for authorisation
 purposes.

7.1. Ticket printing

 A server with access to the cell-wide pre-shared key may print its
 own tokens for server to server access. To do so, it should
 construct a token with suitable values. The list of identities in
 such a token MUST be empty. It can then encrypt this token using the
 pre-shared key, and use it in the same way as a normal rxgk token.
 The receiving server can identify it is a printed token by the empty
 identity list.

 The session key within a printed token MUST use the same encryption
 type as the pre-shared key. When connecting to a fileserver, a
 client SHOULD use the combine tokens service as discussed above to
 ensure that they are using the correct key for the fileserver.

8. Declaring rxgk support for a fileserver

 The AFSCombineTokens call has specific behaviour when a destination
 endpoint does not support rxgk. Implementing this behaviour requires
 that the vlserver be aware of whether a fileserver supports rxgk.

 Fileservers currently register with the vlserver using the
 VL_RegisterAddrs RPC. Fileservers which support rxgk MUST call this
 RPC over a rxgk protected connection. The vlserver should then note
 the rx security layer used in registration, and infer rxgk support

https://datatracker.ietf.org/doc/html/rfc2743

Wilkinson Expires July 13, 2012 [Page 8]

Internet-Draft Integrating rxgk with AFS January 2012

 from that. To prevent downgrade attacks, once a fileserver has
 registered as being rxgk capable, the vlserver MUST NOT remove that
 registration without administrator intervention.

 Once a fileserver has been marked as supporting rxgk,
 VL_RegisterAddrs calls for that fileserver MUST only be accepted over
 an rxgk protected link.

9. Per server keys

 The provision of servers with their own keys, rather than the cell
 wide master key, requires the ability to maintain a directory of
 these keys on the vlserver, so that the AFSCombineTokens RPC can
 encrypt the outgoing token with the correct key. The manner in which
 this directory is maintained is down to the implementor, who MAY
 decided to use a manual, or out of band key management system

 Implementations supporting automatic key management through the AFS3
 protocol MUST provide the following RPC

 struct RXGK_ServerKeyDataRequest {
 afs_int32 enctypes<>
 opaque nonce1<>
 };

 struct RXGK_ServerKeyDataResponse {
 afs_int32 enctype;
 afs_int32 kvno;
 opaque nonce2<>
 };

 VL_RegisterAddrsAndKey(
 IN afsUUID *uuidp,
 IN afs_int32 spare1,
 IN bulkaddrs *ipaddr,
 IN afs_int32 secIndex,
 IN opaque *keyDataRequest<>,
 OUT opaque *keyDataResponse<>) = XXX;

 uuidp: As the existing VL_RegisterAddrs RPC

 spare1: As the existing VL_RegisterAddrs RPC

 ipaddr: As the existing VL_RegisterAddrs RPC

Wilkinson Expires July 13, 2012 [Page 9]

Internet-Draft Integrating rxgk with AFS January 2012

 secIndex: The index of the security mechanism for which a key is
 being set. For rxgk, this value should be '4'

 keyDataRequest: An opaque blob of data, specific to the security
 mechanism defined by secIndex. For rxgk it is, the xdr encoded
 representation of RXGK_ServerKeyDataRequest

 keyDataResponse: An opaque blob of data, specific to the security
 mechanism defined by secIndex. For rxgk it is the xdr encoded
 representation of RXGK_ServerDataResponse

 The client provides, in the RXGK_ServerKeyDataRequest structure, a
 list of the RFC3961 encryption types that it will accept as a server
 key. It also provides a nonce containing 20 random data bytes.

 The server selects an encryption type shared by it and the client,
 and returns that, along with 20 bytes of random data that it has
 generated, in RXGK_ServerKeyDataResponse. If there is no common
 encryption type, then the server must fail the request.

 The server key can then be derived by both client and server using

 random-to-key(PRF+(K0, K, nonce1 || nonce2))

 random-to-key is the function specified by the RFC3961 profile of the
 encryption type chosen by the server, and returned in enctype.

 PRF+ is the function of that name specified by [RFC4402]

 K0 is the master key of the current rxgk session, as originally
 determined by the GSSNegotiate call.

 K is the key generation seed length as specified in enctype's RFC3961
 profile

10. Securing the callback channel

 AFS has traditionally had an unprotected callback channel. However,
 extended callbacks requires a mechanism for ensuring that callback
 breaks and, critically, data updates, are protected. This requires
 that there is a strong connection between the key material used
 initially to perform the RPC, and that which is used to protect any
 resulting callback. We achieve this using the cache manager token
 discussed earlier, which is required in order for a client to accept
 secure callbacks

 A cache manager may set a key for secure callbacks by issuing the

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson Expires July 13, 2012 [Page 10]

Internet-Draft Integrating rxgk with AFS January 2012

 following RPC (part of the RXAFS_ family)

 RXAFS_SetCallbackKey(afs_int32 securityIndex,
 opaque mech_data<>) = XXX;

 securityIndex: The securityIndex of the mechanism for which this key
 is being set. In the rxgk case, this will be rxgk's security
 index, as defined earlier.

 mech_data: This contains the security object specific data. In
 rxgk's case this is an XDR encoded RXGK_Token structure.

 When used with rxgk, this RPC MUST be performed over an rxgk
 protected link established using solely the cache manager's token.
 This connection MUST have a security level of 2 (encrypted).

 If a fileserver receives a AFS_SetCallbackKey protected with a
 different cache manager identity than the previous call from that
 client, it MUST break all secure callbacks held by that client using
 the old key before this RPC completes.

 Only RPCs issued over an rxgk protected connection should receive
 rxgk protected callbacks

 The fileserver MUST only send rxgk protected callbacks when one of
 the identities performing the RPC establishing that callback matches
 the identity associated with that clients callback channel.

11. IANA Considerations

 This memo includes no request to IANA.

12. Security Considerations

12.1. Downgrade attacks

 Using the presence of a GSSAPI key to determine a cell's ability to
 perform rxgk is vulnerable to a downgrade attack, as an attacker may
 forge error responses. Cells which no longer support rxkad SHOULD
 remove their afs@REALM and afs/cell@REALM Kerberos keys.

12.2. Per server keys

 The mechanism for automatically registering per server keys is
 potentially vulnerable, as it trades a short lived key (the rxgk
 session key, which protects the key exchange) for a long life one

Wilkinson Expires July 13, 2012 [Page 11]

Internet-Draft Integrating rxgk with AFS January 2012

 (the server key)

12.3. Combined key materials

 As described earlier, combined tokens are used to prevent cache
 poisoning attacks on multi-user systems. In order for this
 protection to be effective, cache managers MUST NOT provide user
 access to keys produced through the combine tokens operation, unless
 those keys will not be used by the cache manger itself.

13. References

13.1. Informational References

 [RX] Zeldovich, N., "RX protocol specification".

13.2. Normative References

 [I-D.brashear-afs3-pts-extended-names]
 Brashear, D., "Authentication Name Mapping extension for
 AFS-3 Protection Service",

draft-brashear-afs3-pts-extended-names-09 (work in
 progress), March 2011.

 [I-D.wilkinson-afs3-rxgk]
 Wilkinson, S., "rxgk: GSSAPI based security class for RX",

draft-wilkinson-afs3-rxgk-00 (work in progress),
 January 2010.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
 Kerberos V Generic Security Service Application Program
 Interface (GSS-API) Mechanism", RFC 4402, February 2006.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

https://datatracker.ietf.org/doc/html/draft-brashear-afs3-pts-extended-names-09
https://datatracker.ietf.org/doc/html/draft-wilkinson-afs3-rxgk-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc4506

Wilkinson Expires July 13, 2012 [Page 12]

Internet-Draft Integrating rxgk with AFS January 2012

Appendix A. Acknowledgements

 RXGK has been the work of many contributors over the years. A
 partial list is contained in the previous document. All errors and
 omissions are, however, mine.

Appendix B. Changes

B.1. Since 00

 Add references to RX and XDR specifications

 Add introductory material on AFS

 Change expirationTime to be expressed using the rxgkTime type

 Document how encryption types are chosen for printed tokens, and how
 they are used against fileservers

 Expand security considerations section to cover combined tokens

 Rename AFS_SetCallbackKey as RXAFS_SetCallbackKey

Author's Address

 Simon Wilkinson
 Your File System Inc

 Email: simon@sxw.org.uk

Wilkinson Expires July 13, 2012 [Page 13]

