
Network Working Group S. Wilkinson
Internet-Draft YFS
Intended status: Informational B. Kaduk
Expires: November 22, 2015 MIT
 May 21, 2015

Integrating rxgk with AFS
draft-wilkinson-afs3-rxgk-afs-08

Abstract

 This document describes how the new GSSAPI-based rxgk security class
 for RX is integrated with the AFS application protocol. It describes
 a number of extensions to the basic rxgk protocol, clarifies a number
 of implementation issues, and provides values for the application-
 specific elements of rxgk.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 22, 2015.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document.

Wilkinson & Kaduk Expires November 22, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Integrating rxgk with AFS May 2015

Table of Contents

1. Introduction . 3
1.1. The AFS-3 Distributed File System 3
1.2. rxgk and AFS . 3
1.3. Providing Keys for the Callback Channel 4
1.4. Requirements Language 4

2. Security Index . 4
3. Authenticator Data . 5
4. Application-Specific Constant 5
5. Key Negotiation . 5
5.1. Application-Specific GSSNegotiate Behavior for AFS-3 . . 6
5.2. Token Applicability 6

6. Token Format . 6
6.1. Container . 6
6.2. Token Encryption . 7
6.3. Token Contents . 7

7. Cache Manager Tokens . 8
7.1. Keyed Clients . 9
7.2. Unkeyed Clients . 9

8. Combining Tokens . 10
9. The AFSCombineTokens Operation 10
10. Server to Server Communication 12
10.1. Token Printing . 13
10.2. Declaring rxgk Support for a Fileserver 13
10.2.1. File Servers With the Cell-Wide Key 14
10.2.2. File Servers With Per-Server Keys 14

10.3. Registering Per Server Keys 15
11. Securing the Callback Channel 18
11.1. Lifetime and scope of the callback channel 18

12. IANA Considerations . 19
13. AFS-3 Registry Considerations 19
14. Security Considerations 19
14.1. Downgrade attacks 19
14.2. Per Server Keys . 19
14.3. Combined Key Materials 19

15. References . 19
15.1. Informational References 19
15.2. Normative References 20

Appendix A. Acknowledgements 20
Appendix B. Changes . 20
B.1. Since 00 . 21
B.2. Since 01 . 21
B.3. Since 02 . 21
B.4. Since 03 . 21
B.5. Since 04 . 22
B.6. Since 05 . 22
B.7. Since 06 . 22

Wilkinson & Kaduk Expires November 22, 2015 [Page 2]

Internet-Draft Integrating rxgk with AFS May 2015

B.8. Since 07 . 22
 Authors' Addresses . 23

1. Introduction

 rxgk [I-D.wilkinson-afs3-rxgk] is a new GSSAPI-based [RFC2743]
 security layer for the RX [RX] remote procedure call system. The
 rxgk specification details how it may be used with a generic RX
 application, but leaves some aspects of the protocol as application-
 specific. This document resolves the application-specific portions
 of rxgk for use with the AFS-3 distributed file system, and provides
 additional detail specific to integrating rxgk with AFS-3.

1.1. The AFS-3 Distributed File System

 AFS-3 is a global distributed network file system. The system is
 split into a number of cells, with a cell being the administrative
 boundary. Typically an organisation will have one (or more) cells,
 but a cell will not span organisations. Each cell contains a number
 of fileservers which contain collections of files ("volumes") which
 they make available to clients using the AFS-3 protocol. Clients
 access these files using a service known as the cache manager.

 In order to determine which server a particular file is located upon,
 the cache manager looks up the location in the volume location
 database (vldb) by contacting the vlserver. Each cell has one or
 more vlservers, which are synchronised using an out-of-band
 mechanism.

 User and group information is stored in the protection database
 (prdb), which is made available by the ptserver(s), colocated with
 the vlservers. Fileservers check with the prdb before granting
 access to files which are subject to access control.

1.2. rxgk and AFS

 This document describes the special integration steps needed to use
 rxgk with AFS-3 database servers (the PR and VL rx services) and file
 servers (the RXAFS, RXAFSCB, and AFSVol rx services), as well as
 specifying application-specific portions of the rxgk specification
 for use by these services. Other AFS-3 services are not covered by
 this document; the generic rxgk document applies to them.

 AFS-3 differs from a standard rxgk deployment in that it does not
 require GSSAPI negotiation with each server. Instead, a client
 performs GSSAPI negotiation just once, with the vlserver, receiving a
 token usable with any database server in the cell, as described in

Section 5. Traditional AFS rxkad authentication required that the

https://datatracker.ietf.org/doc/html/rfc2743

Wilkinson & Kaduk Expires November 22, 2015 [Page 3]

Internet-Draft Integrating rxgk with AFS May 2015

 cell-wide key be distributed to all servers in the cell, both
 database servers and file servers, making no distinction between
 tokens used for database servers and file servers. rxgk can operate
 in a similar fashion, with a cell-wide key shared amongst all
 servers, but is not limited to doing so.

 For more complex cell topologies, rxgk also supports configurations
 where (some) file servers do not have the cell-wide key. Tokens
 encrypted in these server-specific keys are returned by an extended
 version of the CombineTokens RPC, AFSCombineTokens. AFSCombineTokens
 also provides a mechanism for indicating whether a specific server is
 rxgk capable, allowing cells to securely migrate to rxgk from other
 security mechanisms.

1.3. Providing Keys for the Callback Channel

 The AFS-3 protocol provides a mechanism by which a client can obtain
 a promise from a fileserver to "call back" when a particular piece of
 data is changed, so that the client does not need to check with the
 fileserver for the current-ness of the data every time it is used.
 At present, this takes the form of a single bit of information about
 whether the callback is still valid, with no authentication of the
 callback break. It is desired that future work expand the callback
 channel to convey more than a single bit of information, and provide
 an authenticated (and potentially confidential) channel for updating
 callback promises.

 This document provides a mechanism to establish a key and token that
 can be used to provide a secure callback channel. Though the format
 of that token is flexible and not specified in this document, this
 document does need to specify a mechanism by which a callback key can
 be established between the two parties. This is done by means of the
 authenticator's appdata field, binding a callback key to an rx
 connection, so that all callbacks generated by that connection will
 use the indicated callback key.

1.4. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Security Index

 When used within the AFS-3 protocol, rxgk has an RX securityIndex
 value of 4.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wilkinson & Kaduk Expires November 22, 2015 [Page 4]

Internet-Draft Integrating rxgk with AFS May 2015

3. Authenticator Data

 The appdata opaque within the RXGK_Authenticator structure used in
 the rx challenge/response authentication exchange contains the
 results of XDR [RFC4506] encoding the RXGK_Authenticator_AFSAppData
 structure.

 struct RXGK_Authenticator_AFSAppData {
 afsUUID client_uuid;
 RXGK_Data cb_tok;
 RXGK_Data cb_key;
 afs_int32 enctype;
 afsUUID target_uuid;
 };

 client_uuid the UUID of the client.

 cb_tok the rxgk token to be used for secure callbacks created by
 RPCs over this connection. In some implementations this token
 may be empty (zero-length).

 cb_key the raw key material (k0) to which cb_tok corresponds, to be
 used as the master key for the secure callback connections
 created by RPCs over this connection.

 enctype the [RFC3961] enctype of the cb_key key material.

 target_uuid the UUID of the server being authenticated to (if
 applicable). Database servers do not have UUIDs; when
 authenticating to database servers, this field should be set to
 all zero bits. File server UUIDs may be obtained from the VLDB
 in the same call that returns their addresses.

4. Application-Specific Constant

 The constant RXGK_MAXDATA takes the value 1048576 for use with AFS-3.

5. Key Negotiation

 An AFS cell wishing to support rxgk MUST run an rxgk key negotiation
 service, as specified in [I-D.wilkinson-afs3-rxgk], on each of its
 vlservers. The service MUST listen on the same port as the vlserver.

 The GSS identity afs-rxgk@_afs.<cellname> of nametype
 GSS_C_NT_HOSTBASED_SERVICE is the acceptor identity for this service.
 Where multiple vlservers exist for a single cell, all of these
 servers must have access to the key material for this identity, which
 MUST be identical across the cell. Clients MAY use the presence of

https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires November 22, 2015 [Page 5]

Internet-Draft Integrating rxgk with AFS May 2015

 this identity as an indicator of rxgk support for a particular cell.
 Clients that wish to support cells using other rx security objects
 MAY downgrade if this identity is not available. Note that not all
 GSS mechanisms can expose to the initiator whether or not a given
 acceptor identity exists.

5.1. Application-Specific GSSNegotiate Behavior for AFS-3

 The input and output opaques of the GSSNegotiate RPC are left as
 implementation-defined, as needed by the implementation to retain
 information across subsequent calls during a single GSS negotiation
 loop.

5.2. Token Applicability

 Tokens returned from the GSSNegotiate and CombineTokens calls MUST
 only be used with database servers. Tokens for fileservers MUST be
 obtained by calling AFSCombineTokens (Section 9) before each server
 is contacted.

 rxgk tokens are in general only usable with the particular rx service
 that produced them. For the AFS-3 protocol, the database server
 services are grouped together to accept a common type of token, and
 the file server services are grouped together to accept a different
 common type of token, but it is important to emphasize that a token
 for a database server will not in general be useful against a file
 server, and vice versa. Tokens for database servers are obtained
 from the standard rxgk negotiation services, but tokens for file
 servers are obtained through a new procedure, the AFSCombineTokens
 RPC.

6. Token Format

 This section defines the format of rxgk tokens for use with the AFS-3
 protocol. The same layout is used for database server tokens and
 file server tokens, but file server tokens may be encrypted in a
 different key than database server tokens.

6.1. Container

 rxgk tokens for AFS take the form of some key management data,
 followed by an encrypted data blob. The key management data (a
 version number, followed by an RFC 3961 encryption type) allows the
 server receiving a token to identify which key has been used to
 encrypt the core token data.

https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires November 22, 2015 [Page 6]

Internet-Draft Integrating rxgk with AFS May 2015

 struct RXGK_TokenContainer {
 afs_uint32 kvno;
 afs_int32 enctype;
 opaque encrypted_token<>;
 };

 The RXGK_TokenContainer structure is XDR encoded and transported
 wherever a token is used, such as in the 'token' field of the
 RXGK_ClientInfo structure specified in [I-D.wilkinson-afs3-rxgk].

6.2. Token Encryption

 rxgk supports encrypting tokens with either a single cell-wide key or
 with per-file-server keys. The cell-wide key must be installed on
 all database servers in the cell, and may additionally be installed
 on non-database file servers when per-file-server keys are not in
 use. Cell-wide keys should be for a selected RFC 3961 encryption
 mechanism that is supported by all servers within the cell that will
 use that key. Per-server keys should be for an encryption mechanism
 that is supported by both the destination server and the negotiation
 service on the vlserver. The management of per-server keys is
 discussed in more detail in Section 14.2.

 Key rollover is permitted by means of a key version number. When a
 key is changed, whether cell-wide or per-server, a different (larger)
 key version number MUST be selected. Servers SHOULD accept tokens
 using old keys until the lifetime of all existing non-printed (see

Section 10.1) tokens has elapsed. Services using printed tokens
 should be prepared to regenerate those tokens in the case of key
 rollover.

 Encryption is performed over the XDR encoded RXGK_Token structure,
 using the RFC 3961 encrypt operation, with a key usage value of
 RXGK_SERVER_ENC_TOKEN (defined in [I-D.wilkinson-afs3-rxgk]). The
 enrypted data is stored in the encrypted_token field of the
 RXGK_TokenContainer structure described in Section 6.1.

6.3. Token Contents

 The token itself contains the information expressed by the following
 RPC-L:

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires November 22, 2015 [Page 7]

Internet-Draft Integrating rxgk with AFS May 2015

 struct RXGK_Token {
 afs_int32 enctype;
 opaque K0<>;
 RXGK_Level level;
 afs_uint32 lifetime;
 afs_uint32 bytelife;
 rxgkTime expirationtime;
 struct PrAuthName identities<>;
 };

 enctype: The RFC3961 encryption type of the session key contained
 within this ticket.

 K0: The session key. (See [I-D.wilkinson-afs3-rxgk] for details of
 how this key is negotiated between client and negotiation
 service.)

 level: The security level, as defined in [I-D.wilkinson-afs3-rxgk],
 that MUST be used for this connection.

 lifetime: The maximum number of seconds that a key derived from K0
 may be used for, before the connection is rekeyed. If 0, keys
 have no time-based limit.

 bytelife: The maximum amount of data (expressed as the log base 2 of
 the number of bytes) that may be transferred using a key
 derived from K0 before the connection is rekeyed. If 0, there
 is no data-based limit on key usage.

 expirationtime: The time (expressed as an rxgkTime) beyond which
 this token may no longer be used. Servers MUST reject attempts
 to use connections secured with this token after this time. A
 value of 0 indicates that this token never expires. It is
 RECOMMENDED that an expirationtime of 0 is only used for
 printed tokens.

 identities: A list of identities represented by this token. struct
 PrAuthName is the identity structure defined in
 [I-D.brashear-afs3-pts-extended-names].

7. Cache Manager Tokens

 Some deployment scenarios for AFS-3 involve multi-user machines with
 a single Cache Manager that fetches data on the users' behalf. When
 multiple users have access to the same content, data that is fetched
 on the behalf of one user may be cached and re-displayed to a second
 user, without re-fetching it from the fileserver hosting the data.
 The initial data aquisition is authenticated by the first user's

https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires November 22, 2015 [Page 8]

Internet-Draft Integrating rxgk with AFS May 2015

 credentials, and if only that user's credentials are used, it may be
 possible for a malicious user or users to "poison" the cache for
 other users, and introduce bogus data.

 In order to protect users of a multi-user cache manager from each
 other, it is possible to give the cache manager its own token, which
 can be combined (Section 9) with the users' tokens so that the user
 may be authenticated at the fileserver while still preserving the
 integrity of the data obtained by the cache manager. In order to
 obtain a token, the cache manager must have some means of acquiring/
 using key material.

7.1. Keyed Clients

 When a host already has key material for a GSSAPI mechanism supported
 by the vlserver, that material MAY be used to key the cache manager.
 The cache manager simply calls the rxgk negotiation service using the
 relevant material, and obtains a token. This token is a database
 server token; there is no need in the protocol for it to be usable as
 the user_tok input to AFSCombineTokens or for there to be an entry in
 the protection database corresponding to the cache manager's GSS
 identity. The cache manager should frequently regenerate its token,
 to avoid combined tokens having expiration times which are
 substantially earlier than the expiration time of the corresponding
 user credentials. The cache manager should not regenerate this token
 so often so as to place excessive load on the vlservers.

 It is recommended that GSS identities created specifically for use by
 a cache manager have the name afs3-callback@<hostname> of name type
 GSS_C_NT_HOSTBASED_SERVICE where <hostname> is the fully qualified
 domain name of the machine upon which the cache manager is running.

7.2. Unkeyed Clients

 When a client has no key material, it is possible that an anonymous
 GSSAPI connection may succeed. Clients MAY attempt to negotiate such
 a connection by calling GSS_Init_sec_context() with the anon_req_flag
 [RFC2743] and the default credentials set.

 In some cases a cache manager may not have any dedicated credentials,
 but have user credentials from multiple different users. These
 tokens could be combined using the RXGK_CombineTokens operation and
 the combined token used as a proxy cache manager token. However,
 conspiring malicious users could still be able to manipulate the
 cache, and the differing token expiration times for user tokens would
 make cache management quite complicated with this approach. As such,
 it is not recommended for general use.

https://datatracker.ietf.org/doc/html/rfc2743

Wilkinson & Kaduk Expires November 22, 2015 [Page 9]

Internet-Draft Integrating rxgk with AFS May 2015

8. Combining Tokens

 This section describes the server-side behavior of the
 RXGK_CombineTokens operation for the AFS-3 protocol.

 There are no application-specific fields in RXGK_Token, so only the
 behavior for combination of identity information remains to be
 specified.

 The identity lists in the 'identities' fields of the two tokens are
 combined via order-preserving concatenation and placed in the
 'identities' field of the output token.

 Printed tokens (Section 10.1) cannot be combined with any other
 token, and servers MUST reject attempts to do so, whether via
 CombineTokens, AFSCombineTokens, or any other token-combining
 procedure. AFSCombineTokens with a printed user_tok and an empty
 cm_tok is not considered to be token combination for this purpose.

9. The AFSCombineTokens Operation

 AFS extends the existing CombineTokens operation to provide a more
 featured token manipulation and conversion service. This operation
 takes a user token, an optional cache manager token, options for
 enctype and security level negotiation with the server, and a
 destination file server identifier. It returns a token specific to
 the specified destination fileserver, and a structure containing some
 information describing the returned token. AFSCombineTokens is the
 only way to obtain a valid file server token (other than printing a
 token, see Section 10.1).

 AFSCombineTokens(IN RXGK_Data *user_tok,
 IN RXGK_Data *cm_tok,
 IN RXGK_CombineOptions *options,
 IN afsUUID *destination,
 OUT RXGK_Data *new_token,
 OUT RXGK_TokenInfo *token_info) = TBD;

 user_tok: An rxgk token for the vlserver.

 cm_tok: Either an rxgk token for the vlserver, or empty (zero-
 length).

 options: An RXGK_CombineOptions structure containing a list of
 enctypes acceptable to the client and a list of security levels
 acceptable to the client.

Wilkinson & Kaduk Expires November 22, 2015 [Page 10]

Internet-Draft Integrating rxgk with AFS May 2015

 destination: The UUID of the server new_token is intended for. File
 server UUIDs may be obtained from the VLDB in the same call
 that returns their addresses.

 new_token: The output rxgk token, or empty (zero-length).

 token_info: Information describing the returned token.

 The AFSCombineTokens call MUST only be performed over a secured rxgk
 connection. AFSCombineTokens MUST NOT be offered over an
 RXGK_LEVEL_CLEAR connection. Servers MUST reject all attempts to
 perform this operation over channels that do not offer integrity
 protection. This integrity guarantee protects the returned token
 information (token_info) as well as the options and destination
 arguments submitted to the server.

 Clients which are caching the results of RPCs on behalf of multiple
 users (such as a traditional AFS Cache Manager), SHOULD provide both
 the user's token (as user_tok) and a token generated from an identity
 that is private to the cache manager (as cm_tok). This prevents a
 user from poisoning the cache for other users. Recommendations on
 keying cache managers are contained in Section 7.1.

 The output token from AFSCombineTokens is a token specific to the
 fileserver indicated by the destination argument. As such, it is not
 a valid input token for a successor AFSCombineTokens operation, as
 the input tokens for AFSCombineTokens must be tokens for the
 vlserver. To prevent key-reuse attacks, the token master key in the
 output token must be unique per destination file server; the
 destination UUID is incorporated into the key derivation procedure to
 ensure this property.

 Clients using a printed token (see Section 10.1) MUST provide that
 token as user_tok. cm_tok MUST be empty.

 The server uses a zero-length new_token to indicate that the
 generation of rxgk tokens for the specified fileserver cannot work at
 the present time. Upon receipt of such a zero-length new_token, the
 client MAY fall back to using a different authentication mechanism
 for that server. An rxgk capable client operating within an rxgk
 enabled cell MUST NOT downgrade its choice of security layer in any
 other situation. (Such a client may still not attempt to use rxgk at
 all for an AFS cell if it has determined that there is no suitable
 GSS acceptor identity to be used for that cell.)

 In other cases where the server is unable to perform the
 AFSCombineTokens operation with the given arguments, a nonzero value

Wilkinson & Kaduk Expires November 22, 2015 [Page 11]

Internet-Draft Integrating rxgk with AFS May 2015

 is returned. Clients MUST NOT use such an error as an indication to
 fall back to to a different security class.

 The 'identities' list from user_tok is copied to the 'identities'
 field of the new_token. The 'identities' list from cm_tok is
 discarded unused.

 Other aspects of the operation of AFSCombineTokens, including the
 combination of keys and tokens, are largely the same as the
 CombineTokens RPC, documented in [I-D.wilkinson-afs3-rxgk] and

Section 8. However, the AFSCombineTokens operation needs to include
 the destination file server's UUID in the key combination process to
 ensure that the resulting key is unique for each file server (and
 different from the key in the input tokens); AFSCombineTokens must
 also handle the case where the supplied cm_tok is absent (empty). In
 the two-token case, the KRB-FX-CF2 operation is still used, but the
 pepper1 and pepper 2 inputs will both include the destination UUID:

 pepper1 := "AFS" || 00 || destination || enctype
 pepper2 := "rxgk" || 00 || destination || enctype

 where the strings "AFS" and "rxgk" exclude the NUL terminator; 00 is
 a NUL octet; destination is the XDR-encoding of the destination
 afsUUID; enctype is the enctype selected by the server and returned
 in the enctype field of token_info, encoded as a 32-bit integer in
 network byte order; and || is the concatenation operator. In the
 one-token case,

 Kn := random-to-key(PRF+(K0, pepper0))
 pepper0 := "rxgkAFS" || 00 || destination || enctype

 where the string "rxgkAFS" excludes the NUL terminator. Note that
 the PRF+ function here is the one used in the KRB-FX-CF2 operation
 specified in [RFC6113], which differs from the PRF+ function
 specified in [RFC4402] and used elsewhere in this document. random-
 to-key is the function specified by the RFC3961 profile of the
 selected enctype.

10. Server to Server Communication

 A number of portions of the AFS-3 protocol require that servers
 communicate amongst themselves. To name a limited subset of
 examples, file servers must register their location (IP addresses)
 with the vldb, and must query the prdb when serving data; moving
 volumes from one file server to another requires that the file
 servers communicate with each other directly.

https://datatracker.ietf.org/doc/html/rfc6113
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires November 22, 2015 [Page 12]

Internet-Draft Integrating rxgk with AFS May 2015

 A server with the cell-wide shared key can forge a token for its use
 in server-to-server communication, which we refer to as "token
 printing". Printed tokens take on a special form (Section 10.1) and
 are limited in that they cannot be combined with any other token.

 However, file servers with a server-specific key (that is, without
 the cell-wide shared key), can only print a token to themselves.
 Such tokens are not usable to communicate with database servers or
 other file servers. As such, file servers with a per-server key will
 need GSS credentials (but, as with keyed clients, not necessarily
 entries in the protection database) in order to function. These
 credentials can be used to acquire an rxgk token, allowing queries to
 the database servers. They can also be used to register the file
 server in the vldb, and to create and update the file server's
 server-specific key in the vldb.

10.1. Token Printing

 A server with access to the cell-wide pre-shared key may print its
 own tokens for server-to-server access. To do so, it should
 construct a database server token with suitable values. The list of
 identities in such a token MUST be empty. It can then encrypt this
 token using the pre-shared key, place it in an RXGK_TokenContainer
 describing the key used to perform the encryption, and use it in the
 same way as a normal rxgk token. The receiving server can identify
 it as a printed token by the empty identity list.

 The session key within a printed database server token MUST use the
 same encryption type as the pre-shared key. When connecting to a
 fileserver starting from a printed token, a client MUST use the
 AFSCombineTokens service as discussed above to ensure that they are
 using the correct key for the fileserver.

 File servers with per-server keys may also print tokens, though these
 tokens are in general of limited utility. (Being file server tokens,
 they are not valid inputs to AFSCombineTokens, etc..)

10.2. Declaring rxgk Support for a Fileserver

 The AFSCombineTokens call has specific behaviour when a destination
 endpoint does not support rxgk. Implementing this behaviour requires
 that the vldb have a record of whether a fileserver supports rxgk.

 Fileservers currently register with the vlserver using the
 VL_RegisterAddrs RPC. This document introduces an extended version,
 VL_RegisterAddrsAndKey (Section 10.3), and either one may be used to
 indicate that a fileserver supports rxgk. Fileservers which support
 rxgk MUST call these RPCs over an rxgk protected connection. The

Wilkinson & Kaduk Expires November 22, 2015 [Page 13]

Internet-Draft Integrating rxgk with AFS May 2015

 vlserver then infers rxgk support from the rx security layer used in
 registration. To prevent downgrade attacks, once a fileserver has
 registered as being rxgk capable, the vlserver MUST NOT remove that
 registration without administrator intervention.

 Once a fileserver has been marked as supporting rxgk,
 VL_RegisterAddrs calls for that fileserver MUST only be accepted over
 an rxgk protected connection. vlservers MUST only accept calls to
 VL_RegisterAddrs and VL_RegisterAddrsAndKey from a printed token, an
 administrator, or the identity registered for the fileserver using a
 prior call to VL_RegisterAddrsandKey.

 There are two tracks for registering a file server as being rxgk-
 enabled; one for file servers with the cell-wide key, and another for
 file servers with per-server keys.

10.2.1. File Servers With the Cell-Wide Key

 When a file server that will use the cell-wide key is registered as
 rxgk-capable, there is no need to register a new key for that server
 (and in fact it would be actively harmful!), so there is no need to
 use VL_RegisterAddrsAndKey. In this case, VL_RegisterAddrs is
 sufficient, and using a printed token for the rxgk connection for
 VL_RegisterAddrs indicates that the file server possesses the cell-
 wide key. Since the file server has the cell-wide shared key, it
 will get its key updated when the cell-wide key is updated, and does
 not need to update its own key separately. As such, it will never
 need to call VL_RegisterAddrsAndKey.

10.2.2. File Servers With Per-Server Keys

 This section describes the case when the automated keying mechanism
 described in Section 10.3 is used. If the record of per-server keys
 in the vldb is being manually maintained, cell administrators should
 manually register the file servers in the vldb using VL_RegisterAddrs
 instead.

 Since the goal is to establish a per-server key,
 VL_RegisterAddrsAndKey is necessary for the first call. However,
 best practices require that the file server change its long-term key
 periodically, so it must retain the ability to perform subsequent
 VL_RegisterAddrsAndKey calls in the future, to register those new
 keys in the vldb. For this reason, a printed token is not a useful
 choice for performing the initial call to VL_RegisterAddrsAndKey,
 since only a printed token would be able to perform a subsequent
 call. The printed token would require the cell-wide shared key,
 eliminating any benefit from having a server-specific key. As such,
 a regular (non-printed) token is required for the initial call to

Wilkinson & Kaduk Expires November 22, 2015 [Page 14]

Internet-Draft Integrating rxgk with AFS May 2015

 VL_RegisterAddrsAndKey. A cell administrator's token could be used,
 but it is advantageous to allow file servers with per-server keys to
 operate without intervention by the central cell administrators (so
 that these file servers could be run solely by a local administrator
 without need for central administrator intervention).

 Thus, it is expected that a file server with a per-server key will
 have a dedicated GSS identity and credentials that it will use for
 registering with the vldb (VL_RegisterAddrsAndKey) and that will also
 be used for securing the file server's regular connections to the
 database servers during normal operation. The vlserver will store in
 the vldb what GSS identity is used to perform VL_RegisterAddrsAndKey
 for a given file server UUID, and allow that identity to perform
 successor calls to VL_RegisterAddrsAndKey and VL_RegisterAddrs for
 that UUID.

 Is is RECOMMENDED that GSS identities created solely for use on file
 servers with per-server keys be of the form
 afs3-fileserver@<hostname> of name type GSS_C_NT_HOSTBASED_SERVICE.

10.3. Registering Per Server Keys

 The provisioning of file servers with their own keys, rather than the
 cell-wide master key, requires the ability to maintain a directory of
 these keys in the vldb, so that the AFSCombineTokens RPC can encrypt
 the outgoing token with the correct key. The manner in which this
 directory is maintained is left to the implementor, who MAY decide to
 use a manual, out of band, key management system. Otherwise, the
 automated keying mechanism described as follows will be used.

 Implementations supporting automatic key management through the AFS-3
 protocol MUST provide the VL_RegisterAddrsAndKey RPC (similar to the
 VL_RegisterAddrs RPC). This RPC is called by a fileserver to
 register itself with the VLDB; it MUST be called over a secure
 connection that provides confidentiality protection.

 For the purpose of this RPC, the fileserver acts as the client and
 the vlserver as the server. Once the RPC completes, both peers of
 the RPC call can generate a key to be used as the fileserver's long-
 term server key.

 vlservers SHOULD NOT permit calls to VL_RegisterAddrsAndKey for
 fileserver UUIDs which already exist within the vldb, unless that
 UUID already has a server-specific key registered. Requiring the
 separation facilitates a workflow wherein existing servers retain the
 cell-wide key, and new file servers are created with per-server keys.
 Data volumes can then be gradually migrated to the new file servers,
 and old file servers decommissioned. Permitting file servers to

Wilkinson & Kaduk Expires November 22, 2015 [Page 15]

Internet-Draft Integrating rxgk with AFS May 2015

 convert from cell-wide key to per-server keys would involve
 complicated access checking and update logic for which it is
 difficult to ensure correctness of implementation.

 The VL_RegisterAddrsAndKey RPC is described by the following RPC-L:

 struct RXGK_ServerKeyDataRequest {
 afs_int32 enctypes<>;
 opaque nonce1[20];
 };

 struct RXGK_ServerKeyDataResponse {
 afs_int32 enctype;
 afs_uint32 kvno;
 opaque nonce2[20];
 };

 const RXGK_MAXKEYDATAREQUEST = 16384;
 const RXGK_MAXKEYDATARESPONSE = 16384;
 typedef opaque keyDataRequest<RXGK_MAXKEYDATAREQUEST>;
 typedef opaque keyDataResponse<RXGK_MAXKEYDATARESPONSE>;
 VL_RegisterAddrsAndKey(
 IN afsUUID *uuidp,
 IN afs_int32 spare1,
 IN bulkaddrs *ipaddr,
 IN afs_int32 secIndex,
 IN keyDataRequest *request,
 OUT keyDataResponse *response) = XXX;

 uuidp: The fileserver's UUID.

 spare1: Unused. (Clients SHOULD pass zero.)

 ipaddr: The list of addresses to register as belonging to this
 fileserver.

 secIndex: The index of the security mechanism for which a key is
 being set.

 keyDataRequest: An opaque blob of data, specific to the security
 mechanism defined by secIndex. For rxgk, it is the XDR-encoded
 representation of an RXGK_ServerKeyDataRequest structure.

 keyDataResponse: An opaque blob of data, specific to the security
 mechanism defined by secIndex. For rxgk, it is the XDR-encoded
 representation of an RXGK_ServerDataResponse structure.

Wilkinson & Kaduk Expires November 22, 2015 [Page 16]

Internet-Draft Integrating rxgk with AFS May 2015

 The client provides, in the RXGK_ServerKeyDataRequest structure, a
 list of the RFC3961 encryption types that it will accept as a server
 key. It also provides a nonce containing 20 random data bytes.

 The server selects an encryption type shared by it and the client,
 and returns that, along with 20 bytes of random data that it has
 generated, in RXGK_ServerKeyDataResponse. If there is no common
 encryption type, then the server MUST fail the request. The kvno
 field of the RXGK_ServerKeyDataResponse is used to indicate to the
 client what key version number it should use for the key it will
 compute using these nonces. The kvno will be used in the
 RXGK_TokenContainer bearing file server tokens for this file server,
 to indicate which key was used to encrypt the RXGK_Token.

 The vlserver MUST store the identity list from the token used to make
 this connection. The vlserver MUST only permit subsequent calls to
 VL_RegisterAddrsAndKey for this UUID when they come over a connection
 authenticated with that same identity list, an administrator's token,
 or a printed token. Such subsequent calls using an administrator's
 token or a printed token do not update the identity list associated
 with this UUID's key. New fileserver UUIDs register themselves with
 the vldb in a "leap of faith", binding a GSSAPI identity to the
 fileserver UUID for future authenticated operations. Fileservers
 SHOULD use VL_RegisterAddrsAndKey to rekey themselves periodically,
 in accordance with key lifetime best practices.

 For rxgk, the file server key can then be derived by both client and
 server using

 random-to-key(PRF+(K0, K,
 pepper || 00 || nonce1 || nonce2 || enctype));

 random-to-key is the function specified by the RFC3961 profile of the
 encryption type chosen by the server and returned in enctype.

 PRF+ is the function of that name specified by [RFC4402].

 [[The PRF+ function defined in RFC 4402 specifies that the values of
 the counter 'n' should begin at 1, for T1, T2, ... Tn. However,
 implementations of that PRF+ function for the gss_pseudo_random()
 implementation for the krb5 mechanism have disregarded that
 specification and started the counter 'n' from 0. Since there is no
 interoperability concern between krb5 gss_pseudo_random() and rxgk
 key derivation, implementations of the RFC 4402 PRF+ function for
 rxgk key derivation should use the RFC 4402 version as specified,
 that is, with the counter 'n' beginning at 1.]]

https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc4402

Wilkinson & Kaduk Expires November 22, 2015 [Page 17]

Internet-Draft Integrating rxgk with AFS May 2015

 K0 is the master key of the current rxgk session, e.g., as originally
 determined by the GSSNegotiate call.

 K is the key generation seed length as specified in enctype's RFC3961
 profile.

 pepper is the ASCII string "RXGKRegisterAddrsAndKey" (without
 trailing NUL).

 00 is a NUL octet.

 enctype is the selected enctype, encoded as a 32-bit integer in
 network byte order.

 || is the concatenation operation.

11. Securing the Callback Channel

 AFS has traditionally had an unprotected callback channel. However,
 extended callbacks [I-D.benjamin-extendedcallbackinfo] require a
 mechanism for ensuring that callback breaks and, critically, data
 updates, are protected. This requires that there is a strong
 connection between the key material used initially to perform the
 RPC, and that which is used to protect any resulting callback. We
 achieve this by binding the key used to secure the callback
 connection into the authenticator used to create the original rxgk
 connection. Callbacks created as a result of RPCs performed on that
 rxgk connection will use the callback key given in the authenticator.

11.1. Lifetime and scope of the callback channel

 The RXGK_Authenticator_AFSAppData structure contains a key and
 enctype, but no key version number field. This restricts the
 connection to only ever having one key to secure callbacks created as
 a result of calls on that connection, even if there are multiple Rx
 challenge/response exchanges where a new authenticator could be
 constructed. This is acceptable, because if the client needs to
 rotate the key used for secure callbacks to it, the client can
 initiate a new connection to the server, with a new callback key.

 It may be reasonable for a cache manager to only ever use one key for
 secure callbacks (until the cache manager is restarted), such as in a
 cell where all fileservers have the cell-wide shared key or where all
 fileservers are equally trusted. Alternately, a cache manager may
 use just one callback key per fileserver. In either case, which key
 to use for incoming callback connections is known just from the
 context of the connection, so there is no need to provide a callback
 token in the authenticator.

https://datatracker.ietf.org/doc/html/rfc3961

Wilkinson & Kaduk Expires November 22, 2015 [Page 18]

Internet-Draft Integrating rxgk with AFS May 2015

 In all cases, both cache manager and file server must retain the
 callback key until all callbacks using that key are expired.

 Only RPCs issued over an rxgk protected connection should receive
 rxgk protected callbacks.

12. IANA Considerations

 This memo includes no request to IANA.

13. AFS-3 Registry Considerations

 This document requrests that the AFS-3 registry allocate code points
 for the new RPCs AFSCombineTokens (for the RXGK service) and
 RegisterAddrsAndKey (for the VL service).

14. Security Considerations

14.1. Downgrade attacks

 Using the presence of a GSSAPI key to determine a cell's ability to
 perform rxgk is vulnerable to a downgrade attack, as an attacker may
 forge error responses. Cells which no longer support rxkad should
 remove their afs@REALM and afs/cell@REALM Kerberos keys.

14.2. Per Server Keys

 The mechanism for automatically registering per-server keys is
 potentially vulnerable, as it trades a short-lived key (the rxgk
 session key, which protects the key exchange) for a long-lived one
 (the server key). There is precedent for this sort of key exchange,
 such as when using kadmin to extract a new kerberos keytab.

14.3. Combined Key Materials

 As described in Section 7, combined tokens are used to prevent cache
 poisoning attacks on multi-user systems. In order for this
 protection to be effective, cache managers MUST NOT provide user
 access to keys produced through the combine tokens operation, unless
 those keys will not be used by the cache manger itself.

15. References

15.1. Informational References

 [RX] Zeldovich, N., "RX protocol specification", October 2002.

Wilkinson & Kaduk Expires November 22, 2015 [Page 19]

Internet-Draft Integrating rxgk with AFS May 2015

 [I-D.benjamin-extendedcallbackinfo]
 Benjamin, M., "AFS Callback Extensions (Draft 14)", draft-

benjamin-extendedcallbackinfo-02 (work in progress),
 December 2011.

15.2. Normative References

 [I-D.brashear-afs3-pts-extended-names]
 Brashear, D., "Authentication Name Mapping extension for
 AFS-3 Protection Service", draft-brashear-afs3-pts-

extended-names-09 (work in progress), March 2011.

 [I-D.wilkinson-afs3-rxgk]
 Wilkinson, S., "rxgk: GSSAPI based security class for RX",

draft-wilkinson-afs3-rxgk-00 (work in progress), January
 2010.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC3961] Raeburn, K., "Encryption and Checksum Specifications for
 Kerberos 5", RFC 3961, February 2005.

 [RFC4402] Williams, N., "A Pseudo-Random Function (PRF) for the
 Kerberos V Generic Security Service Application Program
 Interface (GSS-API) Mechanism", RFC 4402, February 2006.

 [RFC4506] Eisler, M., "XDR: External Data Representation Standard",
 STD 67, RFC 4506, May 2006.

 [RFC6113] Hartman, S. and L. Zhu, "A Generalized Framework for
 Kerberos Pre-Authentication", RFC 6113, April 2011.

Appendix A. Acknowledgements

 rxgk has been the work of many contributors over the years. A
 partial list is contained in the [I-D.wilkinson-afs3-rxgk]. All
 errors and omissions are, however, mine.

Appendix B. Changes

https://datatracker.ietf.org/doc/html/draft-benjamin-extendedcallbackinfo-02
https://datatracker.ietf.org/doc/html/draft-benjamin-extendedcallbackinfo-02
https://datatracker.ietf.org/doc/html/draft-brashear-afs3-pts-extended-names-09
https://datatracker.ietf.org/doc/html/draft-brashear-afs3-pts-extended-names-09
https://datatracker.ietf.org/doc/html/draft-wilkinson-afs3-rxgk-00
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3961
https://datatracker.ietf.org/doc/html/rfc4402
https://datatracker.ietf.org/doc/html/rfc4506
https://datatracker.ietf.org/doc/html/rfc6113

Wilkinson & Kaduk Expires November 22, 2015 [Page 20]

Internet-Draft Integrating rxgk with AFS May 2015

B.1. Since 00

 Add references to RX and XDR specifications.

 Add introductory material on AFS.

 Change expirationTime to be expressed using the rxgkTime type.

 Document how encryption types are chosen for printed tokens, and how
 they are used against fileservers.

 Expand security considerations section to cover combined tokens.

 Rename AFS_SetCallbackKey as RXAFS_SetCallbackKey.

B.2. Since 01

 Rename RXAFS_SetCallbackKey to RXAFS_SetCallBackKey.

 Add an AFS-3 Registry Considerations section.

 Clarify the vlserver/dbserver/fileserver relationship.

 AFSCombineTokens prototype changes.

 Clarify the scope of the document.

 Use a leap of faith for RegisterAddrsAndKey.

 Specify the nametype of the acceptor identity.

B.3. Since 02

 Deal with fallout of errorcode's removal from RXGK_TokenInfo.

 Rework "securing the callback channel".

B.4. Since 03

 Clarify the distinction between dbserver and fileserver tokens.

 AFSCombineTokens is the only way to get file server tokens.

 Add new kind of PrAuthName, PRAUTHTYPE_EMPTY.

 Specify how cache manager token identities are stored in file server
 tokens.

Wilkinson & Kaduk Expires November 22, 2015 [Page 21]

Internet-Draft Integrating rxgk with AFS May 2015

 Place bounds on some XDR opaque arrays.

 Expound more about printed tokens, for dbservers and fileservers.

B.5. Since 04

 Rearrange content within the document in attempt to give a more
 coherent structure and improve readability.

 Add specifications for the remaining pieces of rxgk behavior which
 the core document left as application-specific.

 Change the token format. Instead of having the last entry in the
 identities list be the CM identity, use an explicit separate field
 for the identity to be used for callbacks.

 As a result, PRAUTHTYPE_EMPTY is no longer necessary.

 General edits for grammar and readability.

 Add security considerations for the DoS attach that is possible by
 setting fake callback keys.

 Add a clarifying note for the RFC 4402 PRF+ implementation.

B.6. Since 05

 Remove start_time from the token format.

 Remove the SetCallBackKey RPC, in favor of putting a callback key in
 the authenticator appdata. This provides a simpler solution to the
 problem of establishing a secure callback channel.

 While here, add the server UUID into the appdata as well as the
 client UUID, to prevent some possible routes to data corruption.

B.7. Since 06

 General edits for clarity.

 Use afs_uint32 for token lifetimes, to match the core spec.

B.8. Since 07

 Incorporate the destination UUID and target enctype into
 AFSCombineTokens key generation.

https://datatracker.ietf.org/doc/html/rfc4402

Wilkinson & Kaduk Expires November 22, 2015 [Page 22]

Internet-Draft Integrating rxgk with AFS May 2015

 Add (fixed) pepper strings for AFSCombineTokens and
 RegisterAddrsAndKey key generation.

 General editing for clarity.

 Use unsigned types for kvnos.

 Use a pointer type for afsUUID RPC arguments.

Authors' Addresses

 Simon Wilkinson
 Your File System Inc

 Email: simon@sxw.org.uk

 Benjamin Kaduk
 MIT Kerberos Consortium

 Email: kaduk@mit.edu

Wilkinson & Kaduk Expires November 22, 2015 [Page 23]

