
Internet Engineering Task Force N. Williams, Ed.
Internet-Draft Cryptonector, LLC
Intended status: Best Current Practice July 6, 2020
Expires: January 7, 2021

Internationalization Considerations for Filesystems and Filesystem
Protocols

draft-williams-filesystem-18n-00

Abstract

 This document describes requirements for internationalization (I18N)
 of filesystems specifically in the context of Internet protocols, the
 architecture for filesystems in most currently popular general
 purpose operating systems, and their implications for filesystem
 I18N. From the I18N requirements for filesystems and the
 architecture of running code we derive requirements and
 recommendations for implementors of operating systems and/or
 filesystems, as well as for Internet remote filesystem protocols.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Williams Expires January 7, 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Accept-Auth & Redirect July 2020

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 3
1.2. Filesystem Internationalization 3
1.2.1. Canonical Equivalence (Normalization) 4
1.2.2. Case Foldings for Case-Insensitivity 4
1.2.3. Caching Clients . 5
1.3. Running Code Architecture Notes 5
2. Filesystem I18N Guidelines 9
2.1. Filesystem I18N Guidelines: Non-Unicode File names 9
2.2. Filesystem I18N Guidelines: Case-Insensitivity 9
2.3. I18N Versioning . 9
3. Filesystem Protocol I18N Guidelines 10
3.1. I18N and Caching in Filesystem Protocol Clients 10
4. Internationalization Considerations 10
5. IANA Considerations . 10
6. Security Considerations 11
7. References . 11
7.1. Normative References 11
7.2. Informative References 12
7.3. URIs . 12

 Author's Address . 12

1. Introduction

 [TBD: Add references galore. How to reference Unicode? How to
 reference US-ASCII? How best to reference HFS+? How best to
 reference ZFS? May have to find useful references for POSIX and
 WIN32. Various blog entries may be of interest -- can they be
 referenced?]

 We, the Internet community, have long concluded that we must
 internationalize all our protocols. This is generally not an easy
 task, as often we are constrained by the realities of what can be
 achieved while maintaining backwards compatibility.

 In this document we focus on filesystem internationalization (I18N),
 specifically only for file names and file paths. Here we address the
 two main issues that arise in filesystem I18N:

 o Unicode equivalence

Williams Expires January 7, 2021 [Page 2]

Internet-Draft Accept-Auth & Redirect July 2020

 o Case foldings for case-insensitivity

 These two issues are different flavors of the same generic issue:
 that there can be more than one way to write text with the same
 rendering and/or semantics.

 Only I18N issues relating to file names and paths are addressed here.
 In particular, I18N issues related to representations of user
 identities and groups, for use in access control lists (ACLs) or
 other authorization systems, are out of scope for this document.
 Also out of scope here are I18N issues related to Uniform Resource
 Identifiers (URIs) [RFC3986] or Internationalized Resource
 Identifiers (IRIs) [RFC3987].

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

1.2. Filesystem Internationalization

 We must address two issues:

 o Unicode equivalence

 o Case foldings for case-insensitivity

 Unicode can represent certain character strings in multiple visually-
 and semantically-equivalent ways. For example, there are two ways to
 express LATIN SMALL LETTER A WITH ACUTE (á):

 o U+00E1

 o U+0061 U+0301

 For some glyphs there is a single way to write them. For others
 there are two. And for yet others there can be many more than two.

 To deal with the equivalence problem, Unicode defines Normal Forms
 (NFs), of which there are two basic ones: Normal Form Composed (NFC),
 and Normal Form Decomposed (NFD). There are also NFs that use
 "compatibility" Foldings, NFKC and NFKD. Unicode-aware applications
 can normalize text to avoid ambiguities, or they can use form-
 insensitive string comparisons, or both.

 Some filesystems support case-insensitivity, which is trivial to
 define and implement for US-ASCII, but non-trivial for Unicode,

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Williams Expires January 7, 2021 [Page 3]

Internet-Draft Accept-Auth & Redirect July 2020

 requiring not only larger case-folding tables, but also localized
 case-folding tables as case-folding rules might differ from locale to
 locale.

1.2.1. Canonical Equivalence (Normalization)

 For case-sensitive filesystems, only Unicode equivalence issues arise
 as to file names and file paths. These can be addressed in one of
 two ways:

 o normalize file names when created and when looked up,

 o perform form-insensitive string comparisons on lookup.

 The first option yields normalized file names on-disk and on the wire
 (e.g., when listing directories). We shall term this "normalize-on-
 CREATE", or sometimes "normalize-on-CREATE-and-LOOKUP", or even just
 "NoCL".

 The second option preserves form as originally produced by the user
 or on their behalf by their system's text input modes, but otherwise
 is form-insensitive. That is, this option permits either encoding
 of, e.g., LATIN SMALL LETTER A WITH ACUTE on-disk and on the wire,
 but permits only one form of any string, whether normal or not. We
 shall term this option "form-insensitive", or sometimes "form-
 insensitive and form-preserving", or just "FIP".

 Unicode compatibility equivalence allows equivalence between
 different representations of the same abstract character that may
 nonetheless have different visual appearance of behavior. There are
 two canonical forms that support compatibility equivalence: NFKC and
 NFKD. Using NoCL with NFKC or NFKD may be surprising to users in a
 visual way. While form-insensitivity with NFKC or NFKD may surprise
 users who might consider two file names distinct even when Unicode
 considers them equivalent under compatibility equivalence. The
 latter seems less likely and less surprising, though that is an
 entirely subjective judgement.

 We do not recommend either of NoCL or FIP over the other.

1.2.2. Case Foldings for Case-Insensitivity

 Case-insensitivity implies folding characters of one case to another
 for comparison purposes, typically to lower-case. These case
 foldings are defined by Unicode. Generally, case-insensitive
 filesystems preserve original case just form-insensitive filesystems
 preserve original form.

Williams Expires January 7, 2021 [Page 4]

Internet-Draft Accept-Auth & Redirect July 2020

 It is possible that some case foldings may have to vary by locale. A
 commonly used example of character where case foldings that varies by
 locale is LATIN SMALL LETTER DOTLESS I (U+0131).

 In some cases it may be possible to construct case-folding tailorings
 that are locale-neutral. For example, all of the following conuld be
 considered equivalent:

 o LATIN CAPITAL LETTER I (U+0049)

 o LATIN SMALL LETTER I (U+0069)

 o LATIN CAPITAL LETTER I WITH DOT ABOVE (U+0130)

 o LATIN SMALL LETTER DOTLESS I (U+0131)

 which might satisfy a mix of users including those familiar with
 Turkish and those not, using the same filesystem.

1.2.3. Caching Clients

 Remote filesystem protocols often involve caching on clients, which
 caching may require knowledge of filesystem I18N settings in order to
 permit local operations to be performed using cached directory
 listings that work the same way as on the server. We do not specify
 any case foldings here. Instead we will either create a registry of
 case folding tailorings, or use the Common Locale Data Repository
 (CLDR), then require that filesystems and servers be able to identify
 what case foldings are in effect for case-insensitive filesystems.

1.3. Running Code Architecture Notes

 Surprisingly, almost all if not all general purpose operating systems
 in common use today have a "virtual filesystem switch" (VFS)
 [McKusick86] [wikipedia] [1] interface that permits the use of
 multiple different filesystem types on one system, all accessed
 through the same filesystems application programming interfaces
 (APIs). The VFS is essentially a pluggable layer that includes
 functionality for routing calls from user processes to the
 appropriate filesystems. The VFS has even been generalized and
 extended to support isolation, thus we have the Filesystem in
 Userspace (FUSE), which is akin to a remote filesystem protocol, but
 for use over local inter-process communications (IPC) facilities.

 The VFS architecture was developed in the 1980s, before Unicode
 adoption. It is not surprising then that in general -if not simply
 always today- the code path from the interface between a user
 application and the operating system all the way to the filesystem

Williams Expires January 7, 2021 [Page 5]

Internet-Draft Accept-Auth & Redirect July 2020

 implements no I18N functionality whatsoever, and does the absolute
 minimum of character data interpretation:

 o use of US-ASCII NUL (for "C string" termination),

 o use of US-ASCII '/' and/or '\' (for file path component
 delimiting).

 For example, the 4.4BSD operating system and derivatives have a VFS
 [BSD4.4], as do Solaris and derivatives [SolarisInternals], Windows
 <https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/>, OS
 X, and Linux. A VFS of a sort, including FUSE, may well be the only
 reasonable way to support more than one kind of filesystem while
 retaining compatibility with previously-existing filesystem APIs.
 This explains why so many modern operating systems have a VFS.

 Thus in most if not all general purpose operating systems today, the
 code path from the boundary between the application and the operating
 system, and the boundary between the VFS and the filesystem, is
 "just-use-8" or "just-use-16" (as in UTF-16 [UNICODE]), with no
 attempt at normalization or case folding done anywhere in between.

 There are filesystem servers that access raw storage directly and
 implement the filesystem and the remote filesystem protocol server in
 one monolythic stack without a VFS in the way, but it is very common
 to have remote filesystem protocol servers implemented on top of the
 VFS or on top of the system calls. Even monolythic servers tend to
 support a notion of multiple filesystems in a server or volume, and
 may have different I18N settings for each filesystem. Thus it's
 common to leave I18N handling to code layers close to the filesystem
 even in monolythic server implementations.

 In practice all of foregoing has led to I18N functionality residing
 strictly in the filesystem. Two filesystems have defined the best
 current practices in this regard:

 o HFS+, which does normalize-on-CREATE (and LOOKUP), normalizing to
 a form that is very close to NFD and is case-sensitive;

 o ZFS, which implements form-insensitive, form-preserving behavior
 and optionally implements case-insensitive, case-preserving
 behavior on a per-filesystem basis.

 Altogether, these circumstances make it very difficult to reliably
 and always locate I18N functionality above the VFS, or to not use a
 VFS at all: there are too many places to alter, and all must agree
 exactly on I18N choices. Moreover, implementing case-insensitive but
 case-preserving behavior above the VFS requires fully reading each

https://docs.microsoft.com/en-us/windows-hardware/drivers/ifs/

Williams Expires January 7, 2021 [Page 6]

Internet-Draft Accept-Auth & Redirect July 2020

 directory, and so does implementing form-insensitive and form-
 preserving behavior at the VFS layer itself. The only behaviors that
 can be reliably implemented at or above the VFS are normalize- and
 case-fold-on-CREATE (and LOOKUP).

 Consider the set of already-running code that must all be modified in
 order to reliably implement I18N above the filesystem on general
 purpose operating systems:

 o filesystem protocol servers, including but not limited to:

 * Network File System (NFSv4) [RFC7530];

 * Hypertext Transfer Protocol (HTTP) servers serving resources
 hosted on filesystems[RFC7230];

 * SSH File Transfer Protocol (SFTP) [I-D.ietf-secsh-filexfer];

 * various remote filesystem protocols that are not Internet
 Protocols (i.e., not standards-track Internet RFCs);

 o POSIX system call layers or user process system call stub
 libraries;

 o WIN32 system call layers or user process system call stub
 libraries.

 Regarding system calls and system call stubs in user process system
 libraries, the continued use of statically-linked executables means
 that these cannot reliably be modified. Indeed, on some systems the
 Application Binary Interface (ABI) between user-space applications
 and the operating system kernel is well-defined and long-term stable.
 The system call handlers cannot reliably inspect the calling process
 to determine any attributes of its locale. Adding new system calls
 is possible, but existing running code wouldn't use them. For
 similar reasons, the VFS layer is generally (always) completely
 unaware of any attributes of the locale of applications calling it,
 whether via system calls or any other path.

 Unix-like operating systems are generally (always) "just-use-8",
 assuming only that file names and paths are C strings (i.e.,
 terminated by zero-valued bytes) and sufficiently compatible with US-
 ASCII that the file path component separator character, US-ASCII '/',
 is meaningful. As a result, it is possible to find I18N-unaware
 filesystems with one or more non-Unicode, non-ASCII codesets in use
 for file names! We leave non-ASCII and non-Unicode file names out of
 scope here.

https://datatracker.ietf.org/doc/html/rfc7530

Williams Expires January 7, 2021 [Page 7]

Internet-Draft Accept-Auth & Redirect July 2020

 For these reasons it is simply not practical to implement I18N at any
 layer above the VFS.

 Even in the VFS, form- and case-insensitive and -preserving behaviors
 would be difficult to implement as performantly as in the filesystem.
 The VFS would have to list a directory completely before being able
 to apply those behaviors. It is reasonable to expect caching clients
 of remote filesystems to cache directory listings (especially for
 offline operation), but it isn't reasonable to expect the same of the
 VFS. Compare to the filesystem itself, which can maintain a fast
 index (e.g., hash table or b-tree) where the keys are normalized and
 possibly case-folded file names and thus may not need to read
 directories in order to perform fast lookups that are form- and even
 case-insensitive.

 The only way to implement I18N behaviors in the VFS layer rather than
 at the filesystem is to abandon form- and case-preserving behaviors.
 For case-insensitivity this would require using sentence-case, or all
 lower-case, perhaps, and all such choices would surely be surprising
 to users. At any rate, that approach would also render much running
 code "non-compliant" with any Internet filesystem protocol I18N
 specification.

 Therefore, generally speaking, only the filesystem can reliably,
 interoperably, and performantly implement I18N behaviors in general
 purpose operating systems.

 Note that variations in I18N behaviors can happen even on the same
 server with multiple filesystems of the same type. This can happen
 because of

 different Unicode versions being used at the times of creation of
 various filesystems, and

 different locale settings on various filesystems.

 Locale variations are only relevant to case-folding for case-
 insensitivity. Running code mostly uses default case-folding rules,
 but there is no reason to assume that locale-specific case-folding
 rules won't be supported by running code in the future.

 It may not be possible or easy for a filesystem to adopt new Unicode
 versions, or adopt backwards-incompatible case foldings, after
 content has been created in it that would be ambiguous under new
 rules. This implies that where a client for a remote filesystem must
 know what I18N functionality to implement for use with cached
 directory listings, the client must know specifically what profile of
 I18N functionality each cached filesystem implements.

Williams Expires January 7, 2021 [Page 8]

Internet-Draft Accept-Auth & Redirect July 2020

2. Filesystem I18N Guidelines

 We begin be recognizing and accepting that much running code
 implements I18N functionality at the filesystem. Given this, we
 catalogue the range of acceptable behaviors. Filesystems adhering to
 this specification MUST implement only acceptable I18N behaviors as
 specified here. Acceptable variations may be registered in a to-be-
 determined (IANA?) registry of filesystem I18N behaviors.

2.1. Filesystem I18N Guidelines: Non-Unicode File names

 o Filesystems SHOULD reject attempts to create new non-Unicode file
 names.

 o Filesystems either MUST normalize on CREATE (and LOOKUP), or MUST
 be form-insensitive and form-preserving.

 o Filesystems MUST specify a Unicode version for their equivalence
 behaviors.

2.2. Filesystem I18N Guidelines: Case-Insensitivity

 o Filesystems MAY support case-insensitivity, in which case they
 SHOULD be case-preserving. Filesystems that are case-insensitive
 but not case-preserving either MUST specify a case form, such as
 title case or sentence case.

 o Case foldings for case-insensitive filesystems MUST be identified.
 The Unicode default case foldings SHOULD be the default case
 algorithms for the identified Unicode version without additional
 tailorings. Filesystems that use case algorithms tailored to
 specific locales SHOULD use case foldings registered in a to-be-
 determined (IANA?) registry.

 o Case-insensitive filesystems MUST specify a Unicode version for
 their case-insensitive behavior.

2.3. I18N Versioning

 Each filesystem MUST identify a Unicode version for their I18N
 behaviors. Filesystem implementations SHOULD adopt new Unicode
 versions as they are produced, though it is understood that it may be
 difficult to migrate non-empty filesystems to new Unicode versions.

Williams Expires January 7, 2021 [Page 9]

Internet-Draft Accept-Auth & Redirect July 2020

3. Filesystem Protocol I18N Guidelines

 Remote filesystem protocols that allow clients to perform lookups
 against cached directory listings MUST allow clients to discover all
 relevant I18N behaviors of the filesystem whence any given directory
 listing:

 o whether the filesystem normalizes on CREATE (and LOOKUP), and if
 so, to what NF in what Unicode version;

 o whether the filesystem is form-insensitive and form-preserving,
 and if so, in what Unicode version;

 o whether the filesystem is case-insensitive and case-preserving,
 and if so, with what foldings (default or tailured, and if
 tailored provide an identifier for the set of foldings), and a
 Unicode version.

 Foldings are identified via a folding set name as registered in a to-
 be-determined (IANA?) registry.

 Because some filesystems might allow for different I18N settings on a
 per-directory basis, remote filesystem protocols MUST allow those
 settings to be discoverable on a per-directory basis.

 Internet filesystem servers MUST reject attempts to create new non-
 Unicode file names. (Note that this requirement is weaker ("SHOULD")
 for the actual filesystems, since those might have to allow non-
 Unicode content for legacy reasons via interfaces other than Internet
 filesystem protocols.)

3.1. I18N and Caching in Filesystem Protocol Clients

 Caching clients of remote filesystems either MUST NOT perform lookups
 against cached directory listings, or MUST query the directories'
 filesystems' I18N profiles and apply the same I18N equivalent form
 policis and case-insensitivity case foldings.

4. Internationalization Considerations

 This document deals in internationalization throughout.

5. IANA Considerations

 [ALTERNATIVELY use locale names and CLDR? Need to determine the
 stability of CLDR locales... Basically, we need stable locale names,
 and stable case-folding mappings.]

Williams Expires January 7, 2021 [Page 10]

Internet-Draft Accept-Auth & Redirect July 2020

 We hereby request the creation of a new IANA registry with Expert
 Review registration rules with the following fields:

 o name, an identifier-like name

 o Unicode version number

 o listing of case folding tailorings and/or references to external
 case folding tailoring specifications

 The case foldings registered here will be used by case-insensitive
 filesystems and filesystem protocols to identify tailored case
 foldings so that caching clients can implement the same case-
 insensitive behavior using cached directory listings.

6. Security Considerations

 Security considerations of Unicode and filesystem protocols apply.
 No new security considerations are added or need be noted here.

 The methods of handling equivalent Unicode strings cause aliasing.
 This is not expected to be a security problem.

 Case-insensitivity causes aliasing. This is not expected to be a
 security problem.

 No effort is made here to handle confusables. This is not expected
 to be a serious security problem in the context of file servers.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [UNICODE] The Unicode Consortium, "The Unicode Standard, Version
 12.1.0", May 2019,
 <https://www.unicode.org/versions/Unicode12.1.0/>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://www.unicode.org/versions/Unicode12.1.0/

Williams Expires January 7, 2021 [Page 11]

Internet-Draft Accept-Auth & Redirect July 2020

7.2. Informative References

 [BSD4.4] McKusik, M., Bostic, K., Karels, M., and J. Quarterman,
 "The Design and Implementation of the 4.4BSD Operating
 System", DOI 10.5555/231070, 1996.

 [I-D.ietf-secsh-filexfer]
 Galbraith, J. and O. Saarenmaa, "SSH File Transfer
 Protocol", draft-ietf-secsh-filexfer-13 (work in
 progress), July 2006.

 [McKusick86]
 McKusik, M. and M. Karels, "Towards a Compatible File
 System Interface", Jun 1986.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC3987] Duerst, M. and M. Suignard, "Internationalized Resource
 Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987,
 January 2005, <https://www.rfc-editor.org/info/rfc3987>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7530] Haynes, T., Ed. and D. Noveck, Ed., "Network File System
 (NFS) Version 4 Protocol", RFC 7530, DOI 10.17487/RFC7530,
 March 2015, <https://www.rfc-editor.org/info/rfc7530>.

 [SolarisInternals]
 McDougal, R. and J. Mauro, "Solaris Internals -- Solaris
 10 and OpenSolaris Kernel Architecture", 2007.

7.3. URIs

 [1] https://en.wikipedia.org/wiki/Virtual_file_system

Author's Address

https://datatracker.ietf.org/doc/html/draft-ietf-secsh-filexfer-13
https://datatracker.ietf.org/doc/html/rfc3986
https://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc3987
https://www.rfc-editor.org/info/rfc3987
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7530
https://www.rfc-editor.org/info/rfc7530
https://en.wikipedia.org/wiki/Virtual_file_system

Williams Expires January 7, 2021 [Page 12]

Internet-Draft Accept-Auth & Redirect July 2020

 Nico Williams (editor)
 Cryptonector, LLC
 Austin, TX
 USA

 Email: nico@cryptonector.com

Williams Expires January 7, 2021 [Page 13]

