
NETWORK WORKING GROUP N. Williams
Internet-Draft Cryptonector
Intended status: Informational June 2, 2012
Expires: December 4, 2012

A Proposals for Classification and Analysis of HTTPbis Authentication
Proposals

draft-williams-httpbis-auth-classification-00

Abstract

 This document proposes a classification scheme for HTTPbis
 authentication proposals, to help with analysis and selection.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 4, 2012.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Williams Expires December 4, 2012 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft HTTPbis Auth Classification June 2012

Table of Contents

1. Introduction . 3
1.1. Conventions used in this document 3
1.2. Scope . 3
1.3. Glossary . 3
2. Background . 8
2.1. Threat Models . 9
2.2. On Trust . 9
2.3. On Mutual Authentication and URI Schemes 10
2.4. On Authentication Mechanism Message Counts 10

 2.5. On Channel Binding and One-Message Authentication
 Mechanisms . 11

2.6. Logon Sessions . 12
2.7. Web Cookies, a Form of Bearer Tokens 12
2.8. User Interface Issues 12
3. Classification Axes 13
3.1. Dependence on TLS Server PKI 14
3.2. Bearer Tokens vs. Proof of Possession 14
3.3. Layer at which Authentication Protocol Operates 14

 3.3.1. HTTP- vs. Application-Layer Authentication in the
 Network Stack . 16
 3.3.2. HTTP- vs. Application-Layer Authentication in the API
 Stack . 20

3.3.3. Choice of Layer . 20
3.3.4. User Authentication in the TLS Layer 21
3.4. Party Responsible for Infrastructure Messaging 22
3.5. Number of Messages . 23
3.6. Trust Establishment 25
3.7. Threat Modeling . 27
3.8. Explicit versus Implicit Session Management 27
3.9. In-Band versus Out-of-Band Authentication 27
4. Analysis of Some Possible Authentication Proposals 28
5. Author's Recommendations 29
6. References . 31

 Author's Address . 33

Williams Expires December 4, 2012 [Page 2]

Internet-Draft HTTPbis Auth Classification June 2012

1. Introduction

 The HTTPbis WG is accepting proposals for new authentication systems
 for HTTPbis, the successor to Hypertext Transport Protocol (HTTP)
 version 1.1[[RFC2616]]. This document proposes a classification
 system for these proposals. Several axes of classification are
 proposed, and several simplified imagined or likely authentication
 systems are used to illustrate the classification system.

 The author assumes that the WG is interested primarily in new user
 authentication proposals, with ones that provide mutual
 authentication (of users and servers to each other) being in scope.
 The author also assumes that Transport Layer Security (TLS)
 [[RFC5246]] will continue to be used by HTTPbis for cryptographic
 session protection.

 Some familiarity with authentication systems is assumed. A glossary
 is provided.

1.1. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [[RFC2119]].

1.2. Scope

 This document considers user authentication only in the context of
 HTTP applications, whether they be web applications or otherwise.
 Authentication of the service is also in scope, but authentication
 methods that authenticate only the user to the service (with the
 service authenticated by Transport Layer Security (TLS)) are in
 scope.

 There are at least two entities involved in authentication in this
 context: the user (on the client side), one or more of the web server
 host or the web server application/service, and any trusted third
 parties that an authentication mechanism might involve.

1.3. Glossary

 This section defines terms as they are used in _this_ document.
 Readers are strongly encouraged to read this section before reading
 any subsequent section.

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2119

Williams Expires December 4, 2012 [Page 3]

Internet-Draft HTTPbis Auth Classification June 2012

 API Application Programming Interface. These are interfaces between
 an application and a feature that is abstracted into a "library" -
 a service provided by the platform's operating system.

 API Layer A complex Internet application might require a large
 number of APIs, such as, for example, one for every network layer.
 In practice it is more common to have a single API that
 encompasses all network layers below it, with the component
 providing that API likely invoking other APIs itself. which in
 turn invoke other APIs. For example, a web application might use
 a library that presents a single API to all of the HTTP network
 stack from HTTP all the way down to IP. Note that there need not
 be a direct correspondence of network and API layers.

 Authentication The process of establishing the veracity or origin of
 some statement (e.g., of an entity's identity), usually by proxy
 (e.g., with key-pairs to an asymmetric key cryptographic system
 "speaking for" the authenticated entities). In this document, and
 unless otherwise stated, "authentication" will refer to
 authentication of identity of entities such as "users", "hosts",
 and "services".

 Authentication Mechanism A cryptographic protocol for authenticating
 entity identities. Note that this does not cover POSTing
 usernames and passwords in forms, but it does cover bearer token
 mechanisms (if just barely).

 Authentication Method A scheme for authenticating entity identities.
 An authentication method can be non-cryptographic, covering HTTP
 Basic authentication and usernames&passwords POSTed from HTML
 forms.

 Authentication Framework A protocol into which other authentication
 mechanisms may be plugged in. For example: SASL[[RFC4422]], GSS-
 API[[RFC2743]], EAP[[RFC3748]], among others.

 Bearer Token A technique for authentication that involves a message
 that can be presented by the authenticating entity to another. No
 proof of possession is required for using bearer tokens, which
 means that the token can be presented by any entity possessing the
 token, which in turn means that bearer tokens must be sent with
 confidentiality protection, as otherwise eavesdroppers can steal
 them and use them to impersonate the subject.

 Channel Binding A security protocol composition and analysis tool.
 The purpose of channel binding[[RFC5056]] is to "bind" a secure
 channel (at one layer in the network stack) into an authentication
 protocol running at a higher layer in the stack, thereby ensuring

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc3748
https://datatracker.ietf.org/doc/html/rfc5056

Williams Expires December 4, 2012 [Page 4]

Internet-Draft HTTPbis Auth Classification June 2012

 that the channel is end-to-end and "speaks for" its end-points.

 Confidentiality protection Cryptographic encryption of data.
 Confidentiality protection is/must always be used with integrity
 protection as well.

 Data authentication Data origin authentication, a.k.a., integrity
 protection.

 Integrity protection Cryptographic protection against modification
 of data. See also "data authentication", above.

 Mechanism Shorthand for "authentication mechanism", a protocol
 defining messages to be exchanged in order to authenticate one
 party to another (or two parties to each other).

 Mutual Authentication Authentication of a user and a server/service
 to each other.

 Mutual Authentication (key confirmation sense) In some protocols key
 exchange is bound to authentication of the service to the user
 such that the service is finally authenticated when it sends a
 proof-of-possession of the exchanged session key back to the user.
 Protocols that use RSA key transport (e.g., TLS in common usage),
 Diffie-Hellman with a persistent public key for the server, or
 Needham-Schroeder protocols (such as Kerberos[[RFC4120]]), perform
 server authentication in this way. A client may not always care
 to receive key confirmation. For example, a Kerberos client for a
 lossy logging application might not care that confidentiality
 protected data ends up at the wrong server, as long as unintended
 servers can't decrypt the data. Some clients may send application
 data optimistically ahead of key confirmation from the server.
 Such data should generally be confidentiality protected, and the
 protocol should not be subject to MITM attacks where the MITM can
 somehow modify what optimistic data is sent, nor should an active
 attacker be able to replay such optimistic data.

 Network Layer A layer in the OSI or Internet network model.
 Examples of layers that are relevant to HTTP applications: IP,
 TCP/UDP, TLS, HTTP, and the application layer.

 Proof of Possession A technique for authentication that involves
 using a cryptographic operation to "prove" (not necessarily in a
 rigorous sense) that the entity that creates the proof has access
 to a private/secret key to a cryptosystem (e.g., a private RSA
 key, a secret AES key, etcetera).

https://datatracker.ietf.org/doc/html/rfc4120

Williams Expires December 4, 2012 [Page 5]

Internet-Draft HTTPbis Auth Classification June 2012

 Public Key Infrastructure (PKI) An authentication system based on
 public key cryptography and supporting hierarchical transitive
 trust via trusted third parties known as Certificate Authorities
 (CAs).

 Relying Party An entity that authenticates another. For example, in
 PKI the entity that validates another's certificate as part of the
 process of authenticating that other entity, is a relying party.

 SCRAM Salted Challenge Response Authentication Mechanism
 (SCRAM)[[RFC5802]], a SASL[[RFC4422]] and GSS mechanism based on
 password-derived pre-shared keys and challenge/response. SCRAM is
 intended as the successor to SASL's DIGEST-MD5, and possibly to
 HTTP's DIGEST-MD5.

 Server A system with one or more IP addresses, serving HTTP on one
 more TCP ports on those IP addresses. [A general definition would
 not be constrained to HTTP only, but for the purposes of this
 document this is good enough.]

 Service An entity providing a service or services for an
 application. Typically -but not always!- a service is closely
 related to a host server, which may provide several services.
 Usually we need to distinguish between the various services that a
 single host provides, thus we often need to authenticate the
 service rather than the host server. For HTTP applications a
 service may be a collection of resources available on one (or
 more) ports on a given server.

 Trust (in authentication) This word, "trust", is a terrible word: it
 means too many things to too many people. But it's also a very
 convenient word when everyone understands the meaning to be
 accorded to it in any given context. For the time being this
 document will use this word, "trust", as follows: to trust an
 entity is to accept as fact assertions -relating to other
 entities- made by the trusted entity. Alternative phrasing: to
 trust an entity is to rely on it to make assertions relating to
 other entities the truth of which cannot otherwise be ascertained.
 For example, in a PKI a relying party relies on the certification
 authorities (and related infrastructure) to make statements of
 facts of the form "the public key <key> belongs to <subject name>"
 (details elided). We only use "trust" in connection to "trusted
 third parties" - when an authenticated entity makes assertions
 about itself we do not speak of trusting them to do so.

https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc4422

Williams Expires December 4, 2012 [Page 6]

Internet-Draft HTTPbis Auth Classification June 2012

 Trust (in user interfaces) One of the many alternative meanings of
 "trust", and the only alternative one used in this document,
 relates to user interfaces, namely: a trusted user interface is
 one that the user can somehow ascertain that it is presented by
 the operating system or browser platform and _not_ by some
 possibly malicious peer.

 Trust Path Continuing with the horrible word "trust", we use "trust
 path" to the note the list of trusted third parties involved in
 authenticating an entity to a relying party. This list is
 ordered, though it could conceivably be set of lists when multiple
 trust paths are possible.

 Trusted Third Party An entity that can be relied up -by those
 relying parties that trust it- to make assertions relating to
 other entities, typically assertions about how to authenticate
 those entities and/or of facts relevant to authorization at the
 relying party.

 [[anchor1: Fill out! Add some entries for OAuth, Kerberos, Basic,
 DIGEST-MD5, EAP, GSS, SASL, ...]]

Williams Expires December 4, 2012 [Page 7]

Internet-Draft HTTPbis Auth Classification June 2012

2. Background

 Web applications today use a variety of user authentication methods,
 many of which are somewhat or deeply unsatisfying. Almost all of
 these methods involve the user-agent being mostly dumb - not
 participating in any cryptographic protocols other than TLS.

 The most common user authentication methods used in web applications
 today include:

 o Username and password POSTed to the server from an HTML form.
 Usually the URL to post to is an HTTPS URL. Not as often the URL
 of the HTML page containing the form is also an HTTPS URL.

 o HTTP Basic or DIGEST-MD5 authentication.

 o Out-of-band methods:

 * PINs sent to user devices via SMS (POSTed along with passwords)

 * OTP tokens (POSTed along with passwords)

 * login URLs e-mailed to the user

 * passwords e-mailed to the user

 Not much use is made of TLS user certificates, though that is
 available as well.

 These methods are somewhat-to-highly unsatisfactory for a variety of
 reasons:

 o Users have to remember/carry too many passwords, even when they
 have many fewer "identities" (typically in the form of e-mail
 addresses).

 * Credential sharing becomes a problem: compromise of one site
 can result in compromise of user accounts at unrelated sites.
 Also, a malicious site posing as a friendly site can do the
 same.

 o The service is generally not authenticated to the user. TLS does
 authenticate the server, but not necessarily the service, and
 anyways only to the best of the TLS server PKI's ability.

 * This problem derives in part from the nature of the HTTP URI
 scheme: by identifying server hosts rather than services the
 HTTP URI scheme fails to provide the user and user-agent with

Williams Expires December 4, 2012 [Page 8]

Internet-Draft HTTPbis Auth Classification June 2012

 enough information by which to identify, and thence
 authenticate, a service. New URI schemes may be required.

 o User credentials are too easy to "phish".

 o OTP and out-of-band methods do not protect against MITMs, and thus
 depend on the integrity of TLS and the TLS server PKI.

 o HTTP/Negotiate[[RFC4559]], which effectively uses GSS-
 API[[RFC2743]] mechanisms, usually NTLM [XXX Add reference] or
 Kerberos[[RFC4120], [RFC4121]].

 Additionally, there is no strong concept of "sessions" in web
 applications. Sessions, such as they are, consist of HTTP requests
 and responses united into a session by the web cookies they bear.
 Not all web cookies are used for identifying sessions, and there is
 no simple "logout" functionality. The biggest problem with web
 cookies is that they are too easy to misuse or steal (e.g., given the
 occasional TLS vulnerability, such as BEAST [XXX Add references!]).

 Furthermore, there are uncomfortable user interface (UI) problems.
 In particular it is difficult to convey to the user information about
 the server's/service's identity and how it is authenticated (if at
 all).

 HTTP applications that are not web application have similar issues,
 though some of them can also use SASL[[RFC4422]]. Non-web HTTP
 applications also may not need cookies, instead using a single
 HTTP/1.1 persistent connection over which to issue all requests that
 make up a session - such applications have a stronger sense of
 session than web applications do.

 [[anchor2: XXX Finish this section.]]

2.1. Threat Models

 [[anchor3: Talk about threat models and which are appropriate for
 HTTPbis. Discuss the Internet threat model and its flaws (namely/
 primarily, the local security assumption).]]

2.2. On Trust

 [[anchor4: Describe issues w.r.t. "trust", such as transitivity,
 introductions, and so on. This is important for evaluating
 proposals. A proposal that replaces the TLS server PKI's primacy
 with... another system with similar transitive trust issues may not
 be a useful proposal. On the other hand, it seems impossible to
 avoid transitive trust when scaling to Internet scale. Understanding

https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4422

Williams Expires December 4, 2012 [Page 9]

Internet-Draft HTTPbis Auth Classification June 2012

 this may help, for example, give impetus to improvements to the TLS
 server PKI, or it may guide replacements, understand scalability, and
 so on.]]

2.3. On Mutual Authentication and URI Schemes

 [[anchor5: Describe the limitations imposed by the Internet threat
 model when there is no mutual authentication. Describe the two
 types/senses of mutual authentication: authenticating the server (in
 addition to the client) and key confirmation. Describe the
 limitations, imposed by the HTTP URI scheme, on service
 identification and authentication.]]

2.4. On Authentication Mechanism Message Counts

 All authentication mechanism require some number of messages in order
 to authenticate an entity. For example, TLS generally requires two
 round-trips, while OAuth requires a single message from the client to
 the server. Here we count only messages from the HTTP client to the
 HTTP server; additional message exchanges may be required involving
 trusted third parties.

 The number of authentication messages that must be exchanged for a
 given authentication mechanism is important. The API of at least one
 important credential management facility is premised on
 authentication mechanisms having exchanges of just one message -
 adding new API is possible, but it would take a long time for
 applications to begin using it. Thus mechanisms that require just
 one message are at a premium (but see the next section).

 The number of authentication messages is also important for latency
 reasons: since authentication message exchanges are synchronous, each
 round trip time is added to the latency observed by the user.

 The number of messages that an authentication mechanism needs to
 exchange with infrastructure (e.g., trusted third parties) also
 affects latency, but at least applications need never be aware of
 messages exchanged with infrastructure - these can be abstracted away
 by the APIs. Some authentication mechanisms have fast re-
 authentication facilities such that the latency cost of
 infrastructure messaging need not be incurred as frequently as the
 entity authenticates to others.

 [[anchor6: ...]]

Williams Expires December 4, 2012 [Page 10]

Internet-Draft HTTPbis Auth Classification June 2012

2.5. On Channel Binding and One-Message Authentication Mechanisms

 Channel binding [[RFC5056]] is the act of binding authentication at
 one network layer to key exchange at a lower network layer. When
 this occurs within the same layer we don't call it channel binding,
 but the same concept is involved. For example, TLS PSK and user
 certificates are cryptographically bound to whatever key exchange
 method is used, but because this happens naturally within TLS we
 don't call it channel binding. [Expand on this for the benefit of
 those not familiar with RFC5056.]

 Normally channel binding requires mutual authentication, either in
 the key confirmation sense or in the sense of actually authenticating
 the server. In order to see why imagine a one-message user
 authentication system: a man-in-the-middle (MITM) at a lower layer
 might be able to steal this one message, close the connection to the
 real client, then impersonate the client to the server. There are
 ways of preventing this, but they are not as general as requiring
 mutual authentication is.

 At one point a SASL mechanism, "YAP", was proposed that requires just
 one message and provides channel binding. In order to prevent the
 message theft problem described above YAP requires that tls-unique
 channel bindings be used, which effectively eliminates MITMs at the
 TLS layer. At the time the SASL community rejected this proposal,
 mostly on account of not wanting to have SASL be aware of the type of
 channel bindings data used by the application. In retrospect,
 however, the idea has merit.

 Now consider an authentication system that begins life as a bearer
 token and later is upgraded to be a bearer token that is encrypted in
 the server's public key, the same public key as is expected to be
 used by the server in TLS. This bearer token can still be stolen and
 used by the thief... unless the TLS client knows to ensure that the
 same public key is used at both layers. But how might the client
 know how to do that? If the client passes the server's certificate
 to the client's IdP then the most the IdP can do is apply certificate
 validation, including certificate/CA/public key pinning options; if
 the IdP doesn't do this then the MITM will be able to decrypt the
 bearer token and then re-encrypt it in the real server's public key.
 This can be overcome by having the IdP do better certificate
 validation or knowing the target server's certificate a priori, with
 all the same problems as the traditional TLS server PKI (which is not
 necessarily a problem). It's not clear how one might successfully
 apply unique or client end-point channel bindings to a bearer token
 authentication system, but if there's a way to do so it would help.

 YAP is a proof-of-possession mechanism, of course, thus it is quite

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5056

Williams Expires December 4, 2012 [Page 11]

Internet-Draft HTTPbis Auth Classification June 2012

 simple to apply channel binding types other than server end-point,
 thus making YAP secure against message theft and re-use where a
 bearer token system could not be. The point being that a secure half
 round trip (one message) user authentication mechanism is feasible.

 Work is ongoing to develop a version of OAuth that is capable of
 channel binding. [XXX Add references!]

2.6. Logon Sessions

 [[anchor7: Discuss the binding of HTTP requests (and responses) to
 logon sessions. Discuss logout.]]

2.7. Web Cookies, a Form of Bearer Tokens

 [[anchor8: Discuss cookies as a form of bearer token and how the
 situation is not as dire as with bearer tokens for user
 authentication. Discuss alternatives based on MACing portions (or
 all) of the HTTP requests (and responses) or the channel bindings
 data for the TLS channel.]]

2.8. User Interface Issues

 [Discuss phishing issues, in particular the difficult of creating
 user interfaces in web apps that cannot be spoofed by either server
 impersonators or MITMs. Reference Sam Hartman's anti-phishing I-D
 [[I-D.hartman-webauth-phishing]].]

Williams Expires December 4, 2012 [Page 12]

Internet-Draft HTTPbis Auth Classification June 2012

3. Classification Axes

 Several orthogonal classification axes are proposed:

 1. Dependence on/independence of the TLS server PKI;

 2. Solutions based on bearer tokens vs. ones based on proof of
 possession;

 3. Layer at which user authentication takes place: TLS, HTTPbis, or
 the application layer (note: distinguishing network layer from
 API layer);

 4. Whether the client, the server, or both, engage in infrastructure
 messaging;

 5. Number of messages exchanged / "round trips";

 6. Trust establishment: pair/group-wise non-transitive, federated or
 otherwise transitive, hierarchical vs. mesh;

 7. Threat modeling;

 8. Explicit versus implicit session management;

 9. In-band / out-of-band.

 [[anchor9: Maybe add something about separation of password verifier
 access, to limit the attack surface area for password recovery?]]

 [[anchor10: Note: The author assumes that all acceptable proposals
 will have HTTPbis continue to depend on TLS for transport security -
 for confidentiality (encryption) and integrity (authentication)
 protection of data exchanged by the HTTPbis client and server. If
 this assumption is incorrect then we can add one more axis of
 classification: dependence on / independence of TLS.]]

 These nine classification axes are largely orthogonal to each other.
 Other classification criteria are also possible and may be added in
 future versions of this Internet-Draft. Some such possible
 additional criteria are subjective, such as, for example: ease of
 deployment, ease of implementation, etcetera. Perhaps the WG can
 come to consensus regarding desirable properties based on objective
 classification to narrow the set of proposals to consider. Or
 perhaps the WG can consider a large number of proposals and use
 objective classification to guide any applicability statements for
 the proposals accepted. Ideally the WG can apply objective
 classification first, then for each "bucket" of similar proposals the

Williams Expires December 4, 2012 [Page 13]

Internet-Draft HTTPbis Auth Classification June 2012

 WG could consider more subjective classification criteria.

3.1. Dependence on TLS Server PKI

 The web today depends utterly on the "TLS server PKI" for security.
 This would be just fine were it not for the systemic weaknesses in
 the TLS server PKI: the lack of name constraints, the large number of
 trust anchors, the large number of certificate authority (CA)
 compromises, and so on. Building on the TLS server PKI and thus
 assuming its being sufficiently secure, is quite tempting, as it may
 simplify various aspects of user authentication (not least by
 providing server authentication a priori, thus saving the designers
 the need to provide server authentication themselves).

 This classification axis is very simple: either a proposed solution
 depends on the TLS server PKI or it doesn't. Some shades of black
 are imaginable in this case (if not likely).

3.2. Bearer Tokens vs. Proof of Possession

 A bearer token is a message the presentation of which is sufficient
 to authenticate the presenter. Stolen bearer tokens may be used to
 trivially impersonate the subject, thus bearer tokens generally
 require confidentiality protection in any protocols over which they
 might be exchanged, and generally depend on authenticating the
 relying party first.

 Proof of possession systems consist of some secret/private key(s), an
 authenticator message the "proves" possession of the secret or
 private key(s) used in the construction of the authenticator, and a
 token not unlike a bearer token but which securely indicates to the
 relying party(ies) what keys the user must have used in the
 construction of the authenticator. The relying party then validates
 the authenticator to establish that the user did indeed possess the
 necessary secret/private key(s) to the best of the cryptographic
 capabilities of the authentication system used.

3.3. Layer at which Authentication Protocol Operates

 It is possible to design user (and mutual) authentication mechanisms
 that can work at any end-to-end layer between the HTTPbis client and
 server. The relevant layers are:

 o TLS,

 o HTTPbis,

Williams Expires December 4, 2012 [Page 14]

Internet-Draft HTTPbis Auth Classification June 2012

 o and the application layer.

 We dismiss out of hand the possibility of that layer being TCP or
 IPsec, though admittedly they are also end-to-end layers where user
 authentication could theoretically be done.

 We distinguish between network layers and API layers (see glossary).
 A solution at the application _network_ layer might nonetheless be
 implemented at the HTTP _API_ layer (and vice-versa).

 User authentication is generally something that a transport layer
 cannot know to initiate on its own: the application must be in
 control of when (server- and client-side) to authenticate, how
 (server- and/or client-side), with what credentials / as whom
 (client-side). This means that authentication in the transport layer
 requires APIs that give the application a measure of control. HTTP
 API capabilities will vary, but HTTPbis is a good opportunity to
 standardize an abstract API outlining capabilities and semantics to
 be exposed to applications by an HTTP stack.

 Note that on the user-agent side the platform may provide user
 interaction facilities for authentication, thus simplifying user
 authentication APIs. The application, on the server side, remains in
 control over when to initiate authentication.

 End-to-end session cryptographic protection is best done in the
 lowest possible transport layer. For HTTP applications, historically
 this means TLS; though it'd be technically feasible to provide
 protection at lower layers it does not appear to be a realistic
 option at this time.

 User authentication is best "bound" into transport security layers,
 in this case TLS. When user authentication is moved to higher layers
 a "channel binding" problem arises: we would like to ensure that no
 man-in-the-middle exists in the transport layer, with the MITM
 terminating two TLS connections. For more information about channel
 binding see [[RFC5056]].

 UI and API issues are quite different for web applications versus
 non-web applications. The former have rich UI elements (all of
 HTML's) and programming models (scripting, particularly through
 JavaScript). One problem that is particularly severe for web
 applications, is the ability of server impersonators to emulate all
 imaginable graphical user interfaces that the native user-agent might
 wish to use to distinguish itself from the applications it runs.
 Regardless of what layer implements authentication this problem will
 arise in web applications.

https://datatracker.ietf.org/doc/html/rfc5056

Williams Expires December 4, 2012 [Page 15]

Internet-Draft HTTPbis Auth Classification June 2012

3.3.1. HTTP- vs. Application-Layer Authentication in the Network Stack

 It's important to note that there need not be much difference between
 HTTP-layer and application-layer user authentication, at least if we
 assume a standard application-layer user authentication convention.
 For argument's sake let's assume an application-layer user
 authentication convention like the one in [[I-D.williams-rest-gss]],
 and let's assume two possible HTTPbis HTTP-layer authentication
 solutions: one that is most similar to HTTP/1.1's and one that uses a
 new verb for authentication. Then let's look at what each of these
 three solutions look like on the wire using the SCRAM mechanism for
 cases where the client already knows it has to authenticate. For
 brevity we elide any HTTP request and response where the server
 indicates that the client must authenticate, as well as any requests/
 responses involving negotiation of mechanism to use.

Williams Expires December 4, 2012 [Page 16]

Internet-Draft HTTPbis Auth Classification June 2012

 C->S: HTTP/1.1 POST /rest-gss-login
 Host: A.example
 Content-Type: application/rest-gss-login
 Content-Length: nnn

 SCRAM-SHA-1,,MIC
 n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL

 S->C: HTTP/1.1 201
 Location http://A.example/rest-gss-session-9d0af5f680d4ff46
 Content-Type: application/rest-gss-login
 Content-Length: nnn

 C
 r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 s=QSXCR+Q6sek8bf92,i=4096

 C->S: HTTP/1.1 POST /rest-gss-session-9d0af5f680d4ff46
 Host: A.example
 Content-Type: application/rest-gss-login
 Content-Length: nnn

 c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 p=v0X8v3Bz2T0CJGbJQyF0X+HI4Ts=

 S->C: HTTP/1.1 200
 Content-Type: application/rest-gss-login
 Content-Length: nnn

 A
 v=rmF9pqV8S7suAoZWja4dJRkFsKQ=

 Figure 1: REST-GSS Login w/ SCRAM Example

 Figure 1

Williams Expires December 4, 2012 [Page 17]

Internet-Draft HTTPbis Auth Classification June 2012

 C->S: HTTP/1.1 LOGIN
 Host: A.example
 Content-Type: application/SASL
 Content-Length: nnn

 SCRAM-SHA-1,,MIC
 n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL

 S->C: HTTP/1.1 201
 Location http://A.example/login-session-9d0af5f680d4ff46
 Content-Type: application/SASL
 Content-Length: nnn

 C
 r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 s=QSXCR+Q6sek8bf92,i=4096

 C->S: HTTP/1.1 LOGINCONTINUE /login-session-9d0af5f680d4ff46
 Host: A.example
 Content-Type: application/SASL
 Content-Length: nnn

 c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 p=v0X8v3Bz2T0CJGbJQyF0X+HI4Ts=

 S->C: HTTP/1.1 200
 Content-Type: application/SASL
 Content-Length: nnn

 A
 v=rmF9pqV8S7suAoZWja4dJRkFsKQ=

 Figure 2: HTTPbis w/ New Verb Login w/ SCRAM Example

 Figure 2

Williams Expires December 4, 2012 [Page 18]

Internet-Draft HTTPbis Auth Classification June 2012

 C->S: HTTP/1.1 GET /location/of/interest/to/app
 Host: A.example

 S->C: HTTP/1.1/401 Unauthorized
 Server: HTTPd/0.9
 Date: Sun, 10 Apr 2005 20:26:47 GMT
 WWW-Authenticate: <list of mechanisms>
 Content-Type: text/html
 Content-Length: nnn

 <error document>

 C->S: HTTP/1.1 GET /location/of/interest/to/app
 Host: A.example
 Authorization: SCRAM-SHA-1,,MIC
 n,,n=user,r=fyko+d2lbbFgONRv9qkxdaw

 S->C: HTTP/1.1 4xx
 WWW-Authenticate: C
 r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 s=QSXCR+Q6sek8bf92,i=4096
 WWW-Authenticate-Session: 9d0af5f680d4ff46

 C->S: HTTP/1.1 GET /location/of/interest/to/app
 Host: A.example
 Authorization-Session: 9d0af5f680d4ff46
 Authorization: c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 p=v0X8v3Bz2T0CJGbJQyF0X+HI4Ts=

 S->C: HTTP/1.1 200
 WWW-Authenticate: A
 v=rmF9pqV8S7suAoZWja4dJRkFsKQ=
 Content-Type: ...
 Content-Length: nnn

 <content>

 Figure 3: Extended HTTP/1.1 Style Login w/ SCRAM Example

 Figure 3

 There's not much difference between the first two examples. The
 third example has several important differences relative to the first
 two examples:

 o The URL is sent to the server before any chance to have completed
 mutual authentication, should the selected mechanism provide
 mutual authentication. If the client knows a priori to

Williams Expires December 4, 2012 [Page 19]

Internet-Draft HTTPbis Auth Classification June 2012

 authenticate and the URL contains sensitive information then the
 client has no choice but to leak this information prior to
 completing mutual authentication, thus the client becomes
 dependent on TLS for authenticating the server even when the
 client could authenticate the server more strongly via the
 selected HTTP authentication mechanism. This is an important
 weakness.

 o The whole sequence involves multiple requests/responses, which
 goes against the stateless nature of HTTP. State is needed in all
 three examples, but the first example is RESTful, while the second
 employs a would-be new verb that provides for stateful
 authentication. The third example simply cannot be thought of as
 remotely RESTful. Perhaps this is not a problem.

 * Alternatively mechanisms requiring multiple round trips can be
 ruled out of scope. This would rule out quite a few desirable
 mechanisms!

 The main difference on the wire between a generic HTTP-layer user
 authentication framework (like the one in the second example) and an
 application-layer equivalent (as in the first example) can be so
 minimal as to make the choice of layer seem like splitting hairs.

3.3.2. HTTP- vs. Application-Layer Authentication in the API Stack

 There are HTTP stacks that make it possible to implement HTTP
 authentication methods in the application (e.g., FCGI in web
 servers), and nothing would prevent HTTP stacks from implementing a
 standard application-layer user authentication protocol either.
 The APIs offered by an HTTP stack should look remarkably similar
 regardless of which layer the user authentication protocol is
 technically at. Once again, the difference between HTTP-layer and
 standard application-layer user authentication is minimal.

 Note however that if the HTTP stack does not implement
 authentication, leaving it to the application to do so, then the
 application developer runs the risk of making mistakes in the
 implementation, such as failing to implement channel binding where
 possible. Thus it is generally best if the HTTP stack implements
 authentication - even if TLS is used for user authentication, the
 HTTP stack should provide a singular API for authentication.

3.3.3. Choice of Layer

 The choice of layer is clearly more important for APIs than on the
 wire. On the wire the choice of layer is minimal, trivial even, when
 the choice is between HTTP and the application layer.

Williams Expires December 4, 2012 [Page 20]

Internet-Draft HTTPbis Auth Classification June 2012

 If the WG agrees that the distinction between HTTP-layer and
 application-layer user authentication is or should be minimal then
 how should the WG pick one of those two layers, if it decides not to
 pursue TLS-layer user authentication?

 A standard application-layer authentication scheme implies no changes
 to HTTP itself, and may not rely on any particular features of
 HTTP/1.1 or HTTPbis, thus it may be usable even with HTTP/1.0. This
 is true of the REST-GSS proposal[[I-D.williams-rest-gss]], which is
 also RESTful. This must be of some value.

 An HTTP-layer authentication solution must either: a) not support
 multi-round trip mechanisms, b) add verbs, or c) not be RESTful. (a)
 works with HTTP/1.0, (b) would not work with HTTP/1.0. [The author
 believes that RESTfulness is desirable.]

3.3.4. User Authentication in the TLS Layer

 Issues:

 o The transport cannot know when to require user authentication (on
 the server side) or when to initiate it (on the client side).
 Simply always initiating user authentication creates privacy
 problems: the user may not want to disclose their identity all the
 time!

 o To address the problem of when to require or initiate user
 authentication the TLS implementation must provide suitable APIs
 to the application. And since the application will generally
 decide that authentication is required only after (possibly well
 after) a TLS connection is setup, the user generally must be
 authenticated by renegotiating TLS, which in turn means that two
 round trips will be needed just for that, at minimum, even if the
 user authentication mechanism selected requires fewer round trips.
 This is inefficient, though not fatal.

 o The TLS community has resisted proposals for user authentication
 mechanisms with arbitrary round trip counts before [references?
 this is in reference to Stefan's TLS-GSS proposal...]. This may
 no longer be true (or perhaps the author is misunderstanding or
 misremembering the events in question), but if it is still the
 case then the range of choices for user authentication in TLS is
 significantly curtailed.

 o Several major TLS implementations defer certificate validation
 until the peer's Finished message is received. This means that
 unless one is using TLS renegotiation (with the inner connection's
 server certificate being the same as in the outer connection's)

Williams Expires December 4, 2012 [Page 21]

Internet-Draft HTTPbis Auth Classification June 2012

 the user's identity and the payloads related to user
 authentication will be revealed to the server before the server is
 authenticated.

 o User Interface issues:

 * A user authentication framework and future mechanisms will
 likely need to interact with the user. In some cases this may
 be best done through a platform component, such as a credential
 management facility. In other cases this may best be done by
 the application. Driving user interaction from within the TLS
 layer presents a slight complication: any interaction has to be
 effected through application- or platform-provided code paths.
 Adding interaction to existing TLS implementations may not be
 trivial.

 * ...

 Benefits:

 o Where the platform can provide credential management and user
 interaction then user authentication in TLS can greatly simplify
 HTTP applications: no user authentication APIs or UIs are then
 needed in the application.

 * Note however that the user may have a hard time identifying the
 context in which they are being prompted by the system for
 credentials or credential selection. This is usually not a
 problem in smart-phone and other such small devices, where it
 is generally clear what application is in the foreground, and
 therefore the context of a prompt. But this is not necessarily
 so on other platforms.

 o Non-web applications typically know a priori when they wish to
 authenticate. Typical non-web applications that use HTTP/1.1 over
 a single TLS connection, with an application session consisting of
 all the HTTP requests performed over that one connection. For
 such applications having user authentication in the TLS layer may
 be the simplest way to get user authentication into the
 application.

3.4. Party Responsible for Infrastructure Messaging

 [[anchor11: XXX Add references for OCSP, AAA, ...]]

 "Infrastructure" consists, for the purposes of this document, of
 services such as Identity Providers (IdPs), Certificate Revocation
 Lists (CRLs) and their servers, Online Certificate Status Protocol

Williams Expires December 4, 2012 [Page 22]

Internet-Draft HTTPbis Auth Classification June 2012

 (OCSP) responders, Kerberos Key Distribution Centers (KDCs), RADIUS/
 DIAMETER servers, etcetera. These are services that run on parties
 other than a client (e.g., a web browser / user agent) and an
 application server. In some cases infrastructure services may be
 physically co-located with the client or server, but by and large
 they are physically separated; infrastructure services are always
 logically separate from the client and server. [XXX Move this to
 glossary.]

 Some protocols require that the client do all or most of the message
 exchanges with infrastructure, some require that the server do this
 messaging, some require both to do some messaging. In some cases a
 server might proxy a client's messages to infrastructure. There are
 advantages to the client doing this messaging: namely a simpler
 server, less subject to denial of service / resource consumption
 attacks. [Are there advantages to the server doing this messaging?]

 Consider a protocol like Kerberos. Kerberos relies on Key
 Distribution Center (KDC) infrastructure, and it relies on the client
 doing all the messaging needed to ultimately authenticate it to a
 server. Kerberos can be used in a way such that the relying party
 proxies this messaging for the client (see IAKERB), but even so the
 client had to communicate with the KDCs in order to ultimately
 authenticate to the relying party - IAKERB is simply a proxy
 mechanism.

 Now consider an authentication mechanism based on PKI. The only
 online infrastructure in a PKI are the CRLs and OCSP responders. Of
 course, a Certificate Authority (CA) can also be online, as in kca
 [add reference], a CA that authenticates clients via Kerberos and
 which issues fresh, short-lived certificates. Private keys for
 certificates can also be served by online services such as SACRED and
 browserid. The method of validating certificates currently
 considered ideal is for the possessor of certificate's private key to
 send both, the certificate and a current/fresh OCSP response for it
 (or, rather, responses, for the entire certificate chain), thus the
 PKI relying party should ideally not have to contact infrastructure;
 in practice CRL checking is still the more commonly used method,
 requiring infrastructure messaging on the relying party side.

 The responsibility for infrastructure messaging varies widely.

3.5. Number of Messages

 The number of messages that must be exchanged in order to
 authenticate a peer varies a lot by authentication mechanism. Some
 require just one message from the client to the server. Others
 require a reply message from the server. Others require some larger

Williams Expires December 4, 2012 [Page 23]

Internet-Draft HTTPbis Auth Classification June 2012

 number of messages (typically three or four). Yet others require a
 variable number of messages.

 Typically key exchange is also required in order to provide
 confidentiality and integrity protection to the transport. Key
 exchange protocols also vary in number of messages required. Key
 exchange and authentication may be combined, either directly in a
 single network layer, or across layers via channel binding.

 One-message authentication protocols:

 o OAuth

 o Kerberos (w/o key confirmation)

 o Public key signature schemes when authenticating only the client

 o Diffie-Hellman (when the client knows the server's DH public key a
 priori, and w/o key confirmation)

 o RSA key transport (w/o key confirmation)

 o all bearer token protocols (but see [ref to on channel bindings
 section])

 Two-message authentication protocols:

 o Kerberos

 o Diffie-Hellman with fixed public keys

 o RSA key transport

 Authentication protocols with three or more messages, or with
 arbitrary numbers of messages:

 o Most/all zero-knowledge password proof protocols (e.g., SRP)
 (usually three or four messages)

 o SCRAM, and other challenge-response protocols (usually three or
 four messages)

 o IAKERB (usually four messages)

 o Pluggable frameworks (SASL, GSS, EAP) (arbitrary message counts,
 usually dependent on what mechanism is selected)

 It's worth pointing out that TLS is a three- to four-message

Williams Expires December 4, 2012 [Page 24]

Internet-Draft HTTPbis Auth Classification June 2012

 protocol, but when providing confidentiality protection for the
 client identity it becomes a six- to eight-message protocol (though
 there is a proposal to improve this, getting back to three to four
 messages [add reference to Marsh's I-D]).

 Some authentication protocols can provide key exchange, others
 cannot. Similarly, not all mechanisms can provide channel binding.

 The total number of messages required is important. These message
 exchanges are always ordered and synchronous; no progress can be made
 by the application until they are completed. Over long distances the
 time to complete each round trip add up to noticeable latency, and
 there is much pressure to get this latency down to an absolute
 minimum.

 Integrating user authentication into TLS has the clear allure of
 potentially cutting down the number of round trips necessary, but
 it's not clear that this can be achieved in every case. In
 particular it may not be clear that a client has to authenticate
 until after a TLS connection is established over which the client may
 request access to some resource that requires authenticated clients.

3.6. Trust Establishment

 Pair-wise pre-shared keying systems require careful initial key
 exchange, but otherwise have no transitive trust issues: every pair
 of entities that has shared keying can communicate without the aid of
 any other entity. However, pair-wise pre-shared keying does not
 scale to the Internet as it is O(n^2), and it requires either "leap
 of faith" (a.k.a., trust on first use, or TOFU) or physical proximity
 for the key pre-sharing. Physical proximity

 Authentication mechanisms that scale to the Internet of necessity
 require some degree of trust transitivity. That is, there must be
 many cases where Alice and Bob can communicate with each other only
 because they can authenticate each other by way of one or more third
 parties (e.g., Trent) that each of them trust a priori.

 There are a number of issues with trust transitivity:

 o Trusted third parties can mount MITM attacks on the parties that
 rely on them

 * Compromise of trusted third parties, therefore, has far
 reaching, negative effects

 * The longer a trust path, the less trustworth -so to speak- it
 is

Williams Expires December 4, 2012 [Page 25]

Internet-Draft HTTPbis Auth Classification June 2012

 o Policy for determining acceptable trust paths is difficult to
 express

 o Mechanisms for establishing trust paths are often manual and prone
 to error or abuse

 There are several ways to use transitive trust. In hierarchical
 transitive trust we organize the trusted third parties in such a way
 that there should be a trust path for every pair of entities of
 interest (e.g., every user to every server, every user to every user,
 ...) - think of PKI. In mesh systems trust transits through every
 entity's "friends" - think of PGP.

 There may be other models of transitive trust, such as one with
 islands of trust. An islands of trust model would consist of
 federations of transitive trust (using hierarchical or mesh models)
 that are much smaller than the entire Internet, but large enough to
 be of use to large numbers of users. For example, an online merchant
 might provide for authentication of all users to a set of
 participating vendors [XXX expand on this].

 Given the need for transitive trust and the serious drawbacks of
 transitive trust, some workarounds may be necessary, such as:

 o Policy language for choosing suitable trust paths

 o Facilities for limiting the length of, or otherwise shortening
 trust paths

 * By, for example, providing for bootstrapping of shorter trust
 paths when a given trust path involves an "introducer" trusted
 third party.

 o "Pinning" facilities to force changes in the infrastructure to
 proceed in ways which make some MITM attacks harder to mount

 o Auditing -and compromise detection- facilities by which to show
 that trusted third parties are not mounting MITM attacks

 o Revocation facilities that actually work

 o Root keys that are rarely used and live in HSMs

 o Fast re-keying as a method for dealing with trusted third party
 compromise

 For an example of pinning, consider a TLS extension where self-
 signed, persistent user certificates are used, possibly one per-

Williams Expires December 4, 2012 [Page 26]

Internet-Draft HTTPbis Auth Classification June 2012

 origin for pseudonymity purposes. The user agent can enroll the user
 certificates at their corresponding origin servers such that
 thereafter no MITMs are possible that can impersonate the user to the
 server. Of course, such a scheme suffers from needing a fall-back
 authentication method when the user's device(s) that store the
 relevant private keys are lost. Users would need to be able to fall-
 back on an alternative authentication method for re-enrollment,
 likely one that is susceptible to attack or else is inconvenient. In
 this cases the pinning is on the server side; keep in mind that
 pinning need not only be used on clients, but may be used even in the
 distributed trust infrastructure (e.g., to shorten trust paths).

 Ideally an authentication facility for HTTP/2.0 should support a
 variety of trust establishment models, as it is not clear that one
 mode is superior to the others. (Though certainly the hierarchical
 model is likely the scheme that can have the most universal reach,
 and therefore most minimize user credentials needed. However, users
 may not mind having a small number of logon credentials for a trust
 island model.)

3.7. Threat Modeling

 [[anchor12: Cover the Internet threat model. Discuss the end-to-end
 model and the hop-by-hop semantics of transitive trust.]]

3.8. Explicit versus Implicit Session Management

 [[anchor13: Discuss lack of / weakness of application session concept
 on the web. Discuss the historically limited application of TLS
 sessions to HTTP apps. Discuss desirability of a real concept of
 session and logout.]]

3.9. In-Band versus Out-of-Band Authentication

 [[anchor14: Discuss out-of-band user authentication systems such as
 ones where "tokens" are sent to users' mobile phones via SMS, as well
 as systems where a "login URL" is sent to the user via e-mail.]]

Williams Expires December 4, 2012 [Page 27]

Internet-Draft HTTPbis Auth Classification June 2012

4. Analysis of Some Possible Authentication Proposals

 [Cover:

 o Authentication mechanisms:

 * Bearer token systems

 * Other half round trip systems, including Kerberos, OAuth

 * PK w/ SACRED, browserid, smartcards

 * ZKPPs

 * Challenge/response password-based mechanisms (DIGEST-MD5,
 SCRAM)

 o Generic auth frameworks

 * GSS, SASL, EAP (anything else? IKEv2? SSHv2?)

 o Authentication in TLS, HTTP, and above HTTP

 o OTP and out-of-band (SMS, e-mail) auth, both as part of
 authentication mechanisms and as port of traditional webauth.

 o Traditional webauth (passwords posted in forms), possibly with
 password wallets (stateful and stateless)

]

 [[anchor15: What else to cover?]]

Williams Expires December 4, 2012 [Page 28]

Internet-Draft HTTPbis Auth Classification June 2012

5. Author's Recommendations

 It seems likely that no single user authentication method will
 satisfy the needs of all web applications. Nor can we predict the
 future. Moreover, some weak authentication approaches are perfectly
 safe for accessing low-value resources, or in contexts where the
 Internet threat model is overkill. This argues for a multitude of
 solutions, and possibly a pluggable system.

 The author proposes the following:

 1. For all authentication mechanisms (i.e., cryptographic
 authentication methods) use the GSS-API, possibly through the
 thin shim of RFC5801 [XXX change into reference].

 1. do this above HTTP in the network stack, but...

 2. ...recommend that this be implemented by HTTP stacks, rather
 than by applications. I.e., authentication above HTTP on the
 wire, within HTTP as far as APIs are concerned.

 2. Encourage development of authentication mechanisms that fit the
 chosen authentication framework and which have the following
 features:

 1. federation (even though it implies trusted third parties)

 2. strong initial user authentication (e.g., with ZKPPs)

 3. minimized password verifier attack surface area (e.g.,
 minimize the number of servers that have access to password
 verifiers)

 4. trust path bootstrapping

 5. short trust paths

 6. auditable trusted third parties

 7. [preferably] mutual authentication

 3. Standardize weak authentication mechanisms (e.g., passwords
 POSTed in forms) to facilitate the development of effective
 password managers. [This is primarily for low-value sites.]

 4. Specify HTML and JavaScript interfaces for initiating
 authentication, including the name of the service to authenticate
 to. This will allow login pages to have a customized look, yet

https://datatracker.ietf.org/doc/html/rfc5801

Williams Expires December 4, 2012 [Page 29]

Internet-Draft HTTPbis Auth Classification June 2012

 allow for login operations to be performed by the browser
 platform using a strong authentication mechanism. Specifically
 there must be a method for kick-starting authentication such that
 the user and/or device identity and credential input does not
 happen through HTML forms but through browser/platform trusted
 user interfaces.

 5. Specify a new URI scheme that identifies services rather than
 hosts. For example: svc:<service>@<domainname>/<local-part> .
 An option to embed service authentication information (possibly a
 digital signature, or a URL referring to a digital signature) may
 prove useful.

 1. Also specify a service location protocol.

 6. Specify an abstract API for interfacing HTTPbis applications to
 HTTPbis.

Williams Expires December 4, 2012 [Page 30]

Internet-Draft HTTPbis Auth Classification June 2012

6. References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC4120] Neuman, C., Yu, T., Hartman, S., and K. Raeburn, "The
 Kerberos Network Authentication Service (V5)", RFC 4120,
 July 2005.

 [I-D.williams-rest-gss]
 Williams, N., "RESTful Hypertext Transfer Protocol
 Application-Layer Authentication Using Generic Security
 Services", draft-williams-rest-gss-00 (work in progress),
 June 2011.

 [I-D.hartman-webauth-phishing]
 Hartman, S., "Requirements for Web Authentication
 Resistant to Phishing", draft-hartman-webauth-phishing-09
 (work in progress), August 2008.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC5802] Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,
 "Salted Challenge Response Authentication Mechanism
 (SCRAM) SASL and GSS-API Mechanisms", RFC 5802, July 2010.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC3748] Aboba, B., Blunk, L., Vollbrecht, J., Carlson, J., and H.
 Levkowetz, "Extensible Authentication Protocol (EAP)",

RFC 3748, June 2004.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc4120
https://datatracker.ietf.org/doc/html/draft-williams-rest-gss-00
https://datatracker.ietf.org/doc/html/draft-hartman-webauth-phishing-09
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3748

Williams Expires December 4, 2012 [Page 31]

Internet-Draft HTTPbis Auth Classification June 2012

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC4559] Jaganathan, K., Zhu, L., and J. Brezak, "SPNEGO-based
 Kerberos and NTLM HTTP Authentication in Microsoft
 Windows", RFC 4559, June 2006.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 July 2005.

Williams Expires December 4, 2012 [Page 32]

https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4559
https://datatracker.ietf.org/doc/html/rfc4121

Internet-Draft HTTPbis Auth Classification June 2012

Author's Address

 Nicolas Williams
 Cryptonector, LLC

 Email: nico@cryptonector.com

Williams Expires December 4, 2012 [Page 33]

