
NETWORK WORKING GROUP N. Williams
Internet-Draft Cryptonector
Intended status: Standards Track July 15, 2012
Expires: January 16, 2013

RESTful Hypertext Transfer Protocol Application-Layer Authentication
Using Generic Security Services

draft-williams-rest-gss-02

Abstract

 This document describes an application-layer authentication protocol
 in Hypertext Transfer Protocol (HTTP) applications using Generic
 Security Services Application Programming Interface (GSS-API)
 mechanisms. The GSS-API is used, for simplicity, via the Simple
 Authentication and Security Layers (SASL) mechanism bridge known as
 "GS2". This approach to authentication allows for simplicity,
 pluggability, mutual authentication, and channel binding, all with no
 changes to any vbe ersion of HTTP nor the Transport Layer Security
 (TLS).

 Although this is an application-layer protocol, we hope that it will
 be implemented in HTTP stacks for ease of use. That is, this
 protocol should be implemented at the HTTP application programming
 interface (API) layer wherever possible even though it is an
 application-layer protocol. We hope that the use of authentication
 at the application layer will make REST-GSS deployable.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 16, 2013.

Copyright Notice

Williams Expires January 16, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft REST-GSS July 2012

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

 This document may contain material from IETF Documents or IETF
 Contributions published or made publicly available before November
 10, 2008. The person(s) controlling the copyright in some of this
 material may not have granted the IETF Trust the right to allow
 modifications of such material outside the IETF Standards Process.
 Without obtaining an adequate license from the person(s) controlling
 the copyright in such materials, this document may not be modified
 outside the IETF Standards Process, and derivative works of it may
 not be created outside the IETF Standards Process, except to format
 it for publication as an RFC or to translate it into languages other
 than English.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Williams Expires January 16, 2013 [Page 2]

Internet-Draft REST-GSS July 2012

Table of Contents

1. Introduction . 4
1.1. On Application-Layer Authentication Services 5
1.2. Conventions used in this document 5
1.3. GSS-API and SASL Primer 5
1.4. Channel Binding Primer 7
1.5. Glossary . 7
2. The Protocol . 9
2.1. Authentication Message Format 10
2.1.1. ABNF for Initial Authentication Message Header 11
2.2. Authentication State Cookies 11
2.3. Target Service Naming 12
2.4. Authorization ID Form 12
2.5. When to Authenticate and Various Negotiation 12
2.6. Session Status Representation 14
2.7. Session Binding via MIC Tokens 14
2.8. Alternative Session Binding Options 15
2.9. Server Indication of Authentication Requirement 16
3. Examples . 16
3.1. Server Decides When to Authenticate 16
3.2. Negotiation in Client-Initiated Authentication 16
3.3. Login, Session, and Logout, with SCRAM 16
4. Implementation and Deployment Considerations 18
4.1. Desired GSS-API Extensions 19
5. IANA Considerations 19
6. Security Considerations 19
6.1. User Interface and Scripting Interface Recommendations . . 21
6.2. Platform Integration 21
6.3. Anti-Phishing . 21
7. References . 22
7.1. Normative References 22
7.2. Informative References 22

 Author's Address . 23

Williams Expires January 16, 2013 [Page 3]

Internet-Draft REST-GSS July 2012

1. Introduction

 Hypertext transfer Protocol (HTTP) [RFC2616] applications often
 require authentication and related security services. These
 applications have a plethora of odd choices for authentication
 functioning at various different network layers. For example:
 Transport Layer Security (TLS) [RFC5246] with pre-shared secret keys
 (PSK), TLS with user certificates [RFC5280], HTTP Basic and Digest
 authentication, HTTP/Negotiate, posting of HTML forms with usernames
 and passwords filled in, and various methods based on passing tokens
 via HTTP redirection, such as OAuth and OpenID [add references].

 All the authentication methods currently available to HTTP
 applications leave something to be desired. For example these
 authentication methods operate at various different network layers,
 making abstraction of security services particularly difficult.
 Another problem is the lack of a secure method of tying all of a
 logged-in session's HTTP requests and responses to the session, with
 most browser-based applications using "cookies".

 We propose an alternative method of authentication that operates at
 the application layer, and which provides applications with access to
 a large number of actual security mechanisms. This method is based
 on an exchange of authentication messages via HTTP POST to either a
 well-known URI or to a URI indicated by the server or agreed a
 priori. These authentication messages are mostly those of mechanisms
 defined for the GSS-API [RFC2743]. Channel binding [RFC5056] is used
 to bind authentication to TLS channels. Sessions are referenced via
 a session URI that is indicated and authenticated in all requests for
 a session.

 The appeal of this solution is that a) it is build on off-the-shelf
 technologies, b) requiring no modifications to either HTTP (any
 version will do) nor TLS, c) that puts the application in control of
 authentication, and d) is pluggable, all the while improving security
 for HTTP applications whenever GSS mechanisms are used that provide
 mutual authentication. Ideally HTTP stacks will implement this
 protocol so that the application doesn't have to, but applications
 can use this protocol even when the HTTP stack doesn't implement it.

 The GSS-API, and through the "GS2" mechanism bridge, Simple
 Authentication and Security Layers (SASL), enjoys a large and growing
 number of security mechanisms, such as Kerberos V5 [RFC4121], SCRAM
 [RFC5802], as well as a PKI-based mechanism [Add reference to PKU2U],
 mechanisms based on OAuth [RFC5849], OpenID
 [I-D.ietf-kitten-sasl-openid], SAML [I-D.ietf-kitten-sasl-saml], and
 EAP [I-D.ietf-abfab-gss-eap], as well as various legacy mechanisms
 such as NTLM [add reference] and a Diffie-Hellman mechanism [add

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc5849

Williams Expires January 16, 2013 [Page 4]

Internet-Draft REST-GSS July 2012

 reference].

 Much of this document assumes some reader familiarity with the GSS-
 API and SASL. To aid readers new to the GSS-API we provide a GSS
 primer section, below.

1.1. On Application-Layer Authentication Services

 The application layer is generally the most convenient for running
 authentication services that applications require. On the other
 hand, lower network layers have usually been more convenient for
 implementing transport security. As a result many existing Internet
 applications provide for both, but historically with no binding
 between authentication and transport security, and often providing
 two transport security options: one at the application layer, and one
 below. [Add a list of representative SASL and GSS-API apps and
 references, such as IMAP, POP3, SMTP/SUBMIT, LDAP, DNS (GSS-TSIG),
 FTP, SSHv2, etcetera].

 The main disadvantage of application-layer authentication has been
 that until recently many applications had to provide options for two
 different "security layers": TLS (below the application layer) and
 SASL (at the application layer), and sometimes both might be used at
 the same time without any binding between them. The advent of
 standards for channel binding [RFC5056] [RFC5929] makes the
 combination of application-layer authentication with transport
 security at lower layers realistic. Therefore we may now consider
 solutions that we might once not have.

1.2. Conventions used in this document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119] .

1.3. GSS-API and SASL Primer

 This section is here for the benefit of readers who are not familiar
 with any of the GSS-API, SASL, or SASL/GS2.

 The GSS-API and SASL are both simple security frameworks providing
 pluggable authentication services and transport protection facilities
 to applications. By "pluggable" we mean that multiple "security
 mechanisms" may be used by applications without requiring different
 specifications for how the applications use each security mechanism.
 Moreover, application programming interfaces (APIs) for GSS and SASL
 can also be pluggable, requiring no changes to applications in order
 for them to use new mechanisms.

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc2119

Williams Expires January 16, 2013 [Page 5]

Internet-Draft REST-GSS July 2012

 A "security mechanism" is an authentication protocol that conforms to
 the requirements of the framework in which it fits, and it provides
 the requisite authentication facilities. There are many examples of
 security mechanisms [add some].

 The two frameworks are sufficiently similar to each other that a
 "bridge" has been added such that all GSS mechanisms may be used as
 SASL mechanisms as well. This bridge is known as "GS2" [RFC5801].
 For the remainder of this section we'll describe SASL only as it
 works with only GS2 mechanisms.

 Authentication proceeds by having a client ("initiator", in GSS
 terminology) send an initial authentication message ("security
 context token", in GSS terminology). The server ("acceptor")
 consumes said token and produces one of three results -success,
 failure, or "continue needed"-, as well as, possibly, a message to
 return to the client. The security mechanism may require an
 arbitrary number of security context tokens be exchanged, always in a
 synchronous fashion, until ultimate success or failure. Upon success
 the peers are said to have a fully-established security context,
 which may then be used to provide security services such as
 encryption.

 In SASL the server may be the one to initiate the authentication
 message exchange, but, when using GSS mechanisms via the GS2 bridge
 it will always be the client that initiates the exchange. SASL also
 requires that the application define an "outcome of authentication
 message", which is distinct from any such message that the mechanism
 may provide.

 Both frameworks allow mechanisms to provide facilities for
 application data transport protection -- "security layers", in SASL
 terminology. SASL's security layers are stream oriented (requiring
 ordered delivery), while GSS' are message oriented (allowing out-of-
 order delivery), and thus the GSS-API's security layers facilities
 are the more general ones. The GSS-API provides two methods of
 protecting application data: "wrap tokens" and "message integrity
 check (MIC) tokens". Wrap tokens bear application data within them,
 while MIC tokens do not. Thus wrap tokens may provide encryption
 ("confidentiality protection"), while MIC tokens only provide
 integrity protection. MIC tokens are very similar to HMAC -- readers
 should think of HMAC output with a header affixed to both, the HMAC
 output and the input.

 The GSS-API also provides a keyed pseudo-random function (PRF)
 [RFC4401] for keying any application's non-standard security layers,
 if any.

https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc4401

Williams Expires January 16, 2013 [Page 6]

Internet-Draft REST-GSS July 2012

 SASL application protocols almost all have an option to use TLS,
 therefore SASL's security layers are now eschewed in favor of using
 TLS (with channel binding -- see below). Not all GSS-API application
 have an option to use a separate system for transport security, thus
 GSS applications continue to use the GSS-API's transport security
 facilities.

1.4. Channel Binding Primer

 This section is here for the benefit of readers who are not familiar
 with channel binding [RFC5056].

 Channel binding is a method for composing two or more end-to-end
 security facilities such that one facility is used to show that the
 end-points of the other are logically the same as those of the first.
 This allows applications to perform authentication at the application
 layer while leaving transport protection to a lower layer (e.g., TLS)
 without compromising security.

 There are two key aspects to channel binding: a) "channels" (lower
 layers) must export "channel bindings data" that are
 cryptographically bound to the channel, and b) authentication
 mechanisms must be able to consume channel bindings data to ensure
 that those channel bindings data are seen to be the same by both end-
 points of the authentication mechanism.

 There exists a specification for TLS channel bindings data: RFC5929
 [RFC5929].

 Most GSS-API and SASL/GS2 mechanisms support channel binding.

 An application that supports a TLS channel for transport protection,
 and application-layer authentication-layer authentication using the
 GSS-API or SASL/GS2 can perform channel binding to ensure that the
 application-layer and TLS-layer end-points are the same -- that there
 is no unauthorized man-in-the-middle (MITM) below the application
 layer. (An authorized MITM might be an authorized proxy.) This is
 quite simple: first establish a TLS connection, then extract its
 channel bindings data, then initiate GSS or SASL/GS2 authentication
 using those channel bindings data as a channel binding input -- if
 authentication succeeds, then the TLS channel is bound into the GSS
 or SASL/GS2 authentication.

1.5. Glossary

 This section is purely INFORMATIVE, being intended to inform readers
 who are not familiar with SASL and the GSS-API. Implementors should
 refer to the relevant RFCs.

https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5929

Williams Expires January 16, 2013 [Page 7]

Internet-Draft REST-GSS July 2012

 Application protocol
 The protocol that is at the top of the protocol stack, such as,
 for example, IMAP, LDAP, WebDAV, etcetera [Add lots of
 references].

 Authentication
 A process by which one or more parties are identify themselves and
 prove (for some value of "prove") their identities to other
 parties.

 Authentication message
 In SASL this this refers to an opaque message to be exchanged
 during authentication and which should carry authentication
 information, possibly (likely) cryptographic in nature.

 Channel
 A security facility providing secure, end-to-end transport of
 application data. For example: TLS.

 Channel binding
 A method of ensuring that the logical end-points of one secure
 channel are the same as those of another channel at a lower
 network layer.

 GS2
 An adaptation of GSS-API mechanisms to SASL. As SASL originally
 had such an adaptation, we now term that original adaptation "GS1"
 and the new adaptation is "GS2". GS2 is significantly simpler
 than GS1, provides channel binding (whereas GS1 did not), and
 requires one fewer round-trip for its authentication message
 exchange than GS1 does. GS2's simplicity stems from replacing a
 binary header required by the GSS-API with a text header, as well
 as not requring the use of any per-message tokens.

 GSS
 Generic Security Services. An abstraction around security
 mechanisms involving two entities (a client and a server,
 effectively, though a mechanism is allowed to use trusted third
 parties).

 MIC token
 Message Integrity Check. A per-message token providing integrity
 protection to application data. A MIC token does not carry
 application data within it. See also per-message tokens.

 Outcome of authentication message
 SASL requires that applications define, for themselves, a message
 known as the "outcome of authentication message", which should

Williams Expires January 16, 2013 [Page 8]

Internet-Draft REST-GSS July 2012

 carry at least a bit of information indicating whether
 authentication succeeded or failed. This is distinct from any
 such outcome of authentication messages in security mechanisms
 (which the GSS-API effectively requires, at least for
 authentication success) in that it also indicates success of
 authorization of the authenticated client entity to the requested
 authorization ID (if any) on the target service.

 Per-message tokens
 An octet string ("token") emitted, and consumed, by the GSS-API,
 and bearing or authenticating application data, with cryptographic
 integrity protection and, optionally, confidentiality protection.
 There are two types of per-message tokens: MIC tokens, and wrap
 tokens, only the latter of which bears application data. Per-
 message tokens may include headers with data, with cryptographic
 integrity protection and, optionally, confidentiality protection.

 SASL
 Simple Authenication and Security Layers (SASL) is a framework for
 authentication and transport security for applications. SASL
 supports many security mechanisms, including all GSS mechanisms
 via the "GS2" bridge.

 Security mechanism
 A security mechanism is a protocol that defines an authentication
 message (or "security context token") exchange for authenticating
 one or two principals (a client and a server). A security
 mechanism may also provide for key exchange and transport security
 facilities. Examples include [list some].

 Security context
 A security context is the shared secret session keys and
 authenticated peer names that results from an authentication
 message exchange between two parties.

 Security context token
 An opaque octet string that is to be sent by the application to a
 peer as part of the act of authentication and security context
 establishment. See also authentication message.

 Wrap token
 A wrap token is a per-message token that bears application data,
 providing integrity protection to it, and possibly confidentiality
 protection as well. See also per-message tokens.

2. The Protocol

Williams Expires January 16, 2013 [Page 9]

Internet-Draft REST-GSS July 2012

 At some point the client application determines that REST-GSS
 authentication is required. How the client does this is discussed in
 a sub-section below, but for the purposes of this discussion, the
 client MUST either learn or know a priori a URI that will be used to
 initiate REST-GSS authentication. Once the client knows that REST-
 GSS authentication is required the client begins by selecting a SASL/
 GS2 (really, GSS) security mechanism, then constructing an initial
 message as described below, then it POSTs it to the agreed-upon URI.

 The server SHOULD respond to initial authentication messages with
 either an error or a 201 response. If there is no error and there is
 a response authentication message, it will be returned to the client
 as the representation of the resource created and named in the 201
 response, otherwise, if there is no error then the new resource will
 have an empty representation. The body of the 201 response, if non-
 empty, SHALL be the response message for the selected security
 mechanism. The new resource name shall be the name of the REST-GSS
 session, known as the 'session URI'.

 For security mechanisms that require multiple round-trips then
 additional messages from the client SHALL be POSTed to the session
 URI, and any response messages from the server will be returned in
 200 results as the new representation of the session resource.

 The server generally responds to all POSTs to the REST-GSS login and
 session URIs with a 201 or a 200 status, respectively. Failure is
 signalled by the authentication messages described below.

 Any GETs of a valid session URI SHALL either return a representation
 of the status of that session, or an error.

 A DELETE of the session URI logs the session out.

 The requests and responses that make up a session are tied to the
 session via the session URI, which is sent in a header. The requests
 and responses that make up a session SHOULD be authenticated by a
 Message Integrity Check (MIC) token taken over inputs such that the
 request or response is bound to the session. Not using a MIC results
 in similar semantics to using cookies in that the session URI by
 itself is like a bearer token, but by not making this a cookie we
 avoid all the downsides of cookies.

 [NOTE: a MIC token is very much akin to a MAC token. In the GSS-API
 a MIC token is typically an optional sequence number and a MAC.]

2.1. Authentication Message Format

 The authentication messages from clients to servers SHALL be formed

Williams Expires January 16, 2013 [Page 10]

Internet-Draft REST-GSS July 2012

 as per SASL's [RFC4422] GSS-API bridge (known as "GS2") [RFC5801],
 with the initial authentication message prefixed with a text header
 indicating what options were selected. The reason for this is
 simple: implementors who lack a GSS-API implementation will find it
 simpler to implement certain mechanisms if the GS2 framework is used.

 The authentication messages from servers to clients SHALL be formed
 SASL GS2 authentication messages pre-fixed with a header indicating
 authentication status. The header consists of a single byte: an
 ASCII character 'S' (success), 'F' (failure), or 'C' (the server
 expects more authentication messages from the client), followed by an
 ASCII newline.

2.1.1. ABNF for Initial Authentication Message Header

 As described above, the initial authentication message from the
 client to the server must include a small text header described by
 the following Augmented Backus-Naur Form (ABNF) [RFC5234]:

 [Add ABNF for a header consisting of a) the selected SASL/GS2
 mechanism name, b) the name of the channel binding type selected, c)
 the session protection options selected, d) room for extensions.
 -Nico]

2.2. Authentication State Cookies

 REST-GSS application server implementations must build and preserve
 authentication state via a "GSS security context". Clients must
 identify such state in the case of security mechanisms that require
 multiple authentication message round trips. The REST-GSS session
 URI may suffice for this purpose.

 Such state might, for example consist of a timestamp and a partially-
 established security context handle. Some implementations might
 serialize partially-established security contexts and store them
 somewhere, including on the client. The timestamp would be used for
 expiring old partially-established security contexts. The GSS-API
 allows for serializing security contexts into something known as a
 "exported security context token". Some GSS-API implementations
 allow for exporting partially-established security contexts.

 Some servers may benefit from being able to store such authentication
 state temporarily on the client -- such servers MAY assign, in every
 authentication response message when the server expects additional
 authentication messages from the client. Such cookies, if present,
 MUST be base64-encoded and MUST be set in a REST-GSS-AuthenCookie
 response field, and the client MUST echo such a cookie, if present,
 in the next authentication message.

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5234

Williams Expires January 16, 2013 [Page 11]

Internet-Draft REST-GSS July 2012

 Note that serialization of partially-established security contexts is
 currently not a standard feature of the GSS-API, but it is available
 in some implementations. Servers that lack this feature may need to
 preserve authentication state in the form of an identifier for a
 process that holds the GSS-API security context, and an opaque
 security context handle, and then they must route all subsequent
 authentication messages through that process.

2.3. Target Service Naming

 When mutual authentication facilities are available the client SHOULD
 set the target acceptor (service) name to be a GSS-API name of
 GSS_C_NT_HOSTBASED_SERVICE, with the hostname portion of the name
 being the name of the host to which the client is authenticating.
 The service name SHOULD be set as required by the application, or, if
 not specified, then to "HTTP". For example, "HTTP@foo.example".

 [It'd be good to explore a form of domain-based service naming
 without host naming. Thus one could login to a large site without
 having to login to each of many services hosted by different hosts in
 the same domain. -Nico]

2.4. Authorization ID Form

 The form of the authorization ID, if any is supported, SHALL be
 specified by the application. Applications that make no use of the
 authorization ID SHOULD reject authentication attempts requesting any
 non-empty authorization ID.

 Applications that intend to use the SASL authorization ID feature
 should specify a method of preparing the authorization ID, such as
 SASLprep [RFC4013].

2.5. When to Authenticate and Various Negotiation

 An HTTP client learns when to authenticate by getting a 401
 Unauthorized error with headers that describe available
 authentication options. Alternatively the client must know a priori
 when to authenticate. A 401 Unauthorized response from a server that
 supports REST-GSS SHALL include one WWW-Authenticate header whose
 value identifies the REST-GSS HTTP authentication mechanism and the
 following items (ABNF given further below):

 o SASL/GS2 mechanism list;

 o supported channel binding type list;

 o an indication of what session security facility the server prefers

https://datatracker.ietf.org/doc/html/rfc4013

Williams Expires January 16, 2013 [Page 12]

Internet-Draft REST-GSS July 2012

 (cookies or MICs, and if MICs, whether TLS must always be used
 and, if not, whether the body of requests and responses should be
 protected by the MICs);

 o an indication of whether replay protection is required by the
 server, in which case MIC tokens MUST be used, and they MUST be
 taken over data that includes Request-Date and Request-Nanoseconds
 header fields.

 The representation returned by a GET of the resource to which initial
 authentication messages are POSTed MUST be the same as the contents
 of the WWW-Authenticate header that the server might return in a 401
 Unauthorized response.

 The ABNF for the WWW-Authenticate header values for REST-GSS is as
 follows:

 challenge = "REST-GSS" rest-gss-challenge
 rest-gss-challenge = (login-uri SP mechanisms SP cb-types SP
 session-types SP replay-prot)
 login-uri = relativeURI
 mechanisms = "m=" mechanism / (mechanism "," mechanisms)
 mechanism = sasl-mech
 cb-types = "c=" cb-type / (cb-type "," cb-types)
 session-types = "s=" session-type /
 (session-type "," session-types)
 session-type = "cookie" / "session-ID" / "MIC"
 replay-prot = "r=" ("yes" / "no")

 WWW-Authenticate Challenge ABNF

 The 'sasl-mech' rule is defined in [RFC4422]. The 'cb-type' rule is
 defined as names of channel binding types registered with the IANA
 [RFC5056].

 Clients that don't know a priori what mechanism, channel binding
 type, or session protection method to use, MUST GET this resource
 prior to initiatin authentication.

 If a channel binding type list is not advertised by the server then
 the client SHOULD pick a channel binding type as agreed a priori.
 Applications must specify any pre-agreed channel binding type
 selection criteria.

 In any case of ambiguity or failure to specify, the client SHOULD
 pick the tls-server-end-point channel binding type [RFC5929] if a
 server certificate was used to authenticate the server end-point of
 the TLS channel, else the client SHOULD pick tls-unique.

https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5929

Williams Expires January 16, 2013 [Page 13]

Internet-Draft REST-GSS July 2012

2.6. Session Status Representation

 The status of a session SHALL be obtained by a GET of the session
 URI. The status of a session SHALL consist of:

 o [Add an ABNF for a field/value list with the following elements:

 * a boolean to indicate whether the session is fully established;

 * a timestamp indicating hard expiration, if any;

 * a relative time specification indicating what the session idle
 timer, if any, is;

 * possibly some items indicating authorization attributes of the
 client, such as the SASL authorization ID selected or accepted
 by the server, if any.]

2.7. Session Binding via MIC Tokens

 MIC tokens are used to bind HTTP requests and responses to containing
 sessions. Requests (and their responses) can be bound to more than
 one session for session combination purposes.

 [A word about MIC tokens: they are quite similar to HMAC [RFC2104].
 For simple GSS-API mechanisms they might be nothing more than an
 HMAC, with, perhaps a header affixed to the application data that the
 MIC is applied to.]

 MIC tokens for requests are generated by applying GSS_Get_MIC() to a
 a minimized form of the request containing only the following items:

 o the request start line;

 o the Host header field, if any;

 o optionally a Request-Date field with the same value form as the
 'Date' field (this field MUST be sent in the request as well if
 present in the MIC input);

 o optionally a Request-Nanoseconds field bearing a nanoseconds
 component of the time at which the request was made, as an
 unsigned integer in decimal, ASCII respresentation (e.g., 1234567)
 (this field MUST be sent in the request as well if present in the
 MIC input);

 o a Channel-Binding field bearing the channel bindings data (base64-
 encoded) of the channel over which the message is being sent

https://datatracker.ietf.org/doc/html/rfc2104

Williams Expires January 16, 2013 [Page 14]

Internet-Draft REST-GSS July 2012

 (note: the channel bindings should be prefixed with the channel
 binding type as described in RFC5056, and prior to base64
 encoding)), if there is a channel (this field MUST NOT be included
 in the request);

 o the request body if and only if there is no channel to bind to,
 else an empty request body.

 The request MIC is base64-encoded, prefixed with the session URI
 (separated by an ASCII semi-colon) and placed in a header field named
 REST-GSS-Request-MIC. Multiple MICs may be placed in this field,
 separated by whitespace. [XXX Add ABNF for this! Also, add an
 indication of what CB type is used in the request MIC token.]

 The optional timestamp in the request SHOULD be used for replay
 detection on the server side. GSS-API per-message token replay
 detection facilities exist, but an implementation may not make it
 easier to share a security context's replay state easily across
 multiple processes or even servers in a cluster.

 MIC tokens for responses are generated by applying GSS_Get_MIC() to a
 a minimized form of the response containing only the following items:

 o the request status line;

 o the REST-GSS-Request-MIC from the request, with runs of whitespace
 characters replaced with a single ASCII space.

 o the response body if and only if there is no channel to bind to,
 else an empty response body.

 The response MIC is base64-encoded, prefixed with the session URI
 (separated by an ASCII semi-colon) and placed in a header field named
 REST-GSS-Response-MIC. Multiple MICs may be placed in this field,
 separated by whitespace.

 These MIC tokens are validated by calling GSS_Verify_MIC() with the
 same input data as GSS_Get_MIC().

2.8. Alternative Session Binding Options

 [Add text describing the use of cookies instead of MIC tokens.]

 [Add text describing a method of associating REST-GSS session URIs
 with TLS session IDs instead of using MIC tokens on every request/
 response. This is only workable when the client's and server's HTTP/
 TLS stacks expose enough information to the application.]

https://datatracker.ietf.org/doc/html/rfc5056

Williams Expires January 16, 2013 [Page 15]

Internet-Draft REST-GSS July 2012

2.9. Server Indication of Authentication Requirement

 When the server wishes to indicate that the client must authenticate
 in order to access a given resource, then the server MUST respond to
 the client's HTTP request with either a redirection to a web page
 with a 303 redirect to a login page (this in the case of browser
 applications) or a TBD 4xx error indicating that access requires
 REST-GSS login and, optionally directing the client to the REST-GSS
 login URI by listing that URI in a response header field named 'REST-
 GSS-Authenticate'.

3. Examples

3.1. Server Decides When to Authenticate

 C->S: HTTP/1.1 GET /some/resource
 Host: A.example

 S->C: HTTP/1.1 401 Unauthorized
 WWW-Authenticate: REST-GSS login.html m=SCRAM-SHA-1-PLUS
 c=tls-server-end-point,tls-unique
 s=session-ID,MIC r=no

 Authentication required indication

3.2. Negotiation in Client-Initiated Authentication

 C->S: HTTP/1.1 GET /rest-gss-login
 Host: A.example

 S->C: HTTP/1.1 200
 Content-Type: application/rest-gss-login
 Content-Length: nnn

 REST-GSS login.html m=SCRAM-SHA-1-PLUS
 c=tls-server-end-point,tls-unique
 s=session-ID,MIC r=no

 Negotiation

3.3. Login, Session, and Logout, with SCRAM

 The following example is shamefully stolen from RFC5802, and adapted
 to REST-GSS.

 C->S: HTTP/1.1 POST /rest-gss-login
 Host: A.example

https://datatracker.ietf.org/doc/html/rfc5802

Williams Expires January 16, 2013 [Page 16]

Internet-Draft REST-GSS July 2012

 Content-Type: application/rest-gss-login
 Content-Length: nnn

 SCRAM-SHA-1,,MIC
 n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL

 S->C: HTTP/1.1 201
 Location http://A.example/rest-gss-session-9d0af5f680d4ff46
 Content-Type: application/rest-gss-login
 Content-Length: nnn

 C
 r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 s=QSXCR+Q6sek8bf92,i=4096

 C->S: HTTP/1.1 POST /rest-gss-session-9d0af5f680d4ff46
 Host: A.example
 Content-Type: application/rest-gss-login
 Content-Length: nnn

 c=biws,r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,
 p=v0X8v3Bz2T0CJGbJQyF0X+HI4Ts=

 S->C: HTTP/1.1 200
 Content-Type: application/rest-gss-login
 Content-Length: nnn

 A
 v=rmF9pqV8S7suAoZWja4dJRkFsKQ=

 Authentication message exchange using SCRAM
 without channel
 binding

 C->S: HTTP/1.1 GET /some/doc.html
 Host: A.example
 REST-GSS-Request-MIC:
 http://A.example/rest-gss-session-9d0af5f680d4ff46
 <base64-encoding of output of GSS_Get_MIC() using the
 named session's security context and taken over a
 minimal version of this request:

 HTTP/1.1 GET /some/doc.html
 Host: A.example

 >

 S->C: HTTP/1.1 200

Williams Expires January 16, 2013 [Page 17]

Internet-Draft REST-GSS July 2012

 Content-Type: text/html
 Content-Length: nnn

 <HTML source of http://A.example/some/doc.html>

 Example request and response using MIC tokens

 C->S: HTTP/1.1 DELETE /rest-...-session-9d0af5f680d4ff46
 Host: A.example
 REST-GSS-Request-MIC:
 http://A.example/rest-gss-session-9d0af5f680d4ff46
 <base64-encoding of output of GSS_Get_MIC() using the
 named session's security context and taken over a
 minimal version of this request:

 HTTP/1.1 DELETE /rest-...-9d0af5f680d4ff46
 Host: A.example

 >

 S->C: HTTP/1.1 200

 Example of session logout

4. Implementation and Deployment Considerations

 It is possible to implement REST-GSS with no changes to HTTP
 implementations, on the client and server sides both. [Hmmm, maybe
 we should make sure not to add any new return codes! -Nico]. It is
 also possible to implement REST-GSS with no changes to TLS
 implementations, though it is preferable to use TLS implementations
 that output channel bindings data [RFC5929].

 All that is required in order to implement REST-GSS is one or more
 GSS-API security mechanisms, whether used directly or via an actual
 GSS-API framework implementation. Note that an implementation of the
 full GSS-API framework is _not_ required. A minimal implementation
 of a security mechanism such as SCRAM [RFC5802] is feasible that
 provides nothing like the API that is the GSS-API.

 Similarly, a GS2 [RFC5801] implementation is required, but given how
 simple GS2 is there's no need for a full-blown SASL [RFC4422] nor GS2
 framework implementation.

 The largest obstacle for REST-GSS implementation lies in the web

https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc4422

Williams Expires January 16, 2013 [Page 18]

Internet-Draft REST-GSS July 2012

 browser, in the case of browser-based applications: without a native
 implementation of REST-GSS in the browser (or the platform, but
 accessed via the browser), the only way to implement REST-GSS is by
 implementing a security mechanism JavaScript [XXX Add reference.
 -Nico]. Implementing security mechanisms in scripts downloaded as
 needed from the same origin as the page that will use them presents a
 number of obvious security considerations, but as a technology
 demonstrator, this approach will work.

 As for deployment, the availability of security mechanisms and
 federations is critical. Work is in progress to produce federatable
 security mechanisms for the GSS-API. In the meantime, there are
 security mechanisms such as Kerberos V5 [RFC4121] and others, that
 make deployment in the enterprise scale, if not the Internet scale,
 an immediately available option.

4.1. Desired GSS-API Extensions

 At least one GSS-API extension is desired, though not required: the
 ability to export (serialize) partially-established security
 contexts. It is possible to implement REST-GSS on the server without
 this feature, but especially for clustered servers using multi-round-
 trip security mechanisms, it would be much easier to implement where
 this extension is available.

5. IANA Considerations

 This document has IANA considerations: new HTTP fields, and,
 possibly, new HTTP status codes. These need to be registered.
 Registration information to-be-added.

6. Security Considerations

 The security considerations of HTTP [RFC2616], TLS [RFC5246], the
 GSS-API [RFC2743], SASL [RFC4422], and GS2 [RFC5801] apply. When
 channel binding is used the security considerations of [RFC5056] and
 [RFC5929] also apply. Some of the security considerations of HTTP
 and TLS are addressed by the use of mutual authentication and channel
 binding in REST-GSS.

 REST-GSS provide a number of optional facilities, both by itself and
 because the GSS-API itself provides optional facilities. These
 facilities can provide excellent security to users and service
 providers, particularly mutual authentication and channel binding,
 which together can significantly strengthen the authentication of
 services otherwise provided only by TLS.

https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5929

Williams Expires January 16, 2013 [Page 19]

Internet-Draft REST-GSS July 2012

 Some GSS-API security mechanisms are not secure against eavesdroppers
 or active attacks. Therefore REST-GSS applications MUST use TLS with
 confidentiality protection to protect all REST-GSS authentication
 message exchanges, and SHOULD require the use of a server certificate
 [RFC5280] unless mutual authentication and channel binding are being
 used.

 REST-GSS applications SHOULD prefer security mechanisms that provide
 for mutual authentication to ones that do not, and SHOULD use channel
 binding to TLS whenever it's available. REST-GSS applications SHOULD
 NOT, by default, use security mechanisms that do not support mutual
 authentication or channel binding. REST-GSS applications that allow
 the use of security mechanisms that do not provide mutual
 authentication MUST require that the server be authenticated by a
 server certificate [RFC5280].

 REST-GSS applications SHOULD use channel binding to TLS, using the
 channel binding data of the TLS connection that will carry the
 client's initial authentication message.

 REST-GSS does not provide a confidentiality protection option.
 Therefore REST-GSS applications MUST use TLS if confidentiality
 protection is desired.

 REST-GSS applications SHOULD use TLS if integrity protection is
 desired. Where they do not use TLS then they SHOULD use MIC tokens
 to protect the bodies of the requests and responses, not just the
 HTTP method and URI.

 REST-GSS applications SHOULD use MIC tokens instead of cookies to tie
 requests to sessions. REST-GSS applications SHOULD use channel
 binding to TLS for session requests.

 REST-GSS applications that are sensitive to replays of requests
 SHOULD use MIC tokens with Request-Date and Request-Nanoseconds
 fields present in the data that the MIC is taken over, unless the
 server supports tls-unique channel bindings, in which case the
 application SHOULD NOT include Request-Date and Request-Nanoseconds
 fields in the MIC data. But servers that have suitable GSS-API per-
 message token replay detection implementations SHOULD NOT request
 that Request-Date and Request-Nanoseconds header fields be used.

 REST-GSS applications SHOULD use the extended GSS mechanism inquiry
 API [RFC5587] to help select mechanisms that provide the features
 required by the application.

 While it is convenient to have servers decide when authentication is
 required on the basis of the URIs being accessed by the client, this

https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5587

Williams Expires January 16, 2013 [Page 20]

Internet-Draft REST-GSS July 2012

 can leak information. It is best to require authentication, or not,
 for an entire site.

 ...

6.1. User Interface and Scripting Interface Recommendations

 User interface (UI) and scripting interfaces are out of scope for
 this document. However, in the interest of seeding works-in-
 progress, we describe some such UIs and scripting APIs here, in broad
 strokes.

 For browser-based applications we recommend the addition of an
 element to the HTML DOM for rendering a "login" button on a web page
 such that the user may activate it to initiate REST-GSS
 authentication. Such a DOM element should include a URI to POST
 initial authentication messages to. For non-browser applications we
 recommend a similar UI.

 For all REST-GSS applications we also recommend non-DOM element by
 which the client may indicate REST-GSS login status to the user, as
 well as by which the user may initiate a logout. The status
 displayed to users of logged-in REST-GSS sessions should include
 information such as: what security mechanism was used, the
 authenticated client and server principal names, session protection
 options, etcetera.

 For scripting we recommend extensions to XMLHttpRequest that allows
 the application to request a REST-GSS session URI as an output,
 implying that a session will be logged in. We also recommend inputs
 to XMLHttpRequest to specify what REST-GSS session to use, and/or a
 REST-GSS login URI. An extension should be provided for inquiring
 the status of a REST-GSS session.

 Cross-site scripting note: browsers MUST apply same-origin-like
 constraints to the REST-GSS target service names, if any, specified
 by scripts downloaded from a site.

6.2. Platform Integration

 [Add notes about platform integration. -Nico]

6.3. Anti-Phishing

 [Add notes about how mutual authentication via federated security
 mechanisms may reduce the scope of phishing attacks by effectively
 adding a service whitelist of sorts. -Nico]

Williams Expires January 16, 2013 [Page 21]

Internet-Draft REST-GSS July 2012

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2743] Linn, J., "Generic Security Service Application Program
 Interface Version 2, Update 1", RFC 2743, January 2000.

 [RFC4422] Melnikov, A. and K. Zeilenga, "Simple Authentication and
 Security Layer (SASL)", RFC 4422, June 2006.

 [RFC5056] Williams, N., "On the Use of Channel Bindings to Secure
 Channels", RFC 5056, November 2007.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234, January 2008.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

 [RFC5587] Williams, N., "Extended Generic Security Service Mechanism
 Inquiry APIs", RFC 5587, July 2009.

 [RFC5801] Josefsson, S. and N. Williams, "Using Generic Security
 Service Application Program Interface (GSS-API) Mechanisms
 in Simple Authentication and Security Layer (SASL): The
 GS2 Mechanism Family", RFC 5801, July 2010.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

7.2. Informative References

 [I-D.ietf-abfab-gss-eap]
 Hartman, S. and J. Howlett, "A GSS-API Mechanism for the
 Extensible Authentication Protocol",

draft-ietf-abfab-gss-eap-08 (work in progress), June 2012.

 [I-D.ietf-kitten-sasl-openid]
 Lear, E., Tschofenig, H., Mauldin, H., and S. Josefsson,
 "A SASL & GSS-API Mechanism for OpenID",

draft-ietf-kitten-sasl-openid-08 (work in progress),

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2743
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc5056
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc5587
https://datatracker.ietf.org/doc/html/rfc5801
https://datatracker.ietf.org/doc/html/rfc5929
https://datatracker.ietf.org/doc/html/draft-ietf-abfab-gss-eap-08
https://datatracker.ietf.org/doc/html/draft-ietf-kitten-sasl-openid-08

Williams Expires January 16, 2013 [Page 22]

Internet-Draft REST-GSS July 2012

 February 2012.

 [I-D.ietf-kitten-sasl-saml]
 Wierenga, K., Lear, E., and S. Josefsson, "A SASL and GSS-
 API Mechanism for SAML", draft-ietf-kitten-sasl-saml-09
 (work in progress), February 2012.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC4013] Zeilenga, K., "SASLprep: Stringprep Profile for User Names
 and Passwords", RFC 4013, February 2005.

 [RFC4121] Zhu, L., Jaganathan, K., and S. Hartman, "The Kerberos
 Version 5 Generic Security Service Application Program
 Interface (GSS-API) Mechanism: Version 2", RFC 4121,
 July 2005.

 [RFC4401] Williams, N., "A Pseudo-Random Function (PRF) API
 Extension for the Generic Security Service Application
 Program Interface (GSS-API)", RFC 4401, February 2006.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, May 2008.

 [RFC5802] Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams,
 "Salted Challenge Response Authentication Mechanism
 (SCRAM) SASL and GSS-API Mechanisms", RFC 5802, July 2010.

 [RFC5849] Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,
 April 2010.

Author's Address

 Nicolas Williams
 Cryptonector LLC

 Email: nico@cryptonector.com

https://datatracker.ietf.org/doc/html/draft-ietf-kitten-sasl-saml-09
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc4121
https://datatracker.ietf.org/doc/html/rfc4401
https://datatracker.ietf.org/doc/html/rfc5280
https://datatracker.ietf.org/doc/html/rfc5802
https://datatracker.ietf.org/doc/html/rfc5849

Williams Expires January 16, 2013 [Page 23]

