
Workgroup: DANCE

Internet-Draft:

draft-wilson-dance-architecture-01

Published: 9 November 2021

Intended Status: Informational

Expires: 13 May 2022

Authors: A. Wilson

Valimail

S. Huque

Salesforce

O. Johansson

Edvina.net

An Architecture for DNS-Bound Client and Sender Identities

Abstract

This architecture document defines terminology, interaction, and

authentication patterns, related to the use of DANE DNS records for

TLS client and messaging peer identity, within the context of

existing object security and TLS-based protocols.

Discussion Venues

This note is to be removed before publishing as an RFC.

Discussion of this document takes place on the DANE Authentication

for Network Clients Everywhere Working Group mailing list

(dance@ietf.org), which is archived at https://mailarchive.ietf.org/

arch/browse/dance/.

Source for this draft and an issue tracker can be found at https://

github.com/ashdwilson/draft-dance-architecture.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 May 2022.

¶

¶

¶

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/browse/dance/
https://mailarchive.ietf.org/arch/browse/dance/
https://github.com/ashdwilson/draft-dance-architecture
https://github.com/ashdwilson/draft-dance-architecture
https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Conventions and Definitions

3. Communication Patterns

3.1. Client/Server

3.2. Peer2peer

3.3. Decoupled

4. Use Cases

4.1. Mutual TLS Authentication

4.1.1. Example 1: TLS authentication for HTTPS API interaction,

DANE preauthorization

4.1.2. IoT: Device to cloud

4.1.3. Oauth2

4.1.4. Edge Computing

4.1.5. SIP and WebRTC inter-domain privacy

4.1.6. DNS over TLS client authentication

4.1.7. SMTP, STARTTLS

4.1.8. SSH client

4.1.9. Network Access

4.1.10. LoRaWAN

4.2. Object Security

4.2.1. Structured data messages: JOSE/COSE

4.3. Operational anomaly reporting

4.3.1. MUD reporting for improper provisioning

4.3.2. XARF for abuse reporting

4.4. Adjacent Ecosystem Components

4.4.1. Certification Authority

5. Security Considerations

5.1. Confidentiality

5.2. Integrity

5.3. Availability

5.3.1. DNS Scalability

5.3.2. Change of ownership

¶

¶

https://trustee.ietf.org/license-info

6. IANA Considerations

7. Normative References

Acknowledgments

Authors' Addresses

1. Introduction

A digital identity, in an abstract sense, possesses at least two

features: an identifier (or name), and a means of proving ownership

of the identifier. One of the most resilient mechanisms for tying an

identifier to a method for proving ownership of the identifier is

the digital certificate, issued by a well-run Certification

Authority (CA). The CA acts as a mutually trusted third party, a

root of trust.

Certificate-based identities are limited in scope by the issuing CA,

or by the namespace of the application responsible for issuing or

validating the identity.

An example of this limitation is well-illustrated by organizational

Public Key Infrastructure (PKI). Organizational PKI is very often

coupled with email and LDAP systems, and can be used for associating

a human or machine identity identifier with a public key. Within the

organization, authentication systems already agree on the roots of

trust for validating entity certificates issued by organizational

PKI.

Attempting to use organizational PKI outside the organization can be

challenging. In order to authenticate a certificate, the

certificate's CA must be trusted. CAs have no way of controlling

identifiers in certificates issued by other CAs. Consequently,

trusting multiple CAs at the same time can enable entity identifier

collisions. Asking an entity to trust your CA implies trust in

anything that your CA signs. This is why many organizations operate

a private CA, and require devices connecting to the organization's

networks or applications to possess certificates issued by the

organization's CA.

These limitations make the implementation and ongoing maintenance of

a PKI costly, and have a chilling effect on the broader adoption of

certificate-based IoT device identity. If certificate-based device

identity were easier to manage, more broadly trusted, and less

operationally expensive, more organizations and applications would

be able to use it.

The lack of trust between PKI domains has lead to a lack of simple

and globally scalable solutions for secure end-to-end inter-domain

communication between entities, such as SIP phones, email and chat

accounts and IoT devices belonging to different organizations.

¶

¶

¶

¶

¶

¶

DANCE seeks to make PKI-based IoT device identity universally

discoverable, more broadly recognized, and less expensive to

maintain by using DNS as the constraining namespace and lookup

mechanism. DANCE builds on patterns established by the original DANE

RFCs to enable client and sending entity certificate, public key,

and trust anchor discovery. DANCE allows entities to possess a

first-class identity, which, thanks to DNS, may be trusted by any

application also trusting the DNS. A first-class identity is an

application-independent identity.

2. Conventions and Definitions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This section will be interesting to define. We have great examples

of identity terminology in the https://datatracker.ietf.org/doc/

html/draft-sarikaya-t2trg-sbootstrapping-06 document, but this

document also admits that there is semantic drift on terms like

"bootstrapping", depending on who's talking.

Identity provisioning: This refers to the set of tasks required to

securely provision an asymmetric key pair for the device, sign the

certificate (if the public credential is not simply a raw public

key), and publish the public key or certificate in DNS. Under some

circumstances, these steps are not all performed by the same party

or organization. A manufacturer may instantiate the key pair, and a

systems integrator may be responsible for issuing (and publishing)

the device certificate in DNS. In some circumstances, a manufacturer

may also publish device identity records in DNS. In this case, the

system integrator needs to perform network and application access

configuration, since the identity already exists in DNS.

Security Domain: DNS-bound client identity allows the device to

establish secure communications with any server with a DNS-bound

identity, as long as a network path exists, the entity is configured

to trust its communicating peer by name, and agreement on protocols

can be achieved. The act of joining a security domain, in the past,

may have involved certificate provisioning. Now, it can be as simple

as using a manufacturer-provisioned identity to join the device to

the network and application. [Is the security domain defined by how

broadly the identity is recognized, or by the breadth of the

application or network access policy?]

Client: This architecture document adopts the definition of "Client"

from RFC 8446: "The endpoint initiating the TLS connection"

¶

¶

¶

¶

¶

¶

Server: This architecture document adopts the definition of "Server"

from RFC 8446: "The endpoint that did not initiate the TLS

connection"

Sending agent: Software which encodes and transmits messages. A

sending agent may perform tasks related to generating cryptographic

signatures and/or encrypting messages before transmission.

Receiving agent: Software which interprets and processes messages. A

receiving agent may perform tasks related to the decryption of

messages, and verification of message signatures.

Store-and-forward system: A message handling system in-path between

the sending agent and the receiving agent.

Hardware supplier role: The entity which manufactures or assembles

the physical device. In many situations, multiple hardware suppliers

are involved in producing a given device. In some cases, the

hardware supplier may provision an asymmetric key pair for the

device and establish the device identity in DNS. In some cases, the

hardware supplier may ship a device with software pre-installed.

Systems integrator: The party responsible for configuration and

deployment of application components. In some cases, the systems

integrator also installs the software onto the device, and may

provision the device identity in DNS.

Consumer: The entity or organization which pays for the value

provided by the application, and defines the success criteria for

the output of the application.

3. Communication Patterns

3.1. Client/Server

Client/server communication patterns imply a direct connection

between an entity which provides a service (the server), and an

entity which initiates a connection to the server, called a client.

A secure implementation of this pattern includes a TLS-protected

session directly between the client and the server. A secure

implementation may also include public key-based mutual

authentication.

Extending DANE to include client identity allows the server to

authenticate clients independent of the private PKI used to issue

the client certificate. This reduces the complexity of managing the

CA certificate collection, and mitigates the possibility of client

identifier collision.

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.2. Peer2peer

The extension also allows an application to find an application

identity and set up a secure communication channel directly. This

pattern can be used in mesh networking, IoT and in many

communication protocols for multimedia sessions, chat and messaging.

3.3. Decoupled

Decoupled architecture, frequently incorporating store-and-forward

systems, provides no direct connection between the producer and

consumer of information. The producer (or sending agent) and

consumer (or receiving agent) are typically separated by at least

one layer of messaging-oriented middleware. The Messaging-oriented

middleware components may act as a server for the purpose of

establishing TLS sessions for the producer and consumer. This allows

the assertion of identity between the middleware and sending agent,

and the middleware and receiving agent. The trust relationship

between the sending agent and receiving agent is based on the

presumed trustworthiness of the middleware, unless an identity can

be attached to the message itself, independent of transport and

middleware components.

Within many existing store-and-forward protocols, certificates may

be transmitted within the signed message itself. An example of this

is S/MIME. Within IoT applications, we find that networks may be

more constrained. Including certificates in message payloads can

present an unnecessary overhead on constrained network links.

Decoupled applications benefit from an out-of-band public key

discovery mechanism, which may enable the retrieval of certificates

only when needed, and sometimes using a less expensive network

connection.

4. Use Cases

4.1. Mutual TLS Authentication

Using DNS to convey certificate information for authenticating TLS

clients gives a not-yet-authenticated client the ability to trigger

a DNS lookup on the server side of the TLS connection. An

opportunity for DDOS may exist when malicious clients can trigger

arbitrary DNS lookups. For instance, an authoritative DNS server

which has been configured to respond slowly, may cause a high

concurrency of in-flight TLS authentication processes as well as

open connections to upstream resolvers. This sort of attack (of type

slowloris) could have a performance or availability impact on the

TLS server.

¶

¶

¶

¶

4.1.1. Example 1: TLS authentication for HTTPS API interaction, DANE

preauthorization

The client initiates a TLS connection to the server.

The TLS server compares the dane_clientid (conveyed via the DANE

Client Identity extension) to a list of allowed client domains.

If the dane_clientid is allowed, the TLS server then performs a

DNS lookup for the client's TLSA record. If the dane_clientid is

not allowed, authentication fails.

If the client's TLSA record matches the presented certificate or

public key, the TLS handshake completes successfully and the

authenticated dane_clientid is presented to the web application

in the (TBD) header field.

This pattern has the following advantages:

This pattern translates well to TLS/TCP load balancers, by using

a TCP TLV instead of an HTTP header.

No traffic reaches the application behind the load balancer

unless DANE client authentication is successful.

4.1.1.1. Example 2: TLS authentication for HTTPS API interaction, DANE

matching in web application

The client initiates a TLS connection to the server.

The TLS server accepts any certificate for which the client can

prove possession of the corresponding private key.

The TLS server passes the certificate to the web application in

(TBD) header field.

The HTTP request body contains the dane_clientid, and is passed

to the web application.

The web application compares the dane_clientid to a list of

allowed clients or client domains.

If the dane_clientid is allowed, the web application makes the

DNS query for the TLSA records for dane_clientid

If the presented certificate (which was authenticated by the TLS

server) matches at least one TLSA record for dane_clientid,

authentication succeeds.

* ¶

*

¶

*

¶

*

¶

¶

*

¶

*

¶

* ¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

This pattern has the following advantages:

In a web application where a TLS-terminating load balancer sits

in front of a web application, the authentication logic in the

load balancer remains simple.

The web application ultimately decides whether to make the DNS

query to support DANE authentication. This allows the web

application to reject clients with identifiers which are not

allowed, before making a DNS query for TLSA retrieval and

comparison. No need to manage an allow-list in the load balancer.

This can be implemented with no changes to the TLS handshake.

4.1.2. IoT: Device to cloud

Direct device-to-cloud communication is common in simple IoT

applications. Authentication in these applications is usually

accomplished using shared credentials like API keys, or using client

certificates. Client certificate authentication frequently requires

the consumer to maintain a CA. The CA trust anchor certificate is

installed into the cloud application, and used in the TLS

authentication process.

Using DANE for device identity can allow parties other than the

implementer to operate the CA. A hardware manufacturer can provide a

pre-established identity, with the certificate or public key already

published in DNS. This makes PKI-based identity more approachable

for small organizations which currently lack the resources to

operate an organizational CA.

4.1.3. Oauth2

[This can be a broad topic. Should we include, or wait until a re-

chartering to update?]

4.1.4. Edge Computing

https://datatracker.ietf.org/doc/html/draft-hong-t2trg-iot-edge-

computing-01 may require devices to mutually authenticate in the

field. A practical example of this pattern is the edge computing in

construction use case [https://datatracker.ietf.org/doc/html/draft-

hong-t2trg-iot-edge-computing-01#section-6.2.1]. Using traditional

certificate-based identity, the sensor and the gateway may have

certificates issued by the same organizational PKI. By using DANE

for client and sender identity, the sensor and the gateway may have

identities represented by the equipment supplier, and still be able

to mutually authenticate. Important sensor measurements forwarded by

the gateway to the cloud may bear the DNS name and signature of the

originating sensor, and the cloud application may authenticate the

¶

*

¶

*

¶

* ¶

¶

¶

¶

https://datatracker.ietf.org/Edge%20Computing
https://datatracker.ietf.org/Edge%20Computing

measurement independent of the gateway which forwarded the

information to the application.

4.1.5. SIP and WebRTC inter-domain privacy

End to end security in SIP is currently based on a classical S/MIME

model which has not received much implementation. There are also SIP

standards that build upon a trust chained anchored on the HTTP trust

chain (SIP identity, STIR). WebRTC has a trust model between the web

browser and the servers using TLS, but no inter-domain trust

infrastructure. WebRTC lacks a definition of namespace to map to

DNS, where SIP is based on an email-style addressing scheme. For

WebRTC the application developer needs to define the name space and

mapping to DNS.

By using DNS as a shared root of trust SIP and WebRTC end points can

anchor the keys used for DTLS/SRTP media channel setup. In addition,

SIP devices can establish security in the SIP messaging by using DNS

to find the callee's and the callers digital identity.

[https://datatracker.ietf.org/doc/html/draft-johansson-sipcore-dane-

sip]

NOTE: include reference to earlier drafts for SIP + DANE

4.1.6. DNS over TLS client authentication

4.1.7. SMTP, STARTTLS

4.1.8. SSH client

4.1.9. Network Access

4.1.9.1. EAP-TLS with RADIUS

4.1.9.1.1. Terminology

Supplicant: The entity which acts as the TLS client in the EAP-TLS

authentication protocol. This term is defined in IEEE 802.1x. The

suppliant acts as a client in the EAPOL (EAP over LAN) protocol,

which is terminated at the authenticator (defined below).

Authentication server: The entity which acts as the TLS server in

the EAP-TLS protocol. RADIUS (RFC 2865) is a frequently-used

authentication server protocol.

Authenticator: The authenticator is the device which acts as a

server the EAPOL (EAP over LAN) protocol, and is a client of the

authentication server. The authenticator is responsible for passing

EAP messages between the supplicant and the authentication server,

¶

¶

¶

¶

¶

¶

¶

and for ensuring that only authenticated supplicants gain access to

the network.

https://datatracker.ietf.org/doc/html/rfc5216 is a mature and

widely-used protocol for network authentication, for IoT and IT

equipment. IEEE 802.1x defines the encapsulation of EAP over LAN

access technologies, like IEEE 802.11 wireless and IEEE 802.3

ethernet. RADIUS is a protocol and server technology frequently used

for supporting the server side of EAP-TLS authentication. Guidance

for implementing RADIUS strongly encourages the use of a single

common CA for all supplicants, to mitigate the possibility of

identifier collisions across PKIs. The use of DANE for client

identity can allow the safe use of any number of CAs. DNS acts as a

constraining namespace, which prevents two unrelated CAs from

issuing valid certificates bearing the same identifier. Certificates

represented in DNS are valid, and all others are un-trusted.

4.1.9.2. RADSEC

The RADIUS protocol has a few recognized security problems. https://

datatracker.ietf.org/doc/html/rfc6614 addresses the challenges

related to the weakness of MD5-based authentication and

confidentiality over untrusted networks by establishing a TLS

session between the RADIUS protocol client and the RADIUS protocol

server. RADIUS datagrams are then transmitted between the

authenticator and authentication server within the TLS session.

Updating the RADSEC standard to include the use of DANE for client

and server identity would allow a RADIUS server and client to

mutually authenticate, independent of the client's and server's

issuing CAs. The benefit for this use case is that a hosted RADIUS

service may mutually authenticate any client device, like a WiFi

access point or ethernet switch, via RADSEC, without requiring the

distribution of CA certificates.

4.1.10. LoRaWAN

We should ask S. if he wants to contribute to this section

4.2. Object Security

4.2.1. Structured data messages: JOSE/COSE

JOSE and COSE provide formats for exchanging authenticated and

encrypted structured data. JOSE defines the x5u field in https://

datatracker.ietf.org/doc/html/rfc7515#section-4.1.5, and COSE

defines a field of the same name in https://datatracker.ietf.org/

doc/html/draft-ietf-cose-x509-08#section-2 which can be used for

out-of-band x.509 certificate discovery. By adopting DANE for out-

of-band certificate discovery, CBOR and JSON data may be

authenticated, even if the originating sending agent not have IP

¶

¶

¶

¶

https://datatracker.ietf.org/EAP-TLS
https://datatracker.ietf.org/RADSEC
https://datatracker.ietf.org/RADSEC
https://datatracker.ietf.org/RFC7515
https://datatracker.ietf.org/RFC7515
https://datatracker.ietf.org/draft-ietf-cose-x509
https://datatracker.ietf.org/draft-ietf-cose-x509

connectivity, provided that the sending agent's certificate is

discoverable in DNS and the receiving agent has access to DNS.

4.3. Operational anomaly reporting

4.3.1. MUD reporting for improper provisioning

4.3.2. XARF for abuse reporting

4.4. Adjacent Ecosystem Components

4.4.1. Certification Authority

5. Security Considerations

5.1. Confidentiality

DNS clients should use DNS over TLS with trusted DNS resolvers to

protect the identity of authenticating peers.

5.2. Integrity

The integrity of public keys represented in DNS is most important.

An altered public key can enable device impersonation, and the

denial of existence for a valid identity can cause devices to become

un-trusted by the network or the application. DNS records should be

validated by the DNS stub resolver, using the DNSSEC protocol.

Compartmentalizing failure domains within an application is a well-

known architectural best practice. Within the context of protecting

DNS-based identities, this compartmentalization may manifest by

hosting an identity zone on a DNS server which only supports the

resource record types essential for representing device identities.

This can prevent a compromised identity zone DNS server from

presenting records essential for impersonating web sites under the

organization's domain name.

The naming pattern suggested in https://datatracker.ietf.org/doc/

html/draft-huque-dane-client-cert includes an underscore label

(_device) which also prevents the issuance of Web PKI-validating

certificates in the event a DNS server hosting a client identity

zone, which is capable of presenting A and AAAA records, is

compromised.

5.3. Availability

5.3.1. DNS Scalability

In the use case for IoT an implementation must be scalable to a

large amount of devices. In many cases, identities may also be very

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/html/draft-huque-dane-client-cert
https://datatracker.ietf.org/doc/html/draft-huque-dane-client-cert

[RFC2119]

[RFC8174]

short lived as revocation is performed by simply removing a DNS

record. A zone will have to manage a large amount of changes as

devices are constantly added and de-activated.

In these cases it is important to consider the architecture of the

DNS zone and when possible use a tree-like structure with many

subdomain parts, much like reverse DNS records or how telephone

numbers are represented in the ENUM standard (RFC 6116).

If an authoritative resolver were configured to respond quite slowly

(think slow loris), is it possible to cause a DoS on the TLS server

via complete exhaustion of TCP connections?

The availability of a client identity zone is essential to

permitting clients to authenticate. If the DNS infrastructure

hosting client identities becomes unavailable, then the clients

represented by that zone cannot be authenticated.

OEJ: We may want to have a discussion with the IETF DNS directorate.

The scalability section above is from a discussion with one of the

members...

5.3.2. Change of ownership

What happens if an organization owning the client identity goes out

of business? What's the best way to transfer an identifier to

another zone? <note: there may be an opportunity here to take

advantage of EST, or another protocol supporting certificate

renewal, to allow client devices to rotate to another zone>

6. IANA Considerations

This document has no IANA actions.

7. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Acknowledgments

TODO acknowledge.

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc8174

Authors' Addresses

Ash Wilson

Valimail

Email: ash.d.wilson@gmail.com

Shumon Huque

Salesforce

Email: shuque@gmail.com

Olle Johansson

Edvina.net

Email: oej@edvina.net

mailto:ash.d.wilson@gmail.com
mailto:shuque@gmail.com
mailto:oej@edvina.net

	An Architecture for DNS-Bound Client and Sender Identities
	Abstract
	Discussion Venues
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Definitions
	3. Communication Patterns
	3.1. Client/Server
	3.2. Peer2peer
	3.3. Decoupled

	4. Use Cases
	4.1. Mutual TLS Authentication
	4.1.1. Example 1: TLS authentication for HTTPS API interaction, DANE preauthorization
	4.1.1.1. Example 2: TLS authentication for HTTPS API interaction, DANE matching in web application

	4.1.2. IoT: Device to cloud
	4.1.3. Oauth2
	4.1.4. Edge Computing
	4.1.5. SIP and WebRTC inter-domain privacy
	4.1.6. DNS over TLS client authentication
	4.1.7. SMTP, STARTTLS
	4.1.8. SSH client
	4.1.9. Network Access
	4.1.9.1. EAP-TLS with RADIUS
	4.1.9.1.1. Terminology

	4.1.9.2. RADSEC

	4.1.10. LoRaWAN

	4.2. Object Security
	4.2.1. Structured data messages: JOSE/COSE

	4.3. Operational anomaly reporting
	4.3.1. MUD reporting for improper provisioning
	4.3.2. XARF for abuse reporting

	4.4. Adjacent Ecosystem Components
	4.4.1. Certification Authority

	5. Security Considerations
	5.1. Confidentiality
	5.2. Integrity
	5.3. Availability
	5.3.1. DNS Scalability
	5.3.2. Change of ownership

	6. IANA Considerations
	7. Normative References
	Acknowledgments
	Authors' Addresses

