
Internet Engineering Task Force R. Wilton
Internet-Draft Cisco Systems
Intended status: Experimental September 3, 2015
Expires: March 6, 2016

 "With-config-state" Capability for NETCONF/RESTCONF
draft-wilton-netmod-opstate-yang-00

Abstract

 This document proposes a possible alternative solution for handling
 applied configuration state in YANG as described in draft-openconfig-

netmod-opstate-01. The proposed solution, roughly modelled on the
 with-defaults NETCONF/RESTCONF capability, aims to meet the key
 requirements set out in draft-openconfig-netmod-opstate-01 without
 the need for YANG module authors to explicitly duplicate
 configuration nodes in both configuration and operational containers.
 This draft does not address the issue of co-location of configuration
 and operational state for interfaces, nor does it provide a NETCONF
 mechanism to retrieve operational data separately from configuration
 data.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 6, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of

Wilton Expires March 6, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/draft-wilton-netmod-opstate-yang-00
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft With-config-state September 2015

 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 4

2. Objectives . 4
3. "With-config-state" encoding scheme 4
3.1. cfg-intended . 5
3.2. cfg-applied . 5
3.3. cfg-status . 6
3.4. cfg-status-reason . 6
3.5. Non-leaf config nodes 7

4. Retrieval of intended and applied configuration 7
4.1. all-cfg . 8
4.2. intended-cfg-only . 8
4.3. applied-cfg-only . 8
4.4. diff-cfg-only . 8

5. "With-config-state" Capability 8
5.1. Overview . 8
5.2. Dependencies . 9
5.3. Capability Identifier 9

6. Suggested layout of data models 9
 7. Addressing the requirements of the Consistent Modeling of
 Operational State Data draft 9
 7.1. Addressing requirement 3: 'To interact with both intended
 and applied configuration' 9
 7.2. Addressing requirement 4.1: Applied config as part of
 operational state . 10
 7.3. Addressing requirement 4.2: Support for both
 transactional, synchronous management systems as well as
 distributed, asynchronous management systems 10
 7.4. Addressing requirement 4.3: Separation of configuration
 and operational state data; ability to retrieve them
 independently . 11
 7.5. Addressing requirement 4.4: Ability to retreive
 operational state corresponding only to derived values,
 statistics, etc . 11
 7.6. Addressing requirement 4.5: Consistent schema locations
 for configuration and corresponding operational state
 data . 11

8. Acknowledgements . 12
9. IANA Considerations . 12

Wilton Expires March 6, 2016 [Page 2]

Internet-Draft With-config-state September 2015

10. Security Considerations 12
11. References . 12
11.1. Normative References 12
11.2. Informative References 13

Appendix A. Encoding examples for NETCONF and RESTCONF 13
 A.1. NETCONF get-config request using with-config-state with
 all-cfg option . 14
 A.2. NETCONF get-config request using with-config-state with
 diff-cfg-only option 16
 A.3. NETCONF get-config request using with-config-state with
 applied-cfg-only option 18
 A.4. RESTCONF GET request using with-config-state with all-cfg
 option (JSON) . 20
 Author's Address . 22

1. Introduction

 The Consistent Modeling of Operational State Data Internet Draft
 [I-D.openconfig-netmod-opstate] sets out a number of operational
 requirements and proposed solutions for handling intended and applied
 config state when using YANG models. This document sets out a
 possible alternative solution for some of those requirements.

 The solution proposed in this document does not require any changes
 to any existing YANG modules to support intended and applied config
 state. In particular: the proposed solution does not require the
 data models to be explicitly modelled with separate configuration and
 operational containers, and it does not require that all
 configuration and operational state nodes and leaves to be defined as
 groupings.

 Nor does the proposed solution make explicit use of separate
 datastores to model intended configuration separately from applied
 configuration.

 Instead, the solution proposed here is a method for generating an
 enhanced schema based on any YANG model that is optionally used by
 network management protocols. This enhanced schema includes up to
 four data leaves for each configuration node defined in the YANG
 model. These cover both the intended and applied values, along with
 an additional reason code and message if the applied configuration
 does not match the intended configuration.

 Although the solution described here is only defined in the context
 of NETCONF and RESTCONF, it should be possible to extend the same
 YANG config data encoding mechanism to other protocol schemes used to
 access YANG data if required.

Wilton Expires March 6, 2016 [Page 3]

Internet-Draft With-config-state September 2015

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 The following terms are defined in Consistent Modeling of Operational
 State Data Internet Draft [I-D.openconfig-netmod-opstate], and
 reproduced here for convenience.

 intended configuration - this data represents the state that the
 network operator intends the system to be in. This data is
 colloquially referred to as the 'configuration' of the system.

 applied configuration - this data represets the state that the
 network element is actually in, i.e. that which is currently being
 run by particular software modules (e.g. the BGP daemon), or other
 systems within the device (e.g. a secondary control-plane, or line
 card).

 derived state - this data represents information which is
 generated as part of the system's own interactions. For example,
 derived state may consist of the results of protocol interactions
 (such as the negotiated duplex state of an Ethernet link),
 statistics (such as message queue depth), or counters (such as
 packet input or output bytes).

 The following additional terms are used in this document:

 operational nodes - this term is colloquially used in this draft
 to refer to "config false" YANG nodes.

2. Objectives

 The aim of this draft is to provide a partial alternative solution to
 the requirements set out in Consistent Modeling of Operational State
 Data Internet Draft [I-D.openconfig-netmod-opstate]. An explanation
 of how the specific requirements are addressed is described in

Section 7.

3. "With-config-state" encoding scheme

 The solution proposed in this document makes use of a new encoding
 scheme that is used to represent YANG configuration nodes in NETCONF
 and RESTCONF. An optional parameter, called <with-config-state> and
 defined below, indicates when this new encoding scheme is used.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Wilton Expires March 6, 2016 [Page 4]

Internet-Draft With-config-state September 2015

 When the with-config-state option is used each YANG configuration
 leaf in the datastore is returned in a different format. Rather than
 being encoded as an XML or JSON leaf element that holds the
 configured value, it is instead returned as a node element, with the
 same name as the YANG config leaf, that contains up to four separate
 leaf elements. The four leaf elements that the node may contain are
 'cfg-intended', 'cfg-applied', 'cfg-status', and 'cfg-status-reason'.
 Theses leaves are externally addressable through using the full path
 of the leaf, providing explicit distinct paths for intended
 configuration vs applied configuration. These elements are described
 in more detail in the following sub-sections. Concrete examples of
 the encoding for NETCONF and RESTCONF requests are given in

Appendix A.

3.1. cfg-intended

 The cfg-intended leaf represents the intended configuration of the
 device, and is of the same datatype and holds the same value as the
 normal YANG data model configuration leaf. The cfg-intended leaf is
 only present if the associated configuration node exists in the YANG
 data model.

 The cfg-intended leaf is semantically equivalent to the config leaf
 in the YANG data model that is based on, and hence is logically read/
 writable. In particular, when the <with-config-state> parameter is
 used, management requests to modify the configuration may also use
 the full path to the cfg-intended leaf. The server semantics for
 writing to the cfg-intended leaf are exactly the same as for writing
 to the standard YANG config node path - the flexibility is provided
 as a convenience to the NMS client.

3.2. cfg-applied

 The cfg-applied leaf represents the applied configuration, and is of
 the same datatype as a normal YANG data model configuration leaf. If
 there is no configuration currently in effect then the cfg-applied
 leaf is not present.

 The cfg-applied leaf is read only.

 To give some examples:

 If the configuration has been successfully applied then the cfg-
 applied leaf would exactly match the cfg-intended leaf.

 If a new item of configuration is in the process of being applied
 then the cfg-intended leaf holds the intended configuration value,

Wilton Expires March 6, 2016 [Page 5]

Internet-Draft With-config-state September 2015

 and the cfg-applied leaf would not be present until the
 configuration is in effect.

 If an existing item of configuration is in the process of being
 deleted then the cfg-applied leaf would hold the current
 configuration value, and the cfg-intended leaf would not be
 present. Once the delete operation has completed, the
 configuration node element itself would logically be deleted.

 If the configuration value of an existing item of configuration is
 in the process of being changed, then the cfg-intended leaf would
 hold the new proposed value, and the cfg-applied leaf would hold
 the existing value that is currently in effect.

3.3. cfg-status

 The cfg-status leaf is used, when required, to indicate why the value
 of the cfg-applied leaf does not match the value of the cfg-intended
 leaf. It is only present when the values of the cfg-intended and
 cfg-applied leaves do not match.

 The cfg-status leaf is read only.

 The cfg-status leaf can take one of following values:

 in-progress - the config operation is in the process of being
 applied.

 waiting - the config operation is waiting for other configuration
 to be applied or hardware to be available before it can be
 applied. Additional specific information may be provided in the
 cfg-status-reason leaf.

 failed - the config operation failed to be applied. Additional
 information may be provided in the cfg-status-reason leaf to
 indicate the reason for the failure.

3.4. cfg-status-reason

 The cfg-status-reason leaf may be used to provide additional
 information as to why the value of the cfg-applied leaf does not
 match the value of the cfg-intended leaf.

 The cfg-status-reason leaf may only be present in the case that the
 cfg-status leaf is present and is set to either waiting or failed.

 The cfg-status-reason leaf is read only.

Wilton Expires March 6, 2016 [Page 6]

Internet-Draft With-config-state September 2015

3.5. Non-leaf config nodes

 Non-leaf config nodes require some special handling. In particular,
 containers with presence and list elements must be considered.

 The proposed solution for both types of node is the same. The cfg-
 intended, cfg-applied, cfg-status, and cfg-status-reason leaf nodes
 are implicitly added as direct descendants of the presence-container
 or list element.

 Note: There is an open issue that using these leaves directly opens
 up a potential naming clash between the "cfg-*" names above and
 existing explicitly defined child nodes in the YANG module
 definition. There are a few possible ways that this might be
 addressed:

 Making the four "cfg-*" leaves reserved names. I.e. to ensure
 that they are not used in general YANG modules.

 By inserting an implicit node between all child nodes under the
 container or list element. This would automatically ensure that
 there can be no naming clash between the defined YANG nodes and
 the implicitly added "cfg-*" leaves.

 By using a reserved namespace for the "cfg-*" leaves to ensure
 that they cannot clash with any explicitly defined in the YANG
 module.

4. Retrieval of intended and applied configuration

 To make use of the new encoding scheme defined above, this document
 defines a new parameter, called <with-config-state>, which can be
 added to specific NETCONF operation request messages, or as a
 RESTCONF query parameter, to control how retrieval of configuration
 nodes is treated by the server.

 The <with-config-state> parameter is supported for the following
 NETCONF operations: <get>, <get-config>, <edit-config>, <delete-
 config>.

 The <with-config-state> query parameter is supported for the
 following RESTCONF operations: GET, PUT, POST, PATCH, DELETE.

 Use of the <with-config-state> parameter ensures that all config
 nodes are always returned using the defined encoding. It also allows
 servers to explicitly reference the cfg-* leaves in requests and
 updates.

Wilton Expires March 6, 2016 [Page 7]

Internet-Draft With-config-state September 2015

 A server that implements this specification MUST accept the <with-
 config-state> parameter containing the enumeration for any of the
 with-config-state modes it supports. The <with-config-state>
 parameter contains one of the four enumerated values defined in this
 section.

4.1. all-cfg

 When data is retrieved with a <with-config-state> parameter equal to
 'all-cfg', all 'cfg-*' nodes are reported using the encoding scheme
 defined in Section 3.

4.2. intended-cfg-only

 When data is retrieved with a <with-config-state> parameter equal to
 'intended-cfg', only the 'cfg-intended' leaves are reported using the
 encoding scheme defined in Section 3. All other 'cfg-*' leaves are
 omitted.

4.3. applied-cfg-only

 When data is retrieved with a <with-config-state> parameter equal to
 'applied-cfg-only', only the 'cfg-applied' leaves are reported using
 the encoding scheme defined in Section 3. All other 'cfg-*' leaves
 are omitted.

4.4. diff-cfg-only

 When data is retrieved with a <with-config-state> parameter equal to
 'diff-cfg-only', config nodes are only returned if the value of the
 cfg-intended leaf does not match the value of the cfg-applied leaf.
 If the config node is returned then all appropriate 'cfg-*' leaves
 are returned as per the encoding scheme defined in Section 3.

5. "With-config-state" Capability

5.1. Overview

 The :with-config-state capability indicates whether a server supports
 the with-config-state functionality. For a server that indicates
 support for the :with-config-state capability it must support at
 least the 'all-cfg' option. It may also indicate support for the
 additional with-config-state retrieval modes.

Wilton Expires March 6, 2016 [Page 8]

Internet-Draft With-config-state September 2015

5.2. Dependencies

 None

5.3. Capability Identifier

 urn:ietf:params:netconf:capability:with-config-state:1.0

 The identifer has a paramater: "also-supported". This parameter
 indicates which additional enumeration values (besides 'all-cfg') the
 server will accept for the <with-config-state> parameter in

Section 4. The value of the parameter is a comma-separated list of
 one or more modes that are supported. Possible modes are 'intended-
 cfg-only', 'applied-cfg-only', 'diff-cfg-only' as defined in

Section 4.

6. Suggested layout of data models

 Generally, to ensure that operational data and configuration data can
 be easily related, this draft recommends that configuration and
 associated operational nodes be co-located in the same YANG
 container. More precisely, YANG clients should be able to assume
 that configuration and operational nodes within the same container
 are implicitly related.

7. Addressing the requirements of the Consistent Modeling of
 Operational State Data draft

7.1. Addressing requirement 3: 'To interact with both intended and
 applied configuration'

 The proposed solution in this draft provides a way for a NMS to
 explicitly access both the intended and applied configuration state
 of configuration nodes. It also provides a convenient way that both
 the intended and applied configuration values can be returned and
 easily compared. It also has the following additional benefits:

 It optionally provides additional information as to why the
 applied configuration does not match the intended configuration.

 It does not force the YANG modules to use groupings for
 configuration data so that it can be mirrored in the operational
 state. In particular, it places no burden to support an eventual
 consistency configuration model on YANG modules that do not need
 to operate in that environment.

Wilton Expires March 6, 2016 [Page 9]

Internet-Draft With-config-state September 2015

 The <with-config-state> parameter in the extension allows the
 client to request that only configuration nodes that are not in
 the intended state are returned.

 This draft also addresses the issue of allowing a NMS to easily
 relate configuration and operational state. As should be clear the
 relationship between cfg-intended and cfg-applied states for a
 particular node are trivially and efficiently mappable for all YANG
 configuration nodes. With the exception of interface operational
 state, that is not addressed by this draft, the relationship between
 configuration and derived state is acheived through the convention
 that co-located configuration and operational state be held in the
 same YANG container. This is semantically similar to the approach in
 Consistent Modeling of Operational State Data Internet Draft
 [I-D.openconfig-netmod-opstate] that implicitly binds the contents of
 the 'config' and 'state' YANG container nodes together if they are
 rooted to the same parent YANG container.

7.2. Addressing requirement 4.1: Applied config as part of operational
 state

 This requirement is met through the use of the separate cfg-intended
 and cfg-applied implict leaf nodes that are available when using the
 <with-config-state> extension parameter set to 'intended-cfg-only' or
 'applied-cfg-only' with either the NETCONF <get-config> operation or
 the RESTCONF GET request with the 'content' query parameter set to
 'config'.

7.3. Addressing requirement 4.2: Support for both transactional,
 synchronous management systems as well as distributed,
 asynchronous management systems

 Devices that only support a transactional sychronous management
 system have the choice of either not supporting the <with-config-
 state> extension, or alternatively may achieve compliance with this
 extension fairly easily by returning the same value for both cfg-
 intended and cfg-applied leaf nodes, and always omitting the cfg-
 status and cfg-status-reason leaves. Any requests using the path to
 the cfg-intended and cfg-applied leaves can be mapped back to the
 base config leaf defined in the YANG data model. Any explicit
 requests get or get-config requests for cfg-status and cfg-status-
 reason can be rejected.

 Devices that support an asynchronous configuration system would
 implement support for the extension and provide the cfg-* leaves
 defined in this draft when requested.

Wilton Expires March 6, 2016 [Page 10]

Internet-Draft With-config-state September 2015

7.4. Addressing requirement 4.3: Separation of configuration and
 operational state data; ability to retrieve them independently

 The first point is addressed by the proposed solution. Config and
 operational data are already split, and the naming of the cfg-
 intended vs cfg-applied leaves provides a clear distinction between
 intended configuration, applied configuration, and derived state.

 The second point is not fully addressed by this draft. The proposed
 protocol extension allows for just the intended config vs applied
 config nodes to be returned. RESTCONF already supports querying
 config separately from operational state through use of the 'content'
 query paremeter. A separate NETCONF protocol extension would be
 required to return just the operational nodes without any of the
 configuration nodes, such as the <get-state> enhancement described in
 Operational State Enhancements for YANG, NETCONF, and RESTCONF
 [I-D.kwatsen-netmod-opstate].

7.5. Addressing requirement 4.4: Ability to retreive operational state
 corresponding only to derived values, statistics, etc

 Not directly addressed by this draft. RESTCONF already supports
 querying config separately from operational state through use of the
 'content' query paremeter. A separate NETCONF protocol extension
 would be required to return just the operational nodes without any of
 the configuration nodes, such as the <get-state> enhancement
 described in Operational State Enhancements for YANG, NETCONF, and
 RESTCONF [I-D.kwatsen-netmod-opstate].

7.6. Addressing requirement 4.5: Consistent schema locations for
 configuration and corresponding operational state data

Section 4.5 of Consistent Modeling of Operational State Data Internet
 Draft [I-D.openconfig-netmod-opstate] indicates that it is desirable
 to have a well defined path to retrieve the cfg-intended vs cfg-
 applied values to avoid requiring external context when referencing
 that information. This is achieved by allowing paths in the NETCONF
 and RESTCONF protocols to include one of the cfg-state leaves when
 using the <with-config-state> extension. E.g. if the path to a
 particular config leaf was normally /..path-to-leaf../cfg-leaf then
 the intended config value could be referenced and obtained by using
 /..path-to-leaf../cfg-leaf/cfg-intended. The cfg-applied, cfg-
 status, and cfg-status-reason leaves can all be referenced and
 accessed in a similar fashion.

 Containers with presence are not leaf nodes, and hence require
 slightly differently handling to configuration leaf nodes. The
 proposed solution is that containers with presence contain the cfg-

Wilton Expires March 6, 2016 [Page 11]

Internet-Draft With-config-state September 2015

 intended, cfg-applied, cfg-status, and cfg-status-reason leaf nodes
 as direct descendants of the container node and hence can be accessed
 using the same scheme as for config leaves. E.g. if the path to a
 particular container with presence was normally /..path-to-p-
 container../cfg-p-container/ then the intended config value could be
 referenced and obtained by using /..path-to-p-container../cfg-p-
 container/cfg-intended. The cfg-applied, cfg-status, and cfg-status-
 reason leaves can all be referenced and accessed in a similar
 fashion.

8. Acknowledgements

 The authors wish to thank Einar Nilsen-Nygaard, Neil Ketley, Peyman
 Owladi for their helpful comments, ideas and expertise contributing
 to this draft.

9. IANA Considerations

 TBD. This document would at least need to register a new capability
 identifier URN in the 'Network Configuration Protocol (NETCONF)
 Capability URNs' registry for the with-config-state optional
 capability.'".

10. Security Considerations

 The proposal in this document does not have any security
 considerations beyond the existing NETCONF/RESTCONF/YANG security
 considerations.

11. References

11.1. Normative References

 [I-D.ietf-netconf-restconf]
 Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
 Protocol", draft-ietf-netconf-restconf-07 (work in
 progress), July 2015.

 [I-D.openconfig-netmod-opstate]
 Shakir, R., Shaikh, A., and M. Hines, "Consistent Modeling
 of Operational State Data in YANG", draft-openconfig-

netmod-opstate-01 (work in progress), July 2015.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-07
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01
https://datatracker.ietf.org/doc/html/draft-openconfig-netmod-opstate-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119

Wilton Expires March 6, 2016 [Page 12]

Internet-Draft With-config-state September 2015

 [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
 the Network Configuration Protocol (NETCONF)", RFC 6020,
 DOI 10.17487/RFC6020, October 2010,
 <http://www.rfc-editor.org/info/rfc6020>.

 [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
 and A. Bierman, Ed., "Network Configuration Protocol
 (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
 <http://www.rfc-editor.org/info/rfc6241>.

 [RFC6243] Bierman, A. and B. Lengyel, "With-defaults Capability for
 NETCONF", RFC 6243, DOI 10.17487/RFC6243, June 2011,
 <http://www.rfc-editor.org/info/rfc6243>.

11.2. Informative References

 [I-D.kwatsen-netmod-opstate]
 Watsen, K., Bierman, A., Bjorklund, M., and J.
 Schoenwaelder, "Operational State Enhancements for YANG,
 NETCONF, and RESTCONF", draft-kwatsen-netmod-opstate-00
 (work in progress), September 2015.

Appendix A. Encoding examples for NETCONF and RESTCONF

 A sample encoding of the <with-config-state> enhancement is described
 below.

 A simple example module is provided to illustrate the subsequent
 examples. This is not a real module, and is not intended for any
 real use.

https://datatracker.ietf.org/doc/html/rfc6020
http://www.rfc-editor.org/info/rfc6020
https://datatracker.ietf.org/doc/html/rfc6241
http://www.rfc-editor.org/info/rfc6241
https://datatracker.ietf.org/doc/html/rfc6243
http://www.rfc-editor.org/info/rfc6243
https://datatracker.ietf.org/doc/html/draft-kwatsen-netmod-opstate-00

Wilton Expires March 6, 2016 [Page 13]

Internet-Draft With-config-state September 2015

 module example {

 namespace "http://example.com/ns/interfaces";

 prefix exam;

 container interfaces {
 description "Example interfaces group";

 list interface {
 description "Example interface entry";
 key name;

 leaf name {
 description
 "The administrative name of the interface.";
 type string {
 length "1 .. max";
 }
 }

 leaf mtu {
 description
 "The maximum transmission unit (MTU) value assigned to
 this interface.";
 type uint32;
 default 1514;
 }
 }
 }

A.1. NETCONF get-config request using with-config-state with all-cfg
 option

 A get-config request is made for the interfaces subtree using the
 <with-config-state> enhancement and 'all-cfg' option that returns all
 config nodes with explicit cfg-intended and cfg-applied leaves, and
 cfg-status and cfg-status-reason leaves when appropriate.

 In this example, at the time of processing the get-config request,
 the NETCONF server is also asynchronously processing a request to set
 the MTU leaf to 9000 for 4 interface config nodes.

Wilton Expires March 6, 2016 [Page 14]

Internet-Draft With-config-state September 2015

<rpc message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with-config-state
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-config-state">
 all-cfg
 </with-config-state>
 </get>
</rpc>

 The response indicates that at the time of the reply:

 The request to set the MTU leaf on eth0/0 to 9000 has completed.

 The request to change the MTU leaf on eth0/1 from 2000 to 9000 is
 in progress.

 The request to set the MTU leaf on eth0/2 to 9000 is in progress.

 The request to set the MTU leaf on eth1/0 to 9000 is blocked
 because the necessary hardware is not present.

 <rpc-reply message-id="101"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <cfg-intended/>
 <cfg-actual/>
 <name>
 <cfg-intended>eth0/0</cfg-intended>
 <cfg-actual>eth0/0</cfg-actual>
 </name>
 <mtu>
 <cfg-intended>9000</cfg-intended>
 <cfg-actual>9000</cfg-actual>
 </mtu>
 </interface>
 <interface>
 <cfg-intended/>
 <cfg-actual/>
 <name>
 <cfg-intended>eth0/1</cfg-intended>
 <cfg-actual>eth0/1</cfg-actual>
 </name>

Wilton Expires March 6, 2016 [Page 15]

Internet-Draft With-config-state September 2015

 <mtu>
 <cfg-intended>9000</cfg-intended>
 <cfg-actual>2000</cfg-actual>
 <cfg-status>in-progress</cfg-status>
 </mtu>
 </interface>
 <interface>
 <cfg-intended/>
 <cfg-actual/>
 <name>
 <cfg-intended>eth0/2</cfg-intended>
 <cfg-actual>eth0/2</cfg-actual>
 </name>
 <mtu>
 <cfg-intended>9000</cfg-intended>
 <cfg-status>in-progress</cfg-status>
 </mtu>
 </interface>
 <interface>
 <cfg-intended/>
 <cfg-status>waiting</cfg-status>
 <cfg-status-reason>Linecard 1 is not available
 </cfg-status-reason>
 <name>
 <cfg-intended>eth1/0</cfg-intended>
 <cfg-status>waiting</cfg-status>
 <cfg-status-reason>Linecard 1 is not available
 </cfg-status-reason>
 </name>
 <mtu>
 <cfg-intended>9000</cfg-intended>
 <cfg-status>waiting</cfg-status>
 <cfg-status-reason>Linecard 1 is not available
 </cfg-status-reason>
 </mtu>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

A.2. NETCONF get-config request using with-config-state with diff-cfg-
 only option

 A get-config request is made for the interfaces subtree using the
 <with-config-state> enhancement and 'diff-cfg-only' option that only
 returns nodes where the cfg-intended node does not match the cfg-
 applied node. Appropriate parent nodes are also returned.

Wilton Expires March 6, 2016 [Page 16]

Internet-Draft With-config-state September 2015

 As per the previous examples, at the time of processing the get-
 config request, the NETCONF server is also asynchronously processing
 a request to set the MTU leaf to 9000 for 4 interface config nodes.

<rpc message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with-config-state
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-config-state">
 diff-cfg-only
 </with-config-state>
 </get>
</rpc>

 The response indicates that the outstanding configuration requests
 still to be processed are:

 The request to change the MTU leaf on eth0/1 from 2000 to 9000 is
 in progress.

 The request to set the MTU leaf on eth0/2 to 9000 is in progress.

 The request to set the MTU leaf on eth1/0 to 9000 is blocked
 because the necessary hardware is not present.

 <rpc-reply message-id="102"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <cfg-intended/>
 <cfg-actual/>
 <name>
 <cfg-intended>eth0/1</cfg-intended>
 <cfg-actual>eth0/1</cfg-actual>
 </name>
 <mtu>
 <cfg-intended>9000</cfg-intended>
 <cfg-actual>2000</cfg-actual>
 <cfg-status>in-progress</cfg-status>
 </mtu>
 </interface>
 <interface>
 <cfg-intended/>
 <cfg-actual/>

Wilton Expires March 6, 2016 [Page 17]

Internet-Draft With-config-state September 2015

 <name>
 <cfg-intended>eth0/2</cfg-intended>
 <cfg-actual>eth0/2</cfg-actual>
 </name>
 <mtu>
 <cfg-intended>9000</cfg-intended>
 <cfg-status>in-progress</cfg-status>
 </mtu>
 </interface>
 <interface>
 <cfg-intended/>
 <cfg-status>waiting</cfg-status>
 <cfg-status-reason>Linecard 1 is not available
 </cfg-status-reason>
 <name>
 <cfg-intended>eth1/0</cfg-intended>
 <cfg-status>waiting</cfg-status>
 <cfg-status-reason>Linecard 1 is not available
 </cfg-status-reason>
 </name>
 <mtu>
 <cfg-intended>9000</cfg-intended>
 <cfg-status>waiting</cfg-status>
 <cfg-status-reason>Linecard 1 is not available
 </cfg-status-reason>
 </mtu>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

A.3. NETCONF get-config request using with-config-state with applied-
 cfg-only option

 A get-config request is made for the interfaces subtree using the
 <with-config-state> enhancement and 'applied-cfg-only' option that
 only returns the currently applied configuration.

 As per the previous examples, At the time of processing the get-
 config request, the NETCONF server is also asynchronously processing
 a request to set the MTU leaf to 9000 for 4 interface config nodes.

Wilton Expires March 6, 2016 [Page 18]

Internet-Draft With-config-state September 2015

<rpc message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <get-config>
 <filter type="subtree">
 <interfaces xmlns="http://example.com/ns/interfaces"/>
 </filter>
 <with-config-state
 xmlns="urn:ietf:params:xml:ns:yang:ietf-netconf-with-config-state">
 applied-cfg-only
 </with-config-state>
 </get>
</rpc>

 The response indicates that the current applied configuration of the
 selected nodes is:

 The MTU leaf of eth0/0 is 9000.

 The MTU leaf of eth0/1 is 2000.

 Eth0/2 has no MTU leaf applied.

 [Implicitly - there is no applied configuration for Eth1/0 since
 the hardware is not present.]

Wilton Expires March 6, 2016 [Page 19]

Internet-Draft With-config-state September 2015

 <rpc-reply message-id="103"
 xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
 <data>
 <interfaces xmlns="http://example.com/ns/interfaces">
 <interface>
 <cfg-actual/>
 <name>
 <cfg-actual>eth0/0</cfg-actual>
 </name>
 <mtu>
 <cfg-actual>9000</cfg-actual>
 </mtu>
 </interface>
 <interface>
 <cfg-actual/>
 <name>
 <cfg-actual>eth0/1</cfg-actual>
 </name>
 <mtu>
 <cfg-actual>2000</cfg-actual>
 </mtu>
 </interface>
 <interface>
 <cfg-actual/>
 <name>
 <cfg-actual>eth0/2</cfg-actual>
 </name>
 </interface>
 </interfaces>
 </data>
 </rpc-reply>

A.4. RESTCONF GET request using with-config-state with all-cfg option
 (JSON)

 An equivalent RESTCONF/JSON example to Appendix A.1 is provided to
 illustrate the equivalent JSON encoding.

 A REST GET request is made for all config data using the <with-
 config-state> enhancement and 'all-cfg' option that all returns all
 config nodes with explicit cfg-intended and cfg-applied leaves.

 In this example, at the time of processing the GET request, the
 RESTCONF server is also asynchronously processing a request to set
 the MTU leaf to 9000 for 4 interface config nodes.

Wilton Expires March 6, 2016 [Page 20]

Internet-Draft With-config-state September 2015

GET /restconf/data/example-events:events?content=config&with-config-state=all-
cfg
 HTTP/1.1
Host: example.com
Accept: application/yang.data+json

 As per Appendix A.1, the response indicates that at the time of the
 reply:

 The request to set the MTU leaf on eth0/0 to 9000 has completed.

 The request to change the MTU leaf on eth0/1 from 2000 to 9000 is
 in progress.

 The request to set the MTU leaf on eth0/2 to 9000 is in progress.

 The request to set the MTU leaf on eth1/0 to 9000 is blocked
 because the necessary hardware is not present.

 HTTP/1.1 200 OK
 Date: Mon, 1 Apr 2015 04:01:00 GMT
 Server: example-server
 Content-Type: application/yang.data+json

 {
 "example:interfaces": [
 {
 "cfg-intended" = null,
 "cfg-actual" = null,
 "name" : {
 "cfg-intended" = "eth0/0",
 "cfg-actual" = "eth0/0"
 },
 "mtu" : {
 "cfg-intended" = 9000,
 "cfg-actual" = 9000
 },
 },
 {
 "cfg-intended" = null,
 "cfg-actual" = null,
 "name" : {
 "cfg-intended" = "eth0/1",
 "cfg-actual" = "eth0/1"
 },
 "mtu" : {
 "cfg-intended" = 9000,
 "cfg-actual" = 2000,

 "cfg-status" = "in-progress"

Wilton Expires March 6, 2016 [Page 21]

Internet-Draft With-config-state September 2015

 },
 },
 {
 "cfg-intended" = null,
 "cfg-actual" = null,
 "name" : {
 "cfg-intended" = "eth0/2",
 "cfg-actual" = "eth0/2"
 },
 "mtu" : {
 "cfg-intended" = 9000,
 "cfg-status" = "in-progress"
 },
 },
 {
 "cfg-intended" = null,
 "cfg-status" = "waiting",
 "cfg-status-reason" = "Linecard 1 is not available",
 "name" : {
 "cfg-intended" = "eth1/0",
 "cfg-status" = "waiting",
 "cfg-status-reason" = "Linecard 1 is not available",
 },
 "mtu" : {
 "cfg-intended" = 9000,
 "cfg-status" = "waiting",
 "cfg-status-reason" = "Linecard 1 is not available",
 },
 },
]
 }

Author's Address

 Robert Wilton
 Cisco Systems

 Email: rwilton@cisco.com

Wilton Expires March 6, 2016 [Page 22]

