
BEHAVE D. Wing
Internet-Draft J. Rosenberg
Intended status: Standards Track Cisco Systems
Expires: December 2, 2007 May 31, 2007

Discovering, Querying, and Controlling Firewalls and NATs using STUN
draft-wing-behave-nat-control-stun-usage-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on December 2, 2007.

Copyright Notice

 Copyright (C) The IETF Trust (2007).

Abstract

 Simple Traversal Underneath NAT (STUN) is a mechanism for traversing
 NATs. STUN requests are transmitted through a NAT to external STUN
 servers. While this works very well, its two primary drawbacks are
 the inability to modify the properties of a NAT binding and the need
 to query a public STUN server for every new NAT binding (e.g., every
 phone call). These drawbacks require frequent messages which present
 a load on servers (like SIP servers and STUN servers) and are bad for
 low speed access networks, such as cellular access.

Wing & Rosenberg Expires December 2, 2007 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft STUN Control May 2007

 This document describes several mechanisms to discover NATs and
 firewalls and a method to query and control them. With these
 changes, binding discovery and keepalive traffic can be reduced to
 involve only the necessary NATs or firewalls. At the same time,
 backwards compatibility with NATs and firewalls that do not support
 this document is retrained.

 This document is discussed on the BEHAVE mailing list,
 <https://www1.ietf.org/mailman/listinfo/behave>, in anticipation of a
 BoF at IETF69 in Chicago.

Wing & Rosenberg Expires December 2, 2007 [Page 2]

https://www1.ietf.org/mailman/listinfo/behave

Internet-Draft STUN Control May 2007

Table of Contents

1. Introduction . 4
2. Motivation . 4
3. Conventions Used in this Document 5
4. Overview of Operation . 5
5. Discovery of Middleboxes 6
5.1. Outside-In . 7
5.1.1. Nested NATs . 11
5.1.2. XOR-INTERNAL-ADDRESS Attribute 12
5.1.3. Interacting with Legacy NATs 13

5.2. Inside-Out . 13
5.2.1. DEFAULT-ROUTE Attribute 14

5.3. Tagging . 14
5.3.1. PLEASE-TAG Attribute 15
5.3.2. TAG Attribute . 16

6. Query and Control . 17
6.1. REFRESH-INTERVAL Attribute 17
6.2. Client Procedures . 17
6.3. Server Procedures . 18

7. Benefits . 19
7.1. Simple Security Model 19
7.2. Incremental Deployment 19
7.3. Optimize SIP-Outbound 19
7.4. Optimize ICE . 19
7.4.1. Candidate Gathering 20
7.4.2. Keepalive . 20
7.4.3. Learning STUN Servers without Configuration 20

8. Limitations . 21
8.1. Overlapping IP Addresses with Nested NATs 21
8.2. Address Dependent NAT on Path 21
8.3. Address Dependent Filtering 22

9. Security Considerations 22
9.1. Authorization and Resource Exhaustion 23
9.2. Comparison to Other NAT Control Techniques 23
9.3. Rogue STUN Server . 23

10. IANA Considerations . 24
11. Acknowledgements . 24
12. References . 24
12.1. Normative References 24
12.2. Informational References 25

 Authors' Addresses . 26
 Intellectual Property and Copyright Statements 27

Wing & Rosenberg Expires December 2, 2007 [Page 3]

Internet-Draft STUN Control May 2007

1. Introduction

 Two common usages of STUN ([I-D.ietf-behave-rfc3489bis],[RFC3489])
 are Binding Discovery and NAT Keepalive. The Binding Discovery usage
 allows a STUN client to learn its public IP address (from the
 perspective of the STUN server it contacted) and the NAT keepalive
 usage allows a STUN client to keep an active NAT binding alive.
 Unlike some other techniques (e.g., UPnP [UPnP], MIDCOM [RFC3303],
 Bonjour [Bonjour]), STUN does not interact directly with the NAT.
 Because STUN doesn't interact directly with the NAT, STUN cannot
 request additional services from the NAT such as longer lifetimes
 (which would reduce keepalive messages), and each new NAT binding
 (e.g., each phone call) requires communicating with the STUN server
 on the Internet.

 This paper describes three mechanisms for the STUN client to discover
 NATs and firewalls that are on path with its STUN server. After
 discovering the NATs and firewalls, the STUN client can query and
 control those devices using STUN. The STUN client needs to only ask
 those STUN servers (embedded in the NATs and firewalls) for public IP
 addresses and UDP ports, thereby offloading that traffic from the
 STUN server on the Internet. Additionally, the STUN client can ask
 the NAT's embedded STUN server to extend the NAT binding for the
 flow, and the STUN client can learn the IP address of the next-
 outermost NAT. By repeating this procedure with the next-outermost
 NAT, all of the NATs along that path can have their bindings
 extended. By learning all of the STUN servers on the path between
 the public Internet and itself, an endpoint can optimize the path of
 peer-to-peer communications.

2. Motivation

 There are a number of problems with existing NAT traversal techniques
 such as STUN [RFC3489], [UPnP], and [Bonjour]):

 nested NATs:
 Today, many ISPs provide their subscribers with modems that have
 embedded NATs, often with only one physical Ethernet port. These
 subscribers then install NATs behind those devices to provide
 additional features, such as wireless access. Another example is
 a NAT in the basement of an apartment building or a campus
 dormitory, which combined with a NAT within the home or dormitory
 room also result in nested NATs. In both of these situations,
 UPnP and Bonjour no longer function at all, as those protocols can
 only control the first NAT closest to the host. STUN continues to
 function, but is unable to optimize network traffic behind those
 nested NATs (e.g., traffic that stays within the same house or

https://datatracker.ietf.org/doc/html/rfc3489
https://datatracker.ietf.org/doc/html/rfc3303
https://datatracker.ietf.org/doc/html/rfc3489

Wing & Rosenberg Expires December 2, 2007 [Page 4]

Internet-Draft STUN Control May 2007

 within the same apartment building).

 One technique to avoid nested NATs is to disable one of the NATs
 if it obtains an RFC1918 address on its WAN interface. This
 merely sidesteps the problem. This technique is also ineffective
 if the ISP is NATting its subscribers and the ISP restricts each
 subscriber to one IP address.

 The technique described in this paper allows optimization of the
 traffic behind those NATs so that the traffic can traverse the
 fewest NATs possible.

 chattiness:
 To perform its binding discovery, a STUN client communicates to a
 server on the Internet. This consumes bandwidth across the user's
 access network which in some cases is bandwidth constrained (e.g.,
 wireless, satellite). STUN's chattiness is often cited as a
 reason to use other NAT traversal techniques such as UPnP or
 Bonjour.

 The technique described in this paper provides a significant
 reduction in STUN's chattiness, to the point that the only time a
 STUN client needs to communicate with the STUN server on the
 public Internet is when the STUN client is initialized.

 incremental deployment:
 Many other NAT traversal techniques require the endpoint and its
 NAT to both support the new feature or else NAT traversal isn't
 possible at all.

 The technique described in this paper allows incremental
 deployment of local endpoints and their NATs that support STUN
 Control. If the local endpoint, or its NATs, don't support the
 STUN Control functionality, normal STUN and ICE
 [I-D.ietf-mmusic-ice] procedures are used to traverse the NATs
 without the optimizations described in this paper.

3. Conventions Used in this Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

4. Overview of Operation

 This document describes three functions, which are all implemented

https://datatracker.ietf.org/doc/html/rfc1918
https://datatracker.ietf.org/doc/html/rfc2119

Wing & Rosenberg Expires December 2, 2007 [Page 5]

Internet-Draft STUN Control May 2007

 using the STUN protocol:

 Discovery of Middleboxes (NATs and Firewalls):
 This document describes three techniques to find NATs or
 firewalls. The first technique uses STUN to find the outer-most
 NAT and works itself towards the host. The second technique
 requests on-path firewalls or NATs to append their IP address to a
 STUN packet. The third technique sends a STUN packet to the
 default router (which, in a small network, is often your NAT).
 This is described in Section 5.

 Querying Discovered Middleboxes:
 After discovering a NAT or a firewall, it's useful to determine
 characteristics of the NAT binding or the firewall pinhole. Two
 of the most useful things to learn is the duration the NAT binding
 or firewall pinhole will remain open if there is no traffic, and
 the filtering applied to that binding or pinhole. This is
 described in Section 6.

 Discussion Point: After discovering NATs and firewalls,
 querying those devices might also be done with a middlebox
 control protocol (e.g., by using standard or slightly modified
 versions of SIMCO [RFC4540], UPnP, MIDCOM, or Bonjour). This
 is open for discussion as this document is scoped within the
 IETF.

 Controlling Discovered Middleboxes
 A NAT or firewall might default to a more restrictive behavior
 than desired by an application (e.g., aggressive timeout,
 filtering). Requesting the NAT or firewall to change its default
 behavior is useful for traffic optimization (e.g., reduce
 keepalive traffic) and network optimization (e.g., adjust filters
 to eliminate the need for a media relay
 device[I-D.ietf-behave-turn]). This is described in Section 6.

 Discussion Point: After discovering NATs and firewalls,
 controlling those devices might also be done with a middlebox
 control protocol (e.g., by using standard or slightly modified
 versions of SIMCO, UPnP, MIDCOM, or Bonjour). This is open for
 discussion as this document is scoped within the IETF.

5. Discovery of Middleboxes

 There are three techniques to discover a middlebox (a NAT or a
 firewall): outside-in, inside-out (useful when the outer-most NAT
 device doesn't support STUN Control), or by tagging (useful for
 firewalls).

https://datatracker.ietf.org/doc/html/rfc4540

Wing & Rosenberg Expires December 2, 2007 [Page 6]

Internet-Draft STUN Control May 2007

 These techniques can be combined in useful ways. For example, if
 your inner-most NAT supports STUN Control, and your public STUN
 server returns the same IP address and port as your inner-most NAT,
 you know you don't have a NAT between your inner-most NAT and the
 STUN server. Otherwise, you know there is a NAT between your inner-
 most NAT and the STUN server (e.g., an ISP-supplied device or whoever
 is providing your Internet service). Knowing this allows optimizing
 NAT keepalives.

5.1. Outside-In

 When a STUN client sends a STUN Request to a STUN server, it receives
 a STUN Response which indicates the IP address and UDP port seen by
 the STUN server. If the IP address and UDP port differs from the IP
 address and UDP port of the socket used to send the request, the STUN
 client knows there is at least one NAT between itself and the STUN
 server, and knows the 'public' IP address of that NAT. For example,
 in the following diagram, the STUN client learns the public IP
 address of its NAT is 192.0.2.1:

 +--------+ +---------------+
 | STUN | | 192.0.2.1 +--------+
 | Client +-------------+ +---<Internet>---+ STUN |
 | 10.1.1.2/4193 10.1.1.1 | | Server |
 +--------+ | | +--------+
 | NAT with |
 | Embedded STUN |
 | Server |
 +---------------+

 Figure 1: One NAT with embedded STUN server

Wing & Rosenberg Expires December 2, 2007 [Page 7]

Internet-Draft STUN Control May 2007

 Internally, the NAT can be diagrammed to function like this, where
 the NAT operation occurs before the STUN server:

 |
 | outside interface
 |
 +---------+---------------+
 | | | | |
 | | +--------+ |
 | |----+ STUN | |
 | | | Server | |
 | | +--------+ |
 | | |
 | +-------+-------------+ |
 | | NAT Function | |
 | +-------+-------------+ |
 | | |
 +---------+---------------+
 |
 | inside interface
 |
 |

 Figure 2: Block Diagram of Internal NAT Operation

 After learning the public IP address of its outer-most NAT, the STUN
 client attempts to communicate with the STUN server embedded in that
 outer-most NAT. The STUN client does this by first obtaining a
 shared secret, over a TLS connection, to the NAT's public IP address
 (192.0.2.1 in the figure above). After obtaining a shared secret, it
 sends a STUN Binding Request to the NAT's public IP address. The NAT
 will return a STUN Binding Response message including the XOR-
 INTERNAL-ADDRESS attribute, which will indicate the IP address and
 UDP port seen on the *internal* side of the NAT for that translation.
 In the example above, the IP address and UDP port indicated in XOR-
 INTERNAL-ADDRESS are the same as that used by the STUN client
 (10.1.1.2/4193), which indicates there are no other NATs between the
 STUN client and that outer-most NAT.

Wing & Rosenberg Expires December 2, 2007 [Page 8]

Internet-Draft STUN Control May 2007

 STUN Client NAT STUN Server
 | | |
 1. |-----TLS/TCP----------------------------->| }
 2. |-----Shared Secret Request (TLS)--------->| }
 3. |<----Shared Secret Response (TLS)---------| } normal STUN
 4. |-----TCP connection closed--------------->| } behavior
 5. |-----Binding Request (UDP)--------------->| }
 6. |<----Binding Response (UDP)---------------| }
 | | |
 7. |-----TLS/TCP------------------>| | }
 8. |--Shared Secret Request (TLS)->| | }
 9. |<-Shared Secret Response (TLS)-| | } NAT Control
 10. |--TCP connection closed------->| | } STUN Usage
 11. |--Binding Request (UDP)------->| | }
 12. |<-Binding Response (UDP)-------| | }
 | | |

 Figure 3: Communication Flow

 In the call flow above, steps 1-6 are normal STUN behavior
 [I-D.ietf-behave-rfc3489bis]:

 1: STUN client initiates a TLS-over-TCP connection to its STUN
 server on the Internet.

 2: Using that connection, the STUN client sends Shared Secret
 Request to that STUN server.

 3: Using that connection, the STUN server sends Shared Secret
 Response. This contains the STUN username the client should use
 for subsequent queries to this STUN server, and the STUN password
 that will be used to integrity-protect subsequent STUN messages
 with this STUN server.

 4: TCP connection is closed.

 5: STUN client sends UDP Binding Request to its STUN server on the
 Internet, using the STUN username obtained from that STUN server
 (from step 3).

 6: STUN server responds with UDP Binding Response, integrity
 protected with the STUN password (from step 3). The STUN client
 now knows the public IP address of its outer-most NAT. This is
 used in the next step.

 The next steps are the additional steps performed by a STUN client
 that has implemented the NAT Control STUN Usage:

Wing & Rosenberg Expires December 2, 2007 [Page 9]

Internet-Draft STUN Control May 2007

 7: STUN client initiates a TLS-over-TCP connection to the STUN
 server embedded in its outer-most NAT.

 8: Using that connection, the STUN client sends Shared Secret
 Request to that STUN server.

 9: Using that connection, the STUN server sends Shared Secret
 Response. This contains the STUN username the client should use
 for subsequent queries to this STUN server, and the STUN
 password that will be used to integrity-protect subsequent STUN
 messages with this STUN server.

 10: TCP connection is closed.

 11: STUN client sends UDP Binding Request to the STUN server
 embedded in its outer-most NAT, using the STUN username obtained
 from that STUN server (from step 10).

 12: STUN server responds with UDP Binding Response, integrity
 protected with the STUN password (from step 10).

 The response obtained in the message 12 contains the XOR-MAPPED-
 ADDRESS attribute which will have the same value as when the STUN
 server on the Internet responded (in step 6). The STUN client can
 perform steps 11-12 for any new UDP communication (e.g., for every
 new phone call), without needing to repeat steps 1-10. This meets
 the desire to reduce chattiness.

 The response obtained in message 12 will also contain the XOR-
 INTERNAL-ADDRESS, which allows the STUN client to repeat steps 7-12
 in order to query or control those on-path NATs between itself and
 its STUN server on the Internet. This is described in detail in
 section Section 5.1.1. This functionality meets the need to optimize
 traffic between nested NATs, without requiring configuration of
 intermediate STUN servers.

 The STUN client can request each NAT to increase the binding
 lifetime, as described in Section 6.1. The STUN client receives
 positive confirmation that the binding lifetime has been extended,
 allowing the STUN client to significantly reduces its NAT keepalive
 traffic. Additionally, as long as the NAT complies with [RFC4787],
 the STUN client's keepalive traffic need only be sent to the outer-
 most NAT's IP address. This functionality meets the need to reduce
 STUN's chattiness.

https://datatracker.ietf.org/doc/html/rfc4787

Wing & Rosenberg Expires December 2, 2007 [Page 10]

Internet-Draft STUN Control May 2007

5.1.1. Nested NATs

 Nested NATs are controlled individually. The nested NATs are
 discovered, from outer-most NAT to the inner-most NAT, using the XOR-
 INTERNAL-ADDRESS attribute.

 The following diagram shows how a STUN client iterates over the NATs
 to communicate with all of the NATs in the path. First, the STUN
 client would learn the outer-most NAT's IP address by performing the
 steps above. In the case below, however, the IP address and UDP port
 indicated by the XOR-INTERNAL-ADDRESS will not be the STUN client's
 own IP address and UDP port -- rather, it's the IP address and UDP
 port on the *outer* side of the NAT-B -- 10.1.1.2.

 Because of this, the STUN client repeats the procedure and sends
 another STUN Binding Request to that newly-learned address (the
 outer side of NAT-B). NAT-B will respond with a STUN Binding
 Response containing the XOR-INTERNAL-ADDRESS attribute, which will
 match the STUN client's IP address and UDP port. The STUN client
 knows there are no other NATs between itself and NAT-B, and finishes.

 The following figure shows two nested NATs:

 +------+ +--------+ +--------+
 | 192.168.1.2 | 10.1.1.2 | 192.0.2.1 +-----------+
 | STUN +------+ NAT-B +-----+ NAT-A +---<Internet>---+STUN Server|
 |Client| 192.168.1.1 | 10.1.1.1 | +-----------+
 +------+ +--------+ +--------+

 Figure 4: Two nested NATs with embedded STUN servers

Wing & Rosenberg Expires December 2, 2007 [Page 11]

Internet-Draft STUN Control May 2007

 The message flow with two nested NATs is shown below:

 STUN Client NAT-B NAT-A STUN Server
 | | | |
 1. |-----TLS/TCP----------------------------->| }
 2. |-----Shared Secret Request (TLS)--------->| }
 3. |<----Shared Secret Response (TLS)---------| } normal STUN
 4. |-----TCP connection closed--------------->| } behavior
 5. |-----Binding Request (UDP)--------------->| }
 6. |<----Binding Response (UDP)---------------| }
 | | | |
 7. |-----TLS/TCP------------------>| | }
 8. |--Shared Secret Request (TLS)->| | }
 9. |<-Shared Secret Response (TLS)-| | }
 10. |--TCP connection closed------->| | }
 11. |--Binding Request (UDP)------->| | }
 12. |<-Binding Response (UDP)-------| | } NAT Control
 | | | | } STUN Usage
 13. |-----TLS/TCP--------->| | | }
 14. |--Sh. Sec. Req (TLS)->| | | }
 15. |<-Sh. Sec. Resp (TLS)-| | | }
 16. |-TCP conn. closed---->| | | }
 17. |--Binding Req (UDP)-->| | | }
 18. |<-Binding Resp (UDP)--| | | }
 | | | |

 Figure 5: Message Flow for Outside-In with Two NATs

 Once a shared secret has been obtained with each of the on-path NATs,
 the STUN client no longer needs the TLS/TCP connection -- all
 subsequent bindings for individual UDP streams (that is, for each
 subsequent call) are obtained by just sending a Binding Request to
 each of the NATs. By sending a Binding Request to both NAT-A and
 NAT-B, the STUN client has the opportunity to optimize the packet
 flow if their UDP peer is also behind the same NAT.

5.1.2. XOR-INTERNAL-ADDRESS Attribute

 This attribute MUST be present in a Binding Response and may be used
 in other responses as well. This attribute is necessary to allow a
 STUN client to 'walk backwards' and communicate directly with all of
 the STUN-aware NATs along the path.

Wing & Rosenberg Expires December 2, 2007 [Page 12]

Internet-Draft STUN Control May 2007

 The format of the XOR-INTERNAL-ADDRESS attribute is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |x x x x x x x x| Family | X-Port |
 +-+
 | X-Address (32 bits or 128 bits) |
 +-+

 Figure 6: XOR-INTERNAL-ADDRESS Attribute

 The meaning of Family, X-Port, and X-Address are exactly as in
 [I-D.ietf-behave-rfc3489bis]. The length of X-Address depends on the
 address family (IPv4 or IPv6).

5.1.3. Interacting with Legacy NATs

 There will be cases where the STUN client attempts to communicate
 with an on-path NAT which does not support the outside-in usage
 described in Section 5.1. There are two cases:

 o the NAT does not run a STUN server on its public interface (this
 will be the most common)

 o the NAT does run a STUN server on its public interface, but
 doesn't return the XOR-INTERNAL-ADDRESS attribute defined in this
 document

 In both cases the optimizations described in this section won't be
 available to the STUN client. This is no worse than the condition
 today. This allows incremental upgrades of applications and NATs
 that implement the technique described in this document. In such a
 situation, the STUN client might implement the inside-out technique,
 described in Section 5.2.

5.2. Inside-Out

 [[Discussion Point: This is being included as a discussion item.
 Traditional traceroute provides similar functionality, and in many
 cases traceroute survives traversing over a NAT that doesn't support
 STUN Control. However, traceroute has significant disadvantages
 (induces a load on intermediate devices to return ICMP error
 messages, and those ICMP messages are routinely or inadvertently
 filtered). Unlike the Inside-Out technique described below,
 traceroute doesn't rely on the default route.]]

 The STUN client sends a STUN request to UDP/3478 of the IP address of

Wing & Rosenberg Expires December 2, 2007 [Page 13]

Internet-Draft STUN Control May 2007

 its default router. If there is a STUN server listening there, it
 will respond, and will indicate its default route via the new
 DEFAULT-ROUTE attribute. With that information, the STUN client can
 discover the next-outermost NAT by repeating the procedure.

5.2.1. DEFAULT-ROUTE Attribute

 The DEFAULT-ROUTE attribute contains the XOR'd default route, which
 is useful for finding the next-outer device.

 The format of the DEFAULT-ROUTE attribute is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | X-Address (32 bits) |
 +-+

 Figure 7: DEFAULT-ROUTE Attribute

 The meaning of X-Address is exactly as in
 [I-D.ietf-behave-rfc3489bis].

5.3. Tagging

 The Outside-In discovery technique (Section 5.1) uses the public IP
 address of the NAT to find the outer-most NAT that supports STUN
 Control. Firewalls do not normally put their IP address into
 packets, so a different technique is needed to identify firewalls.

 To discover an on-path firewall, the PLEASE-TAG attribute is used
 with a normal STUN Binding Request usage. A firewall sees the normal
 Binding Request usage (a STUN packet sent to UDP/3478) with the
 PLEASE-TAG attribute. When the firewall sees the associated Binding
 Response, the firewall appends a TAG attribute as the last attribute
 of the Binding Response. This TAG attribute contains the firewall's
 management IP address and UDP port. Each on-path firewall would be
 able to insert its own TAG attribute. In this way, the STUN Response
 would contain pointer to each of the on-path firewalls between the
 client and that STUN server.

 Note: Tagging is similar to how NSIS [I-D.ietf-nsis-nslp-natfw],
 TIST [I-D.shore-tist-prot], and NLS [I-D.shore-nls-tl] function.

 Discussion Point: Tagging would also be useful for the
 Connectivity Check usage (which is used by ICE), especially
 considering that a different firewall may be traversed for media
 than for the initial Binding Discovery usage. In such a

Wing & Rosenberg Expires December 2, 2007 [Page 14]

Internet-Draft STUN Control May 2007

 situation, the new on-path firewall's policy might not allow a
 binding request to leave the network or allow a binding response
 to return. In this case, the firewall would need to indicate its
 presence to the STUN client in another way. An ICMP error message
 may be appropriate, and an ICMP extension [RFC4884] could indicate
 the firewall is controllable.

 This figure shows how tagging functions.

 STUN Client firewall STUN Server
 | | |
 1. |--Binding Request->|------------------>|
 2. | |<-Binding Response-|
 3. | [inserts tag] |
 4. |<-Binding Response-| |
 5. [firewall discovered] | |

 Figure 8: Tagging Message Flow

 1. Binding Request, containing PLEASE-TAG attribute, is sent to the
 IP address of the STUN server. This is seen by the firewall, and
 the firewall remembers the STUN transaction id, and permits the
 STUN Binding Request packet.

 2. The STUN Binding Response packet is seen by the firewall.

 3. The firewall inserts the TAG attribute, which contains the
 firewall's management address.

 4. The firewall sends the (modified) STUN Binding Response towards
 the STUN client.

 5. The STUN client has now discovered the firewall, and can query it
 or control it.

5.3.1. PLEASE-TAG Attribute

 If a STUN client wants to discover on-path firewalls, it MUST include
 this attribute in its Binding Response when performing the Binding
 Discovery usage.

 STUN servers are not expected to understand this attribute; if they
 return this attribute as an unknown attribute, it does not affect the
 operation described in this document.

https://datatracker.ietf.org/doc/html/rfc4884

Wing & Rosenberg Expires December 2, 2007 [Page 15]

Internet-Draft STUN Control May 2007

 The format of the PLEASE-TAG attribute is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Mech |x x|
 +-+

 Figure 9: PLEASE-TAG Attribute

 The 3-bit Mechanism field indicates the control mechanism desired.
 Currently, the only defined mechanism is STUN Control, and is
 indicated with all zeros. The intent of this field is to allow
 additional control mechanisms (e.g., UPnP, Bonjour, MIDCOM).

5.3.2. TAG Attribute

 The TAG attribute contains the XOR'd management transport address of
 the middlebox (typically a firewall, although a NAT may find this
 technique useful as well).

 A middlebox MUST append this attribute as the last attribute of a
 STUN response, and only if the associated STUN request (with the same
 transaction-id) contained the PLEASE-TAG attribute.

 The format of the TAG attribute is:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Mech.|x x x x x| Family | X-Port |
 +-+
 | X-Address (32 bits or 128 bit) |
 +-+

 Figure 10: TAG Attribute

 The 3-bit Mechanism field indicates the control mechanism supported
 on the described port. Currently, the only defined mechanism is STUN
 Control, and is indicated with 0x0. The intent of this field is to
 allow additional control mechanisms (e.g., UPnP, Bonjour, MIDCOM).

 The meaning of Family, X-Port, and X-Address are exactly as in
 [I-D.ietf-behave-rfc3489bis]. The length of X-Address depends on the
 address family (IPv4 or IPv6).

Wing & Rosenberg Expires December 2, 2007 [Page 16]

Internet-Draft STUN Control May 2007

6. Query and Control

 This section describes how to use STUN to query and control a NAT
 that was discovered using the technique described in Section 5.

6.1. REFRESH-INTERVAL Attribute

 In a STUN request, the REFRESH-INTERVAL attribute indicates the
 number of milliseconds that the client wants the NAT binding (or
 firewall pinhole) to be opened. In a STUN response, the same
 attribute indicates the length of time of that NAT binding (or
 firewall pinhole).

 REFRESH-INTERVAL is specified as an unsigned 32 bit integer, and
 represents an interval measured in milliseconds (thus the maximum
 value is approximately 50 days). This attribute can be present in
 Binding Requests and in Binding Responses. In a request, the value
 0xFFFF means it's a query and the refresh interval isn't actually
 changed.

6.2. Client Procedures

 After discovering on-path NATs and firewalls, the STUN client begins
 querying and controlling those devices. The STUN client first
 performs the Shared Secret Usage (as described in
 [I-D.ietf-behave-rfc3489bis]) with the NAT or firewall it discovered.
 After performing that usage, the STUN client now has a STUN USERNAME
 and PASSWORD. The username and password are used, thereafter, for
 all subsequent messages between the STUN client and this NAT's STUN
 server. This procedure might be done, for example, when the STUN
 client first initializes such as upon bootup or initialization of the
 application.

 If subsequent messages from that STUN server fail authentication, the
 STUN client MUST re-obtain its IP address from a public STUN server,
 not from its outer-most NAT (see section Section 9.3).

 To modify an existing NAT mapping's attributes, or to request a new
 NAT mapping for a new UDP port, the STUN client can now send a STUN
 Binding Request to the IP address of address in its outer-most NAT's
 STUN UDP port (3478). The NAT's STUN server will respond with a STUN
 Binding Response containing an XOR-MAPPED-ADDRESS attribute (which
 points at the NAT's public IP address and port -- just as if the STUN
 Binding Request had been sent to a STUN server on the public
 Internet) and an XOR-INTERNAL-ADDRESS attribute (which points to the
 source IP address and UDP port the packet STUN Binding Request packet
 had prior to being NATted).

Wing & Rosenberg Expires December 2, 2007 [Page 17]

Internet-Draft STUN Control May 2007

6.3. Server Procedures

 The server should listen for STUN Shared Secret Requests and STUN
 Binding Requests on the STUN UDP and TCP ports (UDP/3478, TCP/3478)
 on its public IP address(es) and its private IP address(es), and
 accept such STUN packets from hosts connected to its private
 interface(s). STUN Binding Requests which arrived from its public
 interface(s) MAY be handled as if the server isn't listening on that
 port (e.g., return an ICMP error) -- this specification does not need
 them.

 After receiving a STUN Shared Secret Request, the NAT follows the
 procedures described in the Short-Term Usage section of
 [I-D.ietf-behave-rfc3489bis]. The embedded STUN server MUST store
 that username and password so long as any NAT bindings, created or
 adjusted with that same STUN username, have active mappings on the
 NAT, and for 60 seconds thereafter (to allow the STUN client to
 obtain a new binding).

 After receiving a STUN Binding Request containing the REFRESH-
 INTERVAL attribute, the server SHOULD authenticate the request using
 the USERNAME attribute and the previously-shared STUN password (this
 is to defend against resource starvation attacks, see Section 9.1).
 If authenticated, the new binding's lifetime can be maximized against
 the NAT's configured sanity check and the lifetime indicated in the
 REFRESH-INTERVAL attribute of the STUN Binding Response.

 In addition to its other attributes, the Binding Response MUST
 contain the XOR-MAPPED-ADDRESS and XOR-INTERNAL-ADDRESS attributes.
 The XOR-MAPPED-ADDRESS contains the public IP address and UDP port
 for this binding, which is shared with the intended peer. The XOR-
 INTERNAL-ADDRESS contains the IP address and UDP port of the STUN
 Binding Request prior to the NAT translation, which is used by the
 STUN client to walk backwards through nested NATs (Section 5.1)

 For example, looking at Figure 1, the XOR-INTERNAL-ADDRESS is the
 IP address and UDP port prior to the NAPT operation. If there is
 only one NAT, as shown in Figure 1, XOR-INTERNAL-ADDRESS would
 contain the STUN client's own IP address and UDP port. If there
 are multiple NATs, XOR-INTERNAL-ADDRESS would indicate the IP
 address of the next NAT (that is, the next NAT closer to the STUN
 client). Iterating over this procedure allows the STUN client to
 find all of the NATs along the path.

Wing & Rosenberg Expires December 2, 2007 [Page 18]

Internet-Draft STUN Control May 2007

7. Benefits

7.1. Simple Security Model

 Unlike other middlebox control techniques which have relatively
 complex security models because a separate control channel is used,
 STUN Control's is simple. It's simple because only the flow being
 used can be controlled (e.g., have its NAT timeout queried or
 extended). Other flows cannot be created, queried, or controlled via
 STUN Control.

7.2. Incremental Deployment

 NAT Control can be incrementally deployed. If the outer-most NAT
 does not support it, the STUN client behaves as normal. In this
 case, the STUN client might benefit from attempting inside-out
 procedure described in Section 5.2, and still gain some
 optimizations. Where the outer-most STUN NAT does support it, the
 STUN client can gain some significant optimizations as described in
 the following sections.

 Likewise, there is no change required to applications if NATs are
 deployed which support NAT Control: such applications will be
 unaware of the additional functionality in the NAT, and will not be
 subject to any worse security risks due to the additional
 functionality in the NAT.

7.3. Optimize SIP-Outbound

 In sip-outbound [I-D.ietf-sip-outbound], the SIP proxy is also the
 STUN server. STUN Control as described in this document enables two
 optimizations of SIP-Outbound's keepalive mechanism:

 1. STUN keepalive messages need only be sent to the outer-most NAT,
 rather than across the access link to the SIP proxy, which vastly
 reduces the traffic to the SIP proxy, and;

 2. all of the on-path NATs can explicitly indicate their timeouts,
 reducing the frequency of keepalive messages.

7.4. Optimize ICE

 The NAT Control usage provides several opportunities to optimize ICE
 [I-D.ietf-mmusic-ice], as described in this section.

Wing & Rosenberg Expires December 2, 2007 [Page 19]

Internet-Draft STUN Control May 2007

7.4.1. Candidate Gathering

 During its candidate gathering phase, an ICE endpoint normally
 contacts a STUN server on the Internet. If an ICE endpoint discovers
 that its outer-most NAT runs a STUN server, the ICE endpoint can use
 the outer-most NAT's STUN server rather than using the STUN server on
 the Internet. This saves access bandwidth and reduces the reliance
 on the STUN server on the Internet -- the STUN server on the Internet
 need only be contacted once -- when the ICE endpoint first
 initializes.

7.4.2. Keepalive

 ICE uses STUN Indications as its primary media stream keepalive
 mechanism. This document enables two optimizations of ICE's
 keepalive technique:

 1. STUN keepalive messages need only be sent to the outer-most NAT,
 rather than across the access link to the remote peer, and;

 2. all of the on-path NATs can explicitly indicate their timeouts,
 which allows reducing the keepalive frequency.

7.4.3. Learning STUN Servers without Configuration

 ICE allows endpoints to have multiple STUN servers, but it is
 difficult to configure all of the STUN servers in the ICE endpoint --
 it requires some awareness of network topology. By using the 'walk
 backward' technique described in this document, all the on-path NATs
 and their embedded STUN servers can be learned without additional
 configuration. By knowing the STUN servers at each address domain,
 ICE endpoints can optimize the network path between two peers.

 For example, if endpoint-1 is only configured with the IP address of
 the STUN server on the left, endpoint-1 can learn about NAT-B and
 NAT-A. Utilizing the STUN server in NAT-A, endpoint-1 and endpoint-2
 can optimize their media path so they make the optimal path from
 endpoint-1 to NAT-A to endpoint-2:

 +-------+ +-------+ +-------------+
 endpoint-1---| NAT-A +--+--+ NAT-B +-------| STUN Server |
 +-------+ | +-------+ +-------------+
 |
 endpoint-2

Wing & Rosenberg Expires December 2, 2007 [Page 20]

Internet-Draft STUN Control May 2007

8. Limitations

8.1. Overlapping IP Addresses with Nested NATs

 If nested NATs have overlapping IP address space, there will be
 undetected NATs on the path. When this occurs, the STUN client will
 be unable to detect the presence of NAT-A if NAT-A assigns the same
 UDP port. For example, in the following figure, NAT-A and NAT-B are
 both using 10.1.1.x as their 'private' network.

 +------+ +--------+ +--------+
 | 10.1.1.2 | 10.1.1.2 | 192.0.2.1
 | STUN +-------+ NAT-A +-----+ NAT-B +------<Internet>
 |client| 10.1.1.1 | 10.1.1.1 |
 +------+ +--------+ +--------+

 Figure 12: Overlapping Addresses with Nested NATs

 When this situation occurs, the STUN client can only learn the outer-
 most address. This isn't a problem -- the STUN client is still able
 to communicate with the outer-most NAT and is still able to avoid
 consuming access network bandwidth and avoid communicating with the
 public STUN server. All that is lost is the ability to optimize
 paths within the private network that has overlapped addresses.

 Of course when such an overlap occurs the end host (STUN client)
 cannot successfully establish bi-directional communication with hosts
 in the overlapped network, anyway.

8.2. Address Dependent NAT on Path

 In order to utilize the mechanisms described in this document, a STUN
 Request is sent from the same source IP address and source port as
 the original STUN Binding Discovery message, but is sent to a
 different destination IP address -- it is sent to the IP address of
 an on-path NAT. If there is an on-path NAT, between the STUN client
 and the STUN server, with 'address dependent' or 'address and port-
 dependent' mapping behavior (as described in section 4.1 of
 [RFC4787]), that NAT will prevent a STUN client from taking advantage
 of the technique described in this document. When this occurs, the
 ports indicated by XOR-MAPPED-ADDRESS from the public STUN server and
 the NAT's embedded STUN server will differ.

https://datatracker.ietf.org/doc/html/rfc4787#section-4.1
https://datatracker.ietf.org/doc/html/rfc4787#section-4.1

Wing & Rosenberg Expires December 2, 2007 [Page 21]

Internet-Draft STUN Control May 2007

 An example of such a topology is shown in the following figure:

 +------+ +--------+ +--------+
 | STUN | | 10.1.1.2 | 192.0.2.1
 |client+-----+ NAT-A +---+ NAT-B +------<Internet>
 | | 10.1.1.1 | 10.1.1.1 |
 +------+ +--------+ +--------+

 In this figure, NAT-A is a NAT that has address dependent mapping.
 Thus, when the STUN client sends a STUN Binding Request to 192.0.2.1
 on UDP/3478, NAT-A will choose a new public UDP port for that
 communication. NAT-B will function normally, returning a different
 port in its XOR-MAPPED-ADDRESS, which indicates to the STUN client
 that a symmetric NAT exists between the STUN client and the STUN
 server it just queried (NAT-B, in this example).

 Figure 13: Address Dependant NAT on Path

 Open issue: We could resolve this problem by introducing a new
 STUN attribute which indicates the UDP port the STUN client wants
 to control. However, this changes the security properties of NAT
 Control, so this seems undesirable.

 Open issue: When the STUN client detects this situation, should
 we recommend it abandon the NAT Control usage, and revert to
 operation as if it doesn't support the NAT Control usage?

8.3. Address Dependent Filtering

 If there is an NAT along the path that has address dependent
 filtering (as described in section 5 of [RFC4787]), and the STUN
 client sends a STUN packet directly to any of the on-path NATs public
 addresses, the address-dependent filtering NAT will filter packets
 from the remote peer. Thus, after communicating with all of the on-
 path NATs the STUN client MUST send a UDP packet to the remote peer,
 if the remote peer is known.

 Discussion: How many filter entries are in address dependent
 filtering NATs? If only one, this does become a real limitation
 if NATs are nested; if they're not nested, the outer-most NAT can
 avoid overwriting its own address in its address dependent filter.

9. Security Considerations

 This security considerations section will be expanded in a subsequent
 version of this document. So far, the authors have identified the

https://datatracker.ietf.org/doc/html/rfc4787#section-5

Wing & Rosenberg Expires December 2, 2007 [Page 22]

Internet-Draft STUN Control May 2007

 following considerations:

9.1. Authorization and Resource Exhaustion

 Only hosts that are 'inside' a NAT, which a NAT is already providing
 services for, can query or adjust the timeout of a NAT mapping.

 A malicious STUN client could ask for absurdly long NAT bindings
 (days) for many UDP sessions, which would exhaust the resources in
 the NAT. The same attack is possible (without considering this
 document and without considering STUN or other UNSAF [RFC3424] NAT
 traversal techniques) -- a malicious TCP client can open many TCP
 connections, and keep them open, causing resource exhaustion in the
 NAT. One way to thwart such an attack is to challenge the STUN
 client with a nonce, which is already part of the STUN specification.
 By doing this, a NAT can provide DoS protection similar to what it
 could do for TCP today.

9.2. Comparison to Other NAT Control Techniques

 Like UPnP, Bonjour, and host-initiated MIDCOM, the STUN usage
 described in this document allows a host to learn its public IP
 address and UDP port mapping, and to request a specific lifetime for
 that mapping.

 However, unlike those technologies, the NAT Control usage described
 in this document only allows each UDP port on the host to create and
 adjust the mapping timeout of its own NAT mappings. Specifically, an
 application on a host can only adjust the duration of a NAT bindings
 for itself, and not for another application on that same host, and
 not for other hosts. This provides security advantages over other
 NAT control mechanisms where malicious software on a host can
 surreptitiously create NAT mappings to another application or to
 another host.

9.3. Rogue STUN Server

 As described in Section 7, a STUN client can learn its outer-most NAT
 runs an embedded STUN server. However, without the STUN client's
 knowledge, the outer-most NAT may acquire a new IP address. This
 could occur when the NAT moves to a new mobile network or its DHCP
 lease expires. When the NAT acquires a new IP address, the STUN
 client will send a STUN Binding Request to the NAT's prior public IP
 address, which will be routed to the NAT's previous address.

 If an attacker runs a rogue STUN server on that address, the attacker
 has effectively compromised the STUN server (the attacked described
 in section 12.2.1 of [RFC3489]). The attacker will send STUN Binding

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc3489#section-12.2.1

Wing & Rosenberg Expires December 2, 2007 [Page 23]

Internet-Draft STUN Control May 2007

 Responses indicating his IP address, which will be indistinguishable,
 to the STUN client, from the behavior of the legitimate STUN server.

 To defend against this attack, the STUN client and STUN server obtain
 a short-term password as described in section Section 6.2.

10. IANA Considerations

 This section registers one new STUN attribute per the procedures in
 [I-D.ietf-behave-rfc3489bis]:

 Mandatory range:
 0x0028 XOR-INTERNAL-ADDRESS

 Optional range:
 0x80.. PLEASE-TAG
 0x80.. TAG

11. Acknowledgements

 Thanks to Remi Denis-Courmont, Markus Isomaki, Cullen Jennings, and
 Philip Matthews for their suggestions which have improved this
 document.

12. References

12.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [I-D.ietf-behave-rfc3489bis]
 Rosenberg, J., "Session Traversal Utilities for (NAT)
 (STUN)", draft-ietf-behave-rfc3489bis-06 (work in
 progress), March 2007.

 [RFC4787] Audet, F. and C. Jennings, "Network Address Translation
 (NAT) Behavioral Requirements for Unicast UDP", BCP 127,

RFC 4787, January 2007.

 [RFC3489] Rosenberg, J., Weinberger, J., Huitema, C., and R. Mahy,
 "STUN - Simple Traversal of User Datagram Protocol (UDP)
 Through Network Address Translators (NATs)", RFC 3489,
 March 2003.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-behave-rfc3489bis-06
https://datatracker.ietf.org/doc/html/bcp127
https://datatracker.ietf.org/doc/html/rfc4787
https://datatracker.ietf.org/doc/html/rfc3489

Wing & Rosenberg Expires December 2, 2007 [Page 24]

Internet-Draft STUN Control May 2007

12.2. Informational References

 [I-D.ietf-behave-turn]
 Rosenberg, J., "Obtaining Relay Addresses from Simple
 Traversal Underneath NAT (STUN)",

draft-ietf-behave-turn-03 (work in progress), March 2007.

 [UPnP] UPnP Forum, "Universal Plug and Play", 2000,
 <http://www.upnp.org>.

 [Bonjour] Apple Computer, "Bonjour", 2005,
 <http://www.apple.com/macosx/features/bonjour/>.

 [RFC3303] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., and
 A. Rayhan, "Middlebox communication architecture and
 framework", RFC 3303, August 2002.

 [I-D.ietf-mmusic-ice]
 Rosenberg, J., "Interactive Connectivity Establishment
 (ICE): A Methodology for Network Address Translator (NAT)
 Traversal for Offer/Answer Protocols",

draft-ietf-mmusic-ice-15 (work in progress), March 2007.

 [I-D.ietf-sip-outbound]
 Jennings, C. and R. Mahy, "Managing Client Initiated
 Connections in the Session Initiation Protocol (SIP)",

draft-ietf-sip-outbound-08 (work in progress), March 2007.

 [I-D.ietf-nsis-nslp-natfw]
 Stiemerling, M., "NAT/Firewall NSIS Signaling Layer
 Protocol (NSLP)", draft-ietf-nsis-nslp-natfw-14 (work in
 progress), March 2007.

 [RFC4884] Bonica, R., Gan, D., Tappan, D., and C. Pignataro,
 "Extended ICMP to Support Multi-Part Messages", RFC 4884,
 April 2007.

 [I-D.shore-tist-prot]
 Shore, M., "The TIST (Topology-Insensitive Service
 Traversal) Protocol", draft-shore-tist-prot-00 (work in
 progress), May 2002.

 [I-D.shore-nls-tl]
 Shore, M., "Network-Layer Signaling: Transport Layer",

draft-shore-nls-tl-04 (work in progress), May 2007.

 [RFC3424] Daigle, L. and IAB, "IAB Considerations for UNilateral
 Self-Address Fixing (UNSAF) Across Network Address

https://datatracker.ietf.org/doc/html/draft-ietf-behave-turn-03
http://www.upnp.org
http://www.apple.com/macosx/features/bonjour/
https://datatracker.ietf.org/doc/html/rfc3303
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-ice-15
https://datatracker.ietf.org/doc/html/draft-ietf-sip-outbound-08
https://datatracker.ietf.org/doc/html/draft-ietf-nsis-nslp-natfw-14
https://datatracker.ietf.org/doc/html/rfc4884
https://datatracker.ietf.org/doc/html/draft-shore-tist-prot-00
https://datatracker.ietf.org/doc/html/draft-shore-nls-tl-04

Wing & Rosenberg Expires December 2, 2007 [Page 25]

Internet-Draft STUN Control May 2007

 Translation", RFC 3424, November 2002.

 [RFC4540] Stiemerling, M., Quittek, J., and C. Cadar, "NEC's Simple
 Middlebox Configuration (SIMCO) Protocol Version 3.0",

RFC 4540, May 2006.

Authors' Addresses

 Dan Wing
 Cisco Systems
 170 West Tasman Drive
 San Jose, CA 95134
 USA

 Email: dwing@cisco.com

 Jonathan Rosenberg
 Cisco Systems
 600 Lanidex Plaza
 Parsippany, NJ 07054
 USA

 Email: jdrosen@cisco.com

https://datatracker.ietf.org/doc/html/rfc3424
https://datatracker.ietf.org/doc/html/rfc4540

Wing & Rosenberg Expires December 2, 2007 [Page 26]

Internet-Draft STUN Control May 2007

Full Copyright Statement

 Copyright (C) The IETF Trust (2007).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Wing & Rosenberg Expires December 2, 2007 [Page 27]

